Informatics
Ingenieria en Electronica y Automatica Industrial

Functions

V1.1 © Autores



Functions in C language

V1.1

Introduction

Definition

Declaration

Variable types in relation to functions
Function call

Exit from a function

main () function arguments
Recursive functions

Pointers to functions

Complex declarations

© Autores



Introduction (1)

V1.1

Functions are statement blocks that form the
programs in C. All program activity occurs in them.

Each function is a private, independent and indivisible
code and data block.

A function can have access just to its own local variables
and to global external ones

Any function can be accessed from outside just by
calling it

They are equivalent to subroutines or procedures Iin
other programming languages

© Autores



Introduction (I1)

V1.1

All C programs consist at least of one function:
main ()

Programs start execution always with main
To maximize program portability, a function should:

Be generic

Recelve information just through its parameters, i.e.

Not use external variables

© Autores



Introduction (l1)

Example: Program to read a set of numbers and obtain its
maximum, minimum and mean:

#include <stdio.h>
#define N 10
main ()
{
int max, min, med, listnum[N];
Readdata (listnum, N);
max = Maximum(listnum, N);
min = Minimum(listnum, N);
med = Mean (listnum, N);
printf ("“Maximum: %d, Minimum: %d, Mean: %d”,
max, min, med);
return 0O;

V1.1 © Autores



Introduction (V)

Advantages of using functions
Code is structured and organized in independent blocks
Data are isolated
Error localization is easier
Functions can be tested separately
Same function can be used in different programs.

Disadvantages
Source code may be larger.
In execution, call and return requires additional time.

In general advantages are much more valuable than disavantages

V1.1 © Autores



Function definition (I)

The general form of a function definition in C is:

returntype functionname (parameterlist)
{ /* Body of the function */
Data declaration
Statements;

Return expressions;

}

returntype IS the data type of the value the function
returns (int by default)

functionname Identifies the name of the function

V1.1 © Autores



Function definition (II)

The parameterlist refers to the type, order and
number of the formal parameters of the function

They get the values that are passed to the function
They work as variables inside the function
The list has the following format:

typel i1dentl, type2 ident2, .. typeN 1dentN

typeX represents any valid type

identX Is the identifier of the variable

V1.1 © Autores



Function definition (llI)

Example: Function that receives a list of numbers and
returns the maximum

int Maximum(int list[], i1nt numdat)
{
int 1, max;
max = list[O0];
for (1=0 ; i1<numdat ; 1++)
1f (max<list[i]) max=list[1i];

return max;

V1.1 © Autores



Function declaration ()

Function declaration or prototype describes the function:

It must be placed before the first function call, preferably at
the beginning of the program before main function

It informs the compiler about the function and its
characteristics, so

It prevents mistakes in the function call related to

Data types
Number of parameters

V1.1 © Autores 10



Function declaration (lI)

Format:

return type function name (parameter list);

Where return type, function name and parameter
list have the same meaning that in the function definition

If the function does not receive arguments, it must be
explicitly declared as void

If it does not return anything return type must be void

V1.1 © Autores 11



Function declaration (lll)

There may be an indetermined number of parameters:

Indicated by «. . .» in the parameter list

There must be at least one defined parameter before the
LK, . .»

Example: Valid declarations:

int maximum() ;
int maximum(int [], 1int);
int maximum(int [], ...);
int maximum(int lista[], 1nt numdat) ;
/* The last one 1is preferably */

V1.1 © Autores 12



Variable types in relation to functions (1)

V1.1

Local or automatic variables:

They are declared within the function (optionally with the
modifier auto)

Unknown/unused outside the function.
They just exist while function execution, so

They don’t keep their value among calls, unless they
are explicitly declared as static

Stored in a temporal memory part, the stack

© Autores 13



Variable types in relation to functions (ll)

Formal parameters

They are the local variables that receive the function
arguments that are send to the function in each call, so
their types must be coincident.

They are declared in the function definition

V1.1 © Autores 14



Variable types in relation to functions (lIl)

External/global variables

V1.1

Declared outside all functions, preferibly before main

They can be accessed/modified from any point of the program
and from any function

So they are stored in memory during all execution time
Must be declared extern in each function that uses them
Initialized automatically to zero
Disadvantages:

Functions that use them are less portable and generic

As they can be modified in any part of the program, they must be
used with care to prevent “interferences”

They imply a permanent memory occupation and a larger
program size.

© Autores 15



Functions call (1)

A function call is made writing the name of the function
and its arguments.

Arguments can be passed to the function by two ways:

By value
Arguments are copied in the corresponding formal parameters.

Chages made within the function do not affect the variables
used in the call

By reference

Arguments passed to the functions are memory addresses of
the variables (pointers).

