
 
 
 
 
 
 
 
 
 

COMPUTER SCIENCE 
 
 
 
 
 
 
 

Assignment 2. 
Program development. 

Standard input and output in C. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

GIEyAI 
Fall Semester, 2024-2025 

v2.8(02.09.24) 



 2 

CREATION OF A PROGRAM 
 
For some of the exercises of the upcoming coding assignments, the first thing to do is the design of 
the algorithm. Once this is clear, one can proceed to developing the creation of the program, which 
will be a mere translation into code. For the simpler exercises, the program is contained in a single 
source file. To create it, one can use any basic text editor, such as vim or emacs. For this 
assignment, we are going to use an editor with a graphical interface included in the Ubuntu 
distribution. It is called gedit. 
 
With the editor open, one can write the program in it. While coding, it is advisable to save often to 
avoid loss in case of a power outage or similar reasons. The source file usually has the .c extension. 
In this case, we use muestra.c as a name. The following figure shows the editor with the code of 
a sample program. 
 
 

 
 
 
In order to run it, the program must be compiled and linked first. These are two different operations, 
but for a program with a single file of source code, they can be carried out with a single invocation 
of the gcc program. gcc is an application which includes (among other things) the compiler and 
the linker. The way to use it is: 
 
bash-ln.05$ gcc –g –o muestra muestra.c 
 
 



 3 

(Note that everything up to, and including, the ‘$’ is called the prompt, and is printed by the 
terminal. The command starts with ‘gcc’). The -g flag tells gcc to generate debugging 
information (otherwise it won't be generated, and it won't be possible to debug the code later). Next, 
the -o name argument tells gcc what to call the output executable file. In this case, muestra. 
The last argument in the line is the source file to compile. 
 
If the program has syntax errors, gcc will indicate which are the faulty lines, and will give a short 
description of the problem. Note that, in this case, it won’t generate an executable file! If the 
program is error-free (at least as far as syntax is concerned), the result will be the executable file. 
 
MANAGEMENT OF STANDARD INPUT AND OUTPUT IN C. 
 
This section deals with the use of standard input and output in a C program. The starting point is the 
basic program which was created in the previous section and, with it in mind, the most relevant 
questions about input and output are dealt with. 
 
Basic structure of a C program. 
 
The basic structure of a simple C program is taken from the slides of unit 4, section 1, which is very 
similar to the one which was created in the previous section. It is shown below. In the code shown, 
line numbers are included (shown here for reference only; these numbers are not to be included in 
the source file). 
 

1 /* Fahrenheit -> Celsius conversion */ 
2  
3 #include <stdio.h> 
4  
5 int main() 
6 { 
7 int fahren, celsius;    /* integer variables */ 
8 
9 printf("Conversion from ºF to ºC:\n"); 
10 
11 /* Temperature to be converted */ 
12 fahren = 100; 
13  
14 /* Conversion */ 
15 celsius = 5*(fahren-32)/9;         
16 
17 /* Show results */ 
18 printf("%d ºF = %d ºC\n",fahren, celsius);     
19 return 0; 
20 } 

 
The program has 2 main sections: the main function (the second section, from line 5 onwards), and 
everything that precedes it (the first section, lines 1 to 4). Section 1 is where library inclusion 
directives go (stdio.h in this example), as well as the declaration of global variables (there are 
none in this example). The main function contains the statements of the main program. 
 
This assignment deals with some of the most widely used input/output functions in C. They 
(unsurprisingly) manage the program's standard input and output. By default, these are the keyboard 
and the screen, but this can be changed by redirection from the command line (recall assignment 1). 



 4 

All these functions are in the stdio.h library so, in order to use them, it will be necessary to add 
the corresponding #include directive in the program. 
 
In the sample program, the lines with the word printf (9 and 18) are performing output 
operations. printf corresponds to the name of a function which manages the task of showing in 
standard output (remember: by default, the screen) whatever we tell it to. The full description of the 
printf function, and of some others, is below. 
 
Standard output. 
 
The main function available for outputting data is printf. Its syntax is: 
 

int printf(const char *format, …) 
 
The function can show, on standard output, the data it is told to, and it formats the output according 
to directions that can be given to it. These directions make up the first argument of the function. It is 
a string of characters with interspersed control sequences. After this first argument, a number of 
other arguments can be included (that is what the ellipsis – ‘…’ – represents), which are the data that 
must be displayed on the output. Each of them is embedded into the string of text in place of the 
control sequence, in the manner which it (the corresponding control sequence) determines. Each 
format control sequence starts with the character '%', and after that comes the information about 
how to display the data that corresponds to it. The syntax of a format control sequence is: 
 

%[flags][width][.precision][length]format 
 
Each field is explained next: 
flags (optional) 

«-» left justification 
«+» sign symbol is always shown 
«0» zero-padding to the left 

 
width (optional): width of the field where the data is displayed 
 
precisión (optional) 

for integers: number of digits 
for reals: number of decimal positions 
for strings: number of characters 

 
length (optional) type of format to use 

«h» expects a short 
«l» for integers, printf expects a long; for float, no effect. 
«L» for floating point types, printf expects a long double 
 

format (mandatory) tells the type of the argument  
«d» signed int printed in decimal 
«u» unsigned int printed in decimal  
«o» unsigned int printed in octal 
«x» unsigned int printed in hexadecimal (X for capitals) 
«f» float printed in the format [–]ddd.ddd 



 5 

«e» float printed in the format [–]d.ddde[±]ddd (E for capitals) 
«g» double in the most appropriate notation for its magnitude 
«c» char 
«s» string 
 

According to the above, the invocation of printf in line 9 has no format control sequence, so it 
will just print on standard output the characters which make up the control string as such. 
 
