

COMPUTER SCIENCE

Assignment 3.
Program debugging.

 GIEyAI
Fall Semester, 2024-2025

v2.8(02.09.24)

 2

Debugging.

Beginning programmers (and more experienced ones, as well) frequently make design or coding
errors when creating programs, so one of the more useful tools for them is the debugger. A debugger
is a program which can execute another program (yours) step by step (instruction by instruction) and
let you analyze the values that variables take, so that you can find the spot where it starts doing what
it should not. It is appropriate at this time to remember the maxim:

"A program does what you tell it to, not what you want it to"

The first debugger that we will cover here is called Data Display Debugger (or ddd). It can be
launched from the desktop, or from a command prompt, typing:

bash-ln.05$ ddd muestra&

The debugger window will be something similar to the one shown here:

!"#$%&'%%
()*+$,)-$.)/#%
&'%&$0"*%

!"#$%&'%%
()*+$,)-$.)/#%
&',%12"32$4$%

5'#0$#$%&'%%
."#02",%&'%,$%%
'6'.+.)/#%

7#0'28$-%&'%%
."4$#&"*%

9$22$%&'%%
:'22$4)'#0$*%Tool Bar

Data
visualization
area

Execution
control
window

Program
visualization
area

Command
interface

 3

Once our program has been loaded, the first thing is to start it running. To do that, we set a
breakpoint in one line of code (for instance, in the first call to printf) by clicking in the
corresponding line of code, at about the beginning of the line. This will set the cursor in this line.
Next, we click the 'Break' button, in the toolbar. This sets the breakpoint. In case we need to unset it,
we would just click on the 'Break' button again. With the breakpoint on, we start the program by
clicking the 'Run' button in the execution control window. The program will stop at the line where
we set the breakpoint.

It is possible to see the values of variables by selecting them with the mouse (clicking on them in the
program visualization zone) and, next, clicking the 'Display' button. This will show them in the data
visualization zone, along with their current value.

In order to execute one line of code, one can use either the 'Step' button or the 'Next' button, both of
them in the execution control window. The difference between both commands is how they deal
with functions. When executions comes to a function call, 'Next' executes the whole function in one
step, whereas 'Step' executes just the first instruction in the function and then stops.

Besides, it is possible to execute nonstop whole regions of code simply setting a breakpoint on the
instruction after the desired region, and running the program with the 'Cont' button. The execution
control window has some other interesting options. To learn more, consult the references at the end
of this document.

Using ddd to debug a program (sample debug session).

This section shows how to use ddd to find the errors in a program. The starting point is the following
program:

 4

The program should convert the temperature in degrees Fahrenheit, contained in variable fahren, to
Celsius, and show the result on the screen. When compiled and run, the result is:

As you can see, the result is not correct, since 100ºF are not 0ºC, so the program is not working well.
To find the errors, first we have to launch the debugger. In the following picture, we already have
two breakpoints, one in the first sentence of the program, and the other on the call to printf which
shows the results. Besides, the values of variables fahren and celsius are visualized. The
instructions to do all this have already been discussed above.

The program has run until the second breakpoint, and you can see that variable celsius, which is
shown, has value 0, so the call to printf is working correctly (as library functions usually do).
Why does celsius equal 0? The answer is plain to see: the conversion is done using temp as a
temporary variable, and the final result is not moved to celsius, which, thus, keeps its original
value.

 5

To see if variable temp has the right value and the conversion was correct, we show its value in the
debugger:

 6

The value of temp, 337.777771, is not the right one, so the conversion has another error. It is
necessary to debug the conversion process. We can do this by restarting execution of the program
(the 'Run' button), and setting breakpoints in each sentence of the process. This is not strictly
necessary, since we can use the 'Next' button to execute one sentence at a time. Both methods are
correct (although the latter one is a little less tedious).

 7

Now we execute the program to see the conversion process step by step. If you use breakpoints, to
jump to the next you should use the 'Cont' button. The following capture shows one of the
intermediate steps of this process:

 8

At some point, the attentive student will notice that the conversion formula is not correct. The
correct one is:

celsius=5*(fahren-32)/9;

The next figure shows the code with the correct conversion formula, and the transfer of variable
temp to variable celsius, so printf shows the correct value on the screen.

