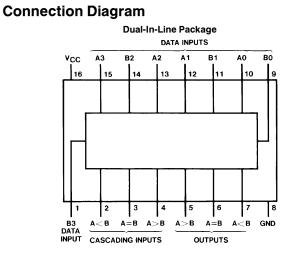

June 1989

54LS85/DM54LS85/DM74LS85 4-Bit Magnitude Comparators

54LS85/DM54LS85/DM74LS85 4-Bit Magnitude Comparators

General Description

These 4-bit magnitude comparators perform comparison of straight binary or BCD codes. Three fully-decoded decisions about two, 4-bit words (A, B) are made and are externally available at three outputs. These devices are fully expandable to any number of bits without external gates. Words of greater length may be compared by connecting comparators in cascade. The A > B, A < B, and A = B outputs of a stage handling less-significant bits are connected to the corresponding inputs of the next stage handling more-significant bits. The stage handling the least-significant bits must


have a high-level voltage applied to the A = B input. The cascading path is implemented with only a two-gate-level delay to reduce overall comparison times for long words.

Features

Typical power dissipation 52 mW

TL/E/6379-1

- Typical delay (4-bit words) 24 ns
- Alternate Military/Aerospace device (54LS85) is available. Contact a National Semiconductor Sales Office/ Distributor for specifications.

Order Number 54LS85DMQB, 54LS85FMQB, 54LS85LMQB, DM54LS85J, DM54LS85W, DM74LS85M or DM74LS85N See NS Package Number E20A, J16A, M16A, N16E or W16A

Function Table

Comparing Inputs			Cascading Inputs			Outputs			
A3, B3	A2, B2	A1, B1	A0, B0	$\mathbf{A} > \mathbf{B}$	$\mathbf{A} < \mathbf{B}$	$\mathbf{A} = \mathbf{B}$	$\mathbf{A} > \mathbf{B}$	$\mathbf{A} < \mathbf{B}$	$\mathbf{A} = \mathbf{B}$
A3 > B3	Х	Х	х	Х	Х	Х	Н	L	L
A3 < B3	Х	Х	Х	Х	Х	Х	L	н	L
A3 = B3	A2 > B2	Х	Х	Х	Х	Х	Н	L	L
A3 = B3	A2 < B2	Х	Х	Х	Х	Х	L	н	L
A3 = B3	A2 = B2	A1 > B1	Х	Х	Х	Х	Н	L	L
A3 = B3	A2 = B2	A1 < B1	Х	Х	Х	Х	L	Н	L
A3 = B3	A2 = B2	A1 = B1	A0 > B0	Х	Х	Х	Н	L	L
A3 = B3	A2 = B2	A1 = B1	A0 < B0	Х	Х	Х	L	н	L
A3 = B3	A2 = B2	A1 = B1	A0 = B0	н	L	L	Н	L	L
A3 = B3	A2 = B2	A1 = B1	A0 = B0	L	н	L	L	н	L
A3 = B3	A2 = B2	A1 = B1	A0 = B0	L	L	н	L	L	н
A3 = B3	A2 = B2	A1 = B1	A0 = B0	Х	Х	н	L	L	н
A3 = B3	A2 = B2	A1 = B1	A0 = B0	н	н	L	L	L	L
A3 = B3	A2 = B2	A1 = B1	A0 = B0	L	L	L	н	н	L

© 1995 National Semiconductor Corporation TL/F/6379

RRD-B30M105/Printed in U. S. A.

Absolute Maximum Ratings (Note)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

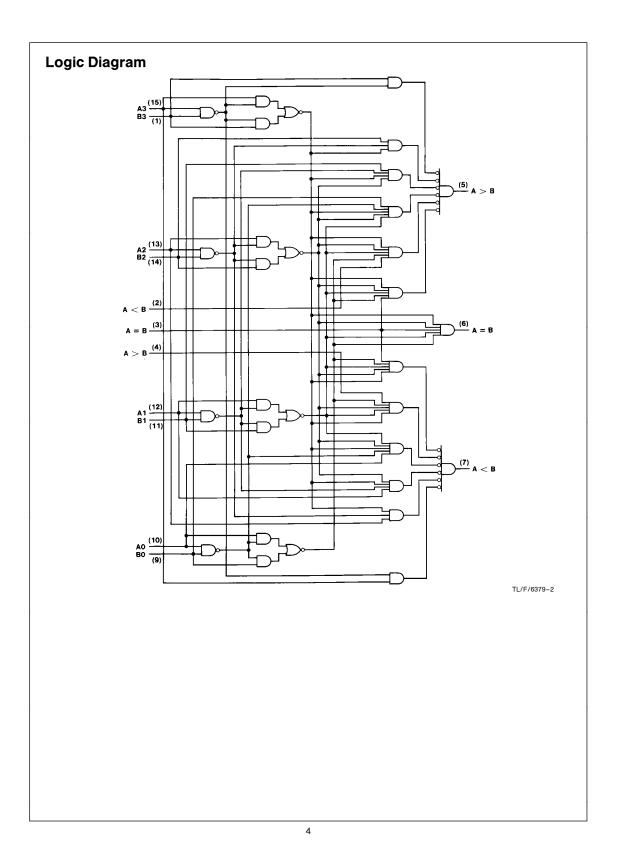
Supply Voltage	7V
Input Voltage	7V
Operating Free Air Temperature Range	
DM54LS and 54LS	$-55^{\circ}C$ to $+125^{\circ}C$
DM74LS	$0^{\circ}C$ to $+70^{\circ}C$
Storage Temperature Range	-65°C to +150°C

