
© Autores V1.1

Informatics
Ingeniería en Electrónica y Automática Industrial

Functions

© Autores V1.1 2

Functions in C language

 Introduction

 Definition

 Declaration

 Variable types in relation to functions

 Function call

 Exit from a function

 main() function arguments

 Recursive functions

 Pointers to functions

 Complex declarations

© Autores V1.1 3

Introduction (I)

 Functions are statement blocks that form the
programs in C. All program activity occurs in them.

 Each function is a private, independent and indivisible
code and data block.

A function can have access just to its own local variables
and to global external ones

Any function can be accessed from outside just by
calling it

They are equivalent to subroutines or procedures in
other programming languages

© Autores V1.1 4

Introduction (II)

 All C programs consist at least of one function:
main()

Programs start execution always with main

 To maximize program portability, a function should:

Be generic

Receive information just through its parameters, i.e.

Not use external variables

© Autores V1.1 5

Introduction (III)

 Example: Program to read a set of numbers and obtain its
maximum, minimum and mean:

#include <stdio.h>

#define N 10

main()

{

 int max, min, med, listnum[N];

 Readdata(listnum, N);

 max = Maximum(listnum, N);

 min = Minimum(listnum, N);

 med = Mean(listnum, N);

 printf(“Máximum: %d, Minimum: %d, Mean: %d”,

 max, min, med);

 return 0;

}

© Autores V1.1 6

Introduction (IV)

 Advantages of using functions

Code is structured and organized in independent blocks

Data are isolated

Error localization is easier

Functions can be tested separately

Same function can be used in different programs.

 Disadvantages

Source code may be larger.

 In execution, call and return requires additional time.

In general advantages are much more valuable than disavantages

© Autores V1.1 7

Function definition (I)

 The general form of a function definition in C is:

 returntype functionname(parameterlist)

 { /* Body of the function */

 Data declaration

 Statements;

 Return expressions;

 }

 returntype is the data type of the value the function

returns (int by default)

 functionname identifies the name of the function

© Autores V1.1 8

Function definition (II)

 The parameterlist refers to the type, order and

number of the formal parameters of the function

They get the values that are passed to the function

They work as variables inside the function

The list has the following format:

type1 ident1, type2 ident2, … typeN identN

typeX represents any valid type

identX is the identifier of the variable

© Autores V1.1 9

Function definition (III)

 Example: Function that receives a list of numbers and

returns the maximum

int Maximum(int list[], int numdat)

{

 int i, max;

 max = list[0];

 for (i=0 ; i<numdat ; i++)

 if (max<list[i]) max=list[i];

 return max;

}

© Autores V1.1 10

Function declaration (I)

 Function declaration or prototype describes the function:

 It must be placed before the first function call, preferably at
the beginning of the program before main function

 It informs the compiler about the function and its
characteristics, so

 It prevents mistakes in the function call related to

Data types

Number of parameters

© Autores V1.1 11

Function declaration (II)

 Format:

return_type function_name(parameter list);

Where return_type, function_name and parameter
list have the same meaning that in the function definition

 If the function does not receive arguments, it must be
explicitly declared as void

 If it does not return anything return_type must be void

© Autores V1.1 12

Function declaration (III)

 There may be an indetermined number of parameters:

 Indicated by «...» in the parameter list

There must be at least one defined parameter before the
«...»

 Example: Valid declarations:

 int maximum();

 int maximum(int [], int);

 int maximum(int [], ...);

 int maximum(int lista[], int numdat);

 /* The last one is preferably */

© Autores V1.1 13

Variable types in relation to functions (I)

 Local or automatic variables:

They are declared within the function (optionally with the
modifier auto)

Unknown/unused outside the function.

They just exist while function execution, so

They don’t keep their value among calls, unless they
are explicitly declared as static

Stored in a temporal memory part, the stack

© Autores V1.1 14

Variable types in relation to functions (II)

 Formal parameters

They are the local variables that receive the function
arguments that are send to the function in each call, so
their types must be coincident.

They are declared in the function definition

© Autores V1.1 15

Variable types in relation to functions (III)

 External/global variables

Declared outside all functions, preferibly before main

They can be accessed/modified from any point of the program
and from any function

So they are stored in memory during all execution time

Must be declared extern in each function that uses them

 Initialized automatically to zero

Disadvantages:

Functions that use them are less portable and generic

As they can be modified in any part of the program, they must be
used with care to prevent “interferences”

They imply a permanent memory occupation and a larger
program size.

© Autores V1.1 16

Functions call (I)

 A function call is made writing the name of the function
and its arguments.

 Arguments can be passed to the function by two ways:

By value
Arguments are copied in the corresponding formal parameters.

Chages made within the function do not affect the variables
used in the call

By reference
Arguments passed to the functions are memory addresses of

the variables (pointers).