 9

When this new version of the program is compiled and executed, the result is correct. The next
figure shows the result of the execution. In the command interface panel (the one at the bottom), we
see that the call to printf shows the correct value this time. This is what we would see from the
command interface window if the program were run directly from the prompt. Besides, variables
fahren and celsius have the right values.

 10

The next figure shows the command interface with the execution of the program and the correct
result.

 11

 12

Debugging with gede.

In the previous section, one of the most widespread debuggers available, ddd, was described. In this
one we show another one, which is also freely available, as an alternative. It is called gede, and the
way to use it is very similar (most debuggers will do more or less the same). It will let you run step
by step, set breakpoints, run nonstop, and visualize variables, which is basically what you need to do
to debug a program.

The first thing to do is call the debugger. You can do this and tell it which program you want to
debug (in this case, first):

bash-ln.05$ gede --args first&

or just call it and tell it later:

bash-ln.05$ gede&

The first window you will see is the following:

Highlighted you can see the name of the program to debug (first). If you told this to the debugger
as you called it, the name will be there. Otherwise, you can tell it now. When you click on 'OK', you
go to the main window:

 13

The central part in this window shows the code of the program being debugged. The debugger
automatically inserts a breakpoint in the first instruction of the program (highlighted in the image).
Beside the main window, on the right, there is a pane to visualize the variables (variables local to the
function being debugged appear automatically, like fahren and celsius here, there is no need to
add them, as you had to in ddd). The window also has, close to the top, a tool bar with buttons to
control execution, analogously to what happened in ddd with the program control panel. There is a
button for 'Next', another one for 'Step', and another one for 'Cont'. When you hover the mouse
cursor over them, gede shows which is which. Beside those mentioned, there is one for restarting
execution and another one for exiting the program.

On the lower part of the window there are two tabs for output: one is the program's output and the
other is the debugger's output (GDB Output). The former (Program Console). is what you use to
type in data when your program reads from keyboard. When your program is expecting input, you
click on this pane and type in the data. Also, look here for what your program sends to the screen.

Lastly, management of breakpoints is done directly with the mouse. Double-click on a line number
to set a breakpoint on that line, and double-click again to remove it. In the following picture, a
breakpoint has been added to line 18, and execution has progressed until that line (with the 'Cont'
button).

 14

The debugger offers many possibilities to the programmer. It greatly reduces the time to generate
more complex programs, so the time spent in learning its features will greatly pay off in later
assignments. Some of the features are not necessary for this class (like thread debugging or stack
analysis, etc), but it is good to know they are there as you advance in your studies.

 15

Debugging. The gdb debugger.

Both DDD and gede, the debuggers from the previous sections, are in reality only a graphical user
interface for the real debugger running under the hood, gdb. gdb is the one really doing all the
debugging work, while the user interface (the frontend) just acts as an intermediary between it and
the user, transferring information and commands to and fro. Sometimes it is more interesting to use
the gdb debugger directly, and this is what this section is about. We will see, in a somewhat
superficial way, how to use gdb.

Since DDD and gede resort to gdb to do the debugging work, obviously everything that was done
in the previous sections can also be done now: execute one instruction at a time, see the values that
variables take, manage the program's input/output, set breakpoints, etc. The only difference (and
what makes it a little more tedious) is that gdb is used from the terminal, it has no graphical
interface. In other words, the debugging is carried out by means of commands given at the terminal.

The first thing to do is start the debugger. In a terminal, type:

bash-ln.05$ gdb

and this causes the debugger to start. The prompt changes, to indicate that we are no longer
interacting with the command interpreter, but with the debugger. And from here on a basic pattern is
repeated over and over: type a command and get a result. The first command should tell gdb which
program we wish to debug. In our case, muestra. Since, in order to debug it, we need to refer to
instructions in the program, it is advisable to open it in a text editor and activate the option to show
the line numbers. The command to load our program is file.