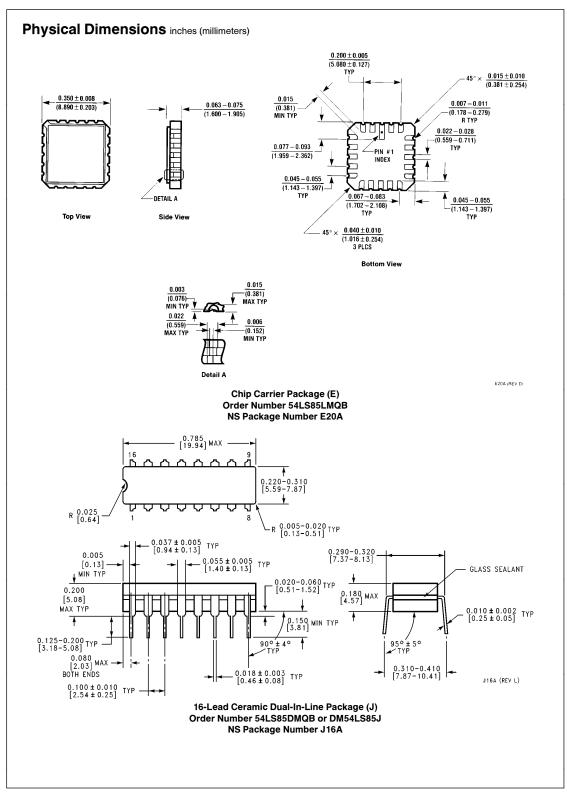
Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

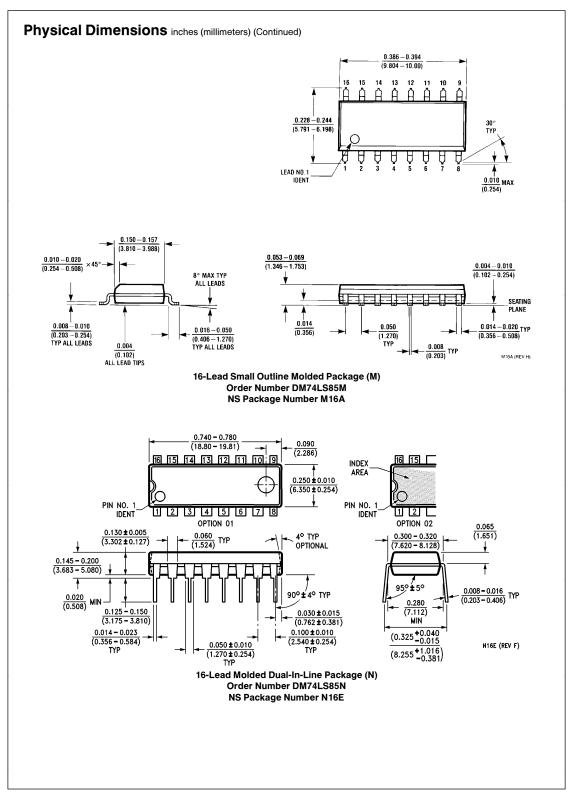
Recommended Operating Conditions

Symbol	Parameter		DM54LS8	5		Units		
	i arameter	Min	Nom	Max	Min	Nom	Max	0
V _{CC}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V _{IH}	High Level Input Voltage	2			2			V
VIL	Low Level Input Voltage			0.7			0.8	V
IOH	High Level Output Current			-0.4			-0.4	mA
I _{OL}	Low Level Output Current			4			8	mA
T _A	Free Air Operating Temperature	-55		125	0		70	°C