The function can change the contents of the address and
therefore can change the variable used in the call.

© Autores V1.1 17

Functions call (II)

 To pass an array to a function, the argument is the
address of the first element of the array (pointer).

The function can change any element of the array

The function must know the dimensions of the array.

With a 1D array, it must know its limits:

• The number of elements

• If it is a string, the null character \0

With a multidimensional array:

• The number of dimensions

• The total number of elements.

© Autores V1.1 18

Functions call (III)

 Example: maximum() function with prototype

int maximum(int list[], int numdat)

Receives
• The address of an array of integers list

• The number of elements in the array numdat

Returns an integer: the maximum of the array max

After the call max=maximum(array, ndata);

• ndata does not change

• The elements in array (array[0], array[1], ...)
may change.

• max will change

© Autores V1.1 19

Functions call (IV)

 Structures and unions can be passed to a function as

any other variable:
When passed by value, a copy is made.

With big and complex structures, memory size and
execution time increase.

When passed by reference:

Function call is fast (just an address is passed).

Function can change values of variables in the calling
function.

© Autores V1.1 20

Exit from a function (I) - return

 return statement allows to exit from a function and go
back to the point where it was called

 return expression;

expression represents the value to be returned

• It must be of the type the function expects

 It can be placed anywhere and more than once.

 Closing bracket «}» means as well function ending
and return to the calling point

 By default the retun type is int.

© Autores V1.1 21

Exit from a function (II) - exit

 exit() forces the end of the program in the point

where is placed

 It returns the control to the OS

Defined in the file stdlib.h

© Autores V1.1 22

main() function arguments (I)

 main()function can exchange information with the OS:

Receive arguments from command line

Return a value

 Prototype

 int main(int argc, char *argv[]);

int indicates that it returns an integer (default)

© Autores V1.1 23

main() function arguments (II)

 argc and argv[] are optional parameters to receive
arguments:

 argc is an integer indicating the number of arguments,
considering the name of the program as the first one

 argv is a pointer to an array of character strings that contains
the arguments.

Each element of the array points to one argument in the
command line: (argv[0] to the program name, argv[1] to
the next argument…)

Separator in command line is just an space.

© Autores V1.1 24

main() function arguments (III)

 main() receives as many strings as there are character
sets separated by spaces in the command line

 Example: If cp was a C program, typing

 cp –f origin_file destiny_file

 in the main()function of the program there will be:

argc=4

argv[0]=“cp”

argv[1]=“-f:”

argv[2]=“origin_file”

argv[3]=“destiny_file”

© Autores V1.1 25

Recursive functions (I)

 Recursion is the possibility that a function calls itself

When this happens:

Previous execution remains suspended and its parameters
are stored in memory

A successive return must take place

Usually there is a conditional statement to finish recursion

Recursivity levels must be limited to a small number
explicity or by the algorithm (risk of infinity loops)

 When programming recursive functions notice that:
 auto and register variables are initialized every call

 static variables are just initialized the first call

© Autores V1.1 26

Recursive functions (II)

 Advantages

Sometimes they allow to create clearer and simpler
versions of some algorithms

 Disadvantages

Usually they they increase both used memory and
execution time

Difficult to understand

© Autores V1.1 27

Recursive functions (III)

 Example: Program to show natural numbers up to the
one introduced with the keyboard (I)

#include <stdio.h>

void present (int num); /* Function prototype */

main()

{

 int n;

 printf("Introduce a number: ");

 fflush(stdin);

 scanf("%d", &n);

 present(n); /* Call to the function */

 return 0;

}

© Autores V1.1 28

Recursive functions (IV)

 Example: Program to show natural numbers up to the
one introduced with the keyboard (I)

void present(int num) /* Recursive function */

{

 if (num==1) printf ("%d\t", num);

 /* Si num == 1 print and finish */

 else

 {

 present(num-1); /* Si num!=1 decrement num
 and calls to itself */

 printf("%d\t", num);

 }

} /* When returning from calls
 numbers are printed */

© Autores V1.1 29

Complex declarations (I)

 Combination of
Pointer to operator «*»

Array brackets «[]»

Parenthesis «()» to group operations or for functions

 Give rise to complex declarations difficult to understand

 To interpret correctly the declarations:
1. Start with the identifier and go right

Parenthesis indicates that is a function

Brackets indicates that is an array

2. Go left and check if there is a «*» indicating a pointer

3. Apply fomer rules to each level of parenthesis from inside
to outside

© Autores V1.1 30

Complex declarations (II)

 Examples

int (*list)[20]; /* list is a pointer to an
 array of 20 integers */

char *data[20]; /* data is an array of 20
 pointers to character */

void (*busc)(); /* busc is a pointer to a
 function that does not
 return anything*/