(gdb) file muestra

This makes gdb ready to process our program, muestra. The debugging process in gdb is
identical to what we did before. The only thing we need is to know the gdb commands that
correspond to the buttons in DDD or gede. For instance, if we want to set a watchpoint in sentence
return 0 (line 28 in the corrected version of muestra.c above), the command is:

(gdb) b 28

To run the program we have 4 commands: the run command, which executes it nonstop from the
beginning, the step command, which executes a single instruction, the next command, which
executes one line of code (if that line is a function call, it will execute the whole function in one
step) and, lastly, the cont command, which resumes execution nonstop from where it stood
stopped. As can be seen, they are the same possibilities we already know. The continuous execution
will stop at the first breakpoint found (or at the end of the program).

When execution stops, the debugger shows the line number and the next instruction to execute. For
instance, stopping at the breakpoint in line 28 would show:

Breakpoint 1, main() at muestra.c:28
28 return 0;
(gdb)

 16

The first line shows that execution stopped at the first breakpoint in the program, set in function
main() at line 28 of file muestra.c. Next, the line in question, and finally, the prompt waits for
the next command.

It is also possible to visualize variables. In this case we have two options: to see a value once, or to
follow the evolution of a variable. For the first options we have the print command, and for the
second, the display command. The print command shows the current value of a variable only
once, whereas the display command will show the variable every time execution is stopped. For
instance, if, before running the program, we had used the display command to follow the
evolution of variables temp and fahren, when stopping at line 28, gdb would show:

Breakpoint 1, main() at muestra.c:28
28 return 0;
2: temp = 37.77777778
1: fahren = 100.0
(gdb)

You can also visualize strings of characters, integers, single characters, etc.

Finally, the kill and quit commands terminate execution of a program. kill stays within the
debugger (to start debugging again, for instance), and quit exits the debugger (and returns to the
command interpreter).

The gdb debugger is a very complete tool with a lot of useful options. It is very advisable to look
into its manual page. Besides, the web page for this class has a link to a quick-reference sheet with a
summary of the commands and a sort description of each one.

 17

EXERCISES.

Find the errors in the following programs, possibly with the help of one of the debuggers from the
previous sections:

Program 1: The program should compare two variables and show the bigger one on the screen. In

the case that they are equal, it should also indicate so.

Code:

#include <stdio.h>

int main()
{
 int var1, var2;

 var1=10;
 var2=5;

 if (var1>=var2)
 printf(“\nThe bigger variable has a value of: %d”,var2);
 else
 printf(“\nThe bigger variable has a value of %d”,var1);

 if(var1=var2)
 printf(“\nBoth variables have the same value:%d\n”,var1);

 return 0;
}

Program 2: The program should calculate the arithmetic mean of the values of an array of int.

Code:

#include <stdio.h>

int main()
{
 int list[10]= {3,5,2,1,6,2,3,1,5,9};
 int sum,i,j;
 float mean;

 for(i=1;i<=10;i++)
 sum=sum+list[j];

 mean=sum/2;

 printf(“\nThe arithmetic mean of the list is: %f\n”,mean);

 return 0;
}

 18

Program 3: The program should create an array of integer numbers from another, given one, such

that every position of the new array should be equal to the sum of all the elements of
the first array up to that position (inclusive).

Example:
 if the original array is:
 {2,1,4,7,2}
 then, the new one would be (the operations between parenthesis shown as indication only):
 {2,3(2+1),7(2+1+4),14(2+1+4+7),16(2+1+4+7+2)}

Code:

#include <stdio.h>

int main()
{
 int original[10]= {3,5,2,1,6,2,3,1,5,9};
 int new[10];
 int sum,i,j;

 printf(“\nOriginal\tNew\n”);

 for(i=1;i<=10;i++)
 printf(“%d\t”,original[i]);
 sum=sum+original[i];
 printf(“%d\n”,sum);
 new[i]=sum;

 return 0;
}

References:

• The DDD page: https://www.gnu.org/software/ddd/manual/html_mono/ddd.html
• A DDD tutorial: http://knuth.luther.edu/~leekent/tutorials/ddd.html
• DDD Manual: http://www.gnu.org/software/ddd/manual/pdf/ddd.pdf
• The gede page: http://gede.acidron.com/
• The gdb page: https://www.gnu.org/software/gdb/
• A gdb tutorial: https://web.eecs.umich.edu/~sugih/pointers/summary.html