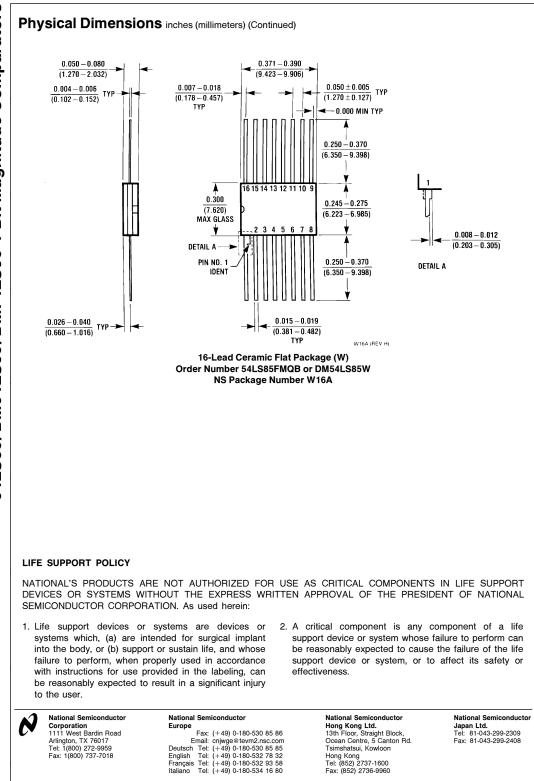
Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)


Symbol	Parameter	Parameter Conditions			Typ (Note 1)	Мах —1.5	Units	
VI	Input Clamp Voltage	$V_{CC} = Min, I_I = -18 \text{ mA}$		V				
V _{OH}	High Level Output	$V_{CC} = Min, I_{OH} = Max$	DM54	2.5	3.4		v	
	Voltage	$V_{IL} = Max, V_{IH} = Min$	DM74	2.7	3.4			
V _{OL}	Low Level Output	$V_{CC} = Min, I_{OL} = Max$	DM54		0.25	0.4	v	
	Voltage	$V_{IL} = Max, V_{IH} = Min$	DM74		0.35	0.5		
		$I_{OL} = 4 \text{ mA}, V_{CC} = Min$	DM74		0.25	0.4]	
Ιį	Input Current @ Max Input Voltage	V _{CC} = Max	A < B			0.1	mA	
		$V_{I} = 7V$	A > B			0.1		
			Others			0.3		
IIH	High Level Input	V _{CC} = Max	A < B			20	μΑ	
	Current	$V_{l} = 2.7V$	A > B			20		
			Others			60		
Ι _{ΙL}	Low Level Input	V _{CC} = Max	A < B			-0.4	mA	
	Current	$V_{I} = 0.4V$	A > B			-0.4		
			Others			-1.2		
I _{OS}	Short Circuit	V _{CC} = Max	DM54	-20		-100	— mA	
	Output Current	(Note 2)	DM74	-20		-100		
I _{CC}	Supply Current	V _{CC} = Max (Note 3)			10	20	mA	


Note 1: All typicals are at V_{CC} = 5V, T_A = 25 ^{\circ}C.


Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Note 3: I_{CC} is measured with all outputs open, A = B grounded and all other inputs at 4.5V.


Symbol		From Input	To Output	Number of Gate Levels					
	Parameter				$C_L = 15 pF$		C _L = 50 pF		Units
					Min	Max	Min	Max	
t _{PLH}	Propagation Delay Time Low-to-High Level Output	Any A or B Data Input	A < B, A > B	3		36		42	ns
			A = B	4		40		40	
t _{PHL}	Propagation Delay Time High-to-Low Level Output	Any A or B Data Input	A < B, A > B	3		30		40	ns
			A = B	4		30		40	
t _{PLH}	Propagation Delay Time Low-to-High Level Output	A < B or $A = B$	A > B	1		22		26	ns
t _{PHL}	Propagation Delay Time High-to-Low Level Output	A < B or A = B	A > B	1		17		26	ns
t _{PLH}	Propagation Delay Time Low-to-High Level Output	A =B	A = B	2		20		25	ns
t _{PHL}	Propagation Delay Time High-to-Low Level Output	A = B	A = B	2		17		26	ns
t _{PLH}	Propagation Delay Time Low-to-High Level Output	A > B or $A = B$	A < B	1		22		26	ns
t _{PHL}	Propagation Delay Time High-to-Low Level Output	A > B or A = B	A < B	1		17		26	ns

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications

This datasheet has been downloaded from:

www.DatasheetCatalog.com

Datasheets for electronic components.