
V1.1 © Autores

Informatics
Ingeniería en Electrónica y Automática Industrial

Structures, Unions and Bit-Fields

V1.1 © Autores

2

V1.1 © Autores 3

Structures, Unions and Bit-fields in C

Structures

Unions

Bit-fields

typedef

V1.1 © Autores 4

Structures (I)

 A structure is a collection of variables of different type
grouped together under a name for convenient handling

 Typically used to work with data bases

 Variables in the structure are called members

 A structure declaration creates a type of structure
without creating any concrete structure or variable

 struct structuretypename

 {

 datatype1 member1;

 …

 datatypeN memberN;

 };

V1.1 © Autores 5

Structures (II)

 To instantiate a structure of a previously declared type:
 struct structuretypename structurename

 It can be made as well in the initial declaration:

 struct structuretypename

 {

 datatype1 member1;

 …

 datatypeN memberN;

 } structurenames;

 Structure declaration is placed before main() in the
headers files .h

 The amount of memory that a structure occupies can be
obtained with sizeof

V1.1 © Autores 6

Structures (III)

 Example

 struct military /* type of structure*/

 {

 char name[40];

 char surname[80];

 unsigned age;

 unsigned long telephone;

 } private, sergeant, lieutenant;

 struct military captain;

/* private, sergeant, lieutenant and captain are
struct variables of military type */

V1.1 © Autores 7

Structures (IV)

 The operations with structures are:

To copy struct1 = struct2

To access to a member structurename.member

To take address of a member &structurename.member

 Examples:

 /* Initialization of some members of struct
sergeant of military type */

 gets(sergeant.name)

 sergeant.age = 25;

 scanf(“%d”, &sergeant.telephone);

V1.1 © Autores 8

Unions (I)

 A union is a variable that holds objects of different type
and size, at different times (the programmer must know
what type at what time)

 They provide a way to manipulate different kinds of data
in the same memory area

 Use: Analogous to structures
 Declaration: union uniontypename

 {

 datatype1 member1;

 …

 };

 Instantiation union uniontypename unionname

 Access to a member unionname.membername

 union uniontypename

 {

 datatype1 member1;

 …

 };

 Instantiation union uniontypename unionname

 Access to a member unionname.membername

V1.1 © Autores 9

Unions (II)

 Example
 union Size

 {

 int number; /* 38, 40, 42 */

 char letter; /* P, M, G */

 char letters[4]; /* L, XL, XXL */

 } tshirt, shirt, jersey;

 tshirt.number = 44;

 scanf(“%c”,&tshirt.letter);

 gets(tshirt.letters);

 /* First the integer 44 is stored, later the letter
read with scanf, and finally a string with at least
4 characters (null included) */

V1.1 © Autores 10

Bit-fields (I)

 A bit-field is a set of adjacent bits stored in a word

 They are defined as an structure and each bit is a field
that can be accessed individually

 Definition datatype fieldname:length;
datatype can just be integer

fieldname is the bit-field name

lenght indicates the length of the bit-field

 Features:
Facilitate bit-level operations

Facilitate Boolean variable storage

They increase number of CPU operations (parallelism)

Save memory

V1.1 © Autores 11

Bit-fields (II)

 Restrictions/caveats
Their memory storage is compiler and machine -dependent

Their memory address cannot be obtained.

Their size cannot be larger than an integer

 Example
 struct campobit

 {

 int number;

 unsigned sevenbits:7;

 char letter

 } threeobjects;

 threeobjects.sevenbits = data7b;

V1.1 © Autores 12

typedef

 typedef allows new datatype names:

 typedef validdatatype newname;

 Examples:

 typedef short int age

 Particularly useful for short notation with structures

 typedef struct military{

 ...

 } mranks;

 mranks private, sergeant, lieutentant;