The call in line 18, on the contrary, has two format control sequences. Specifically, the sequence 
“%d” appears twice. They are two simple sequences where only the format is specified, that is, the 
type of the data to display. In this case, we have two integers (hence d). The variables shown are the 
ones included in the function call next to the control sequence, in the order that they appear: 
fahren (for the first control sequence) and celsius (for the second one). The values of both 
variables are embedded in the output string in the positions indicated by the format control sequence 
“%d” (each variable in its corresponding position). 
 
Format control sequences allow us to specify, up to a very high level of detail, how we want to 
display the data. Here follow some examples with more complex format control sequences (you can 
try them on a program of your own and see what happens; use the example above as a template and 
modify it as you see fit): 
 
Examples: 
For an int variable, data, printed in 8 positions, with zero-padding on the left, up to 6 digits, in 
signed int format: 
 

printf(“%8.6d”,data); 
 

To print data, an unsigned int, with zero-padding of up to 8 positions, left justified, in a space 
of 12 positions:  
 

printf(“%-12.8u”,data); 
 

To print data, an int, in hexadecimal (2’s complement): 
 

printf(“%x”,data); 
 
The following example prints a string of characters created as a variable in the program. A string of 
characters is a collection of characters, set one next to the other, so that, together, they make up the 
message. 
 

char string[11]=”one string”; 
 

printf(“%s”,string); 
 
In the example, variable string is declared as char, the type which corresponds to characters. 
The number in square brackets (11) is the maximum number of characters that the string can hold. 
This number must be, at least, one more than the number of desired characters (in this case, 10, the 
number of characters in “one string”). With this declaration, a call can be made to function 



 6 

printf to tell it to print the characters to show, simply using the name of the set, which, in this 
case, is string. 
 
A string of characters can be embedded in the format control sequence: 

 
char string[20]=”some message”; 
printf(“%s: \nEl dato es: %-12.8u”,cadena,dato); 
 

In this case, the characters in the string are printed to standard output, and the content of variable 
dato is embedded in the place marked by the escape sequence (“%-12.8u”).  
 
printf allows a high level of detail on how the output is shown. For simpler, more specific tasks, 
there are other easier functions: 

int puts(const char *): to output a simple character string.  
int putchar(int): to output a single character. 
 

 
Standard input. 
 
Similarly to the printf function, there exists an analogous input function, scanf. The 
functionality is equally extensive. The syntax is:  
 

int scanf(const char *format, …) 
 
In this case, the format string, which is also a control sequence, is not sent to the output, but 
specifies instead what the input is expected to be. The function ignores any whitespace characters 
(blanks, tabs and carriage returns) it finds before the next character. A whitespace character in the 
format string is taken to mean any amount of them found in the standard input (even none). Just as 
with printf, in scanf format control sequences are allowed, in this case with the following 
syntax: 
 

%[*][width][length] format 
 
The meaning of the different fields is: 
 
*: The data is read, but not assigned to any variable.  
 
width (optional): Number of characters to read (the rest are ignored). 
 
length (optional): modifies the storage expected from the variable which will contain the data: 

h unsigned short int 
hh unsigned char 
l unsigned long int 
ll unsigned long long int 
L long double 

 
format (mandatory). Specifies the data type. Accepted values are the same as for the analogous 
field in printf. 
 



 7 

Examples: 
To read a 6-digit integer: 
 

scanf(“%6d”,&data); 
 

To read a string of characters: 
 

char string[20]; 
scanf(“%20s”,string); 

 
To read two ints: 
 

scanf(“%d %d”,&data1,&data2); 
NOTE: In this last example, when working with a keyboard, the user will have to type first the first 
int, then an arbitrary number of whitespace characters, and then the second int. To make it more 
flexible, it is more advisable to read first the first int and, on a second call, the second int: 
 

scanf(“\n%d”,&data1); 
scanf(“\n%d”,&data2); 

 
Notice the newline characters in the format string (“\n”). They are meant to remove any carriage 
returns left over from the previous call to scanf.  
 
Just as with output, there are easier-to-use functions for the input: 
 char *gets(char *): reads a string of text. 
 int getchar(void): reads a single character. 
 
 
EXERCISES. 
 

1. Write a program that will do the following: it will have a text string variable, with an initial 
value (of the programmer’s choice), and it will print that string on the screen.  

2. Write a program that reads in a text string from the keyboard (storing it in a variable) and 
then shows that string on the screen (it is possible to create an empty string variable just 
declaring it without an initial value). 

3. Write a program that reads in two signed integer numbers from the keyboard and shows their 
addition on the screen. Note: it is advisable to read the numbers one by one, each with its 
own call to the input function, instead of both in a single call. 

4. Modify the previous program to work with unsigned numbers. Note that the program can’t 
avoid it if the user inputs a signed number. The user must know what it is doing when using 
the program. 

5. Modify the previous program to work with floating point numbers. 

6. Write a program that reads an unsigned integer from the keyboard and shows its conversion 
to hexadecimal on the screen. 

7. Modify the previous program to read a signed integer. 