The function can change the contents of the address and
therefore can change the variable used in the call.

V1.1 © Autores 16



Functions call (1)

To pass an array to a function, the argument is the
address of the first element of the array (pointer).

The function can change any element of the array

The function must know the dimensions of the array.

With a 1D array, it must know its limits:
The number of elements
If it Is a string, the null character \O

With a multidimensional array:
The number of dimensions
The total number of elements.

V1.1 © Autores

17



Functions call (1)

Example: maximum() function with prototype

int maximum(int list[], 1nt numdat)

Receives
The address of an array of integers 1ist
The number of elements in the array numdat

Returns an integer: the maximum of the array max
After the call max=maximum(array, ndata):;

ndata does not change

The elementsin array (array[0], array[1], ...)
may change.

max Will change

V1.1 © Autores 18



Functions call (IV)

Structures and unions can be passed to a function as
any other variable:

When passed by value, a copy is made.

With big and complex structures, memory size and
execution time increase.

When passed by reference:

Function call is fast (just an address is passed).

Function can change values of variables in the calling
function.

V1.1 © Autores 19



Exit from a function (I) - return

return Statement allows to exit from a function and go
back to the point where it was called

return expression;
expression represents the value to be returned
It must be of the type the function expects

It can be placed anywhere and more than once.

Closing bracket «}» means as well function ending
and return to the calling point

By default the retun type is int.

V1.1 © Autores 20



Exit from a function (ll) - exit

exit () forces the end of the program in the point
where is placed

It returns the control to the OS
Defined in the file stdlib.h

V1.1 © Autores

21



main () function arguments (l)

main () function can exchange information with the OS:
Receive arguments from command line

Return a value
Prototype
int main(int argc, char *argvl|]]);

int Indicates that it returns an integer (default)

V1.1 © Autores 22



main () function arguments (ll)

argc and argv [] are optional parameters to receive
arguments:

V1.1

argc IS an integer indicating the number of arguments,
considering the name of the program as the first one

argv IS a pointer to an array of character strings that contains
the arguments.

Each element of the array points to one argument in the
command line: (argv [0] to the program hame, argv[1] to

the next argument...)
Separator in command line is just an space.

© Autores

23



main () function arguments (lll)

V1.1

main () receives as many strings as there are character
sets separated by spaces in the command line

Example: If cp was a C program, typing
cp —f origin file destiny file

In the main () function of the program there will be:

argc=4

argv|[0]=%cp”
argv[l]z“ £:7
argv[2]=“origin file”
argv[3]="destiny file”

© Autores 24



Recursive functions ()

Recursion is the possiblility that a function calls itself

When this happens:

Previous execution remains suspended and its parameters
are stored in memory

A successive return must take place
Usually there is a conditional statement to finish recursion
Recursivity levels must be limited to a small number
explicity or by the algorithm (risk of infinity loops)

When programming recursive functions notice that:
auto and register variables are initialized every call
static variables are just initialized the first call

V1.1 © Autores 25



Recursive functions (ll)

Advantages

Sometimes they allow to create clearer and simpler
versions of some algorithms

Disadvantages

Usually they they increase both used memory and
execution time

Difficult to understand

V1.1 © Autores

26



Recursive functions (l1)

Example: Program to show natural numbers up to the
one introduced with the keyboard (I)

#include <stdio.h>

void present (int num) ; /* Function prototype */
main ()
{

int n;

printf ("Introduce a number: ");

fflush(stdin) ;
scanf ("%d", &n);
present (n) ; /* Call to the function */

return 0;

V1.1 © Autores

27



Recursive functions (1V)

Example: Program to show natural numbers up to the
one introduced with the keyboard (I)

vold present (int num) /* Recursive function */
{
if (num==1) printf ("%d\t", num);
/* Si num == 1 print and finish */
else
{
present (num-1) ; /* Si num!=1 decrement num

and calls to itself */
printf ("$d\t", num);

} /* When returning from calls
numbers are printed */

V1.1 © Autores 28



Complex declarations ()

Combination of
Pointer to operator «*»
Array brackets «[]»
Parenthesis « () » to group operations or for functions

Give rise to complex declarations difficult to understand

To interpret correctly the declarations:

Start with the identifier and go right
Parenthesis indicates that is a function
Brackets indicates that is an array

Go left and check if there is a «*» indicating a pointer

Apply fomer rules to each level of parenthesis from inside
to outside

V1.1 © Autores 29



Complex declarations (ll)

Examples
int (*1ist) [207]; /* list 1s a pointer to an
array of 20 integers */
char *data[20]; /* data 1s an array of 20
pointers to character */
void (*busc) () ; /* busc is a pointer to a

function that does not
return anything*/

V1.1 © Autores 30



