
1

© AutoresV1.1

Informatics
Ingeniería en Electrónica y Automática Industrial

Operators and expressions in C

© AutoresV1.1 2

Operators and expressions in C

� Numerical expressions and operators
� Arithmetical operators
� Relational and logical operators
� Bitwise operators
� Assignment operators and expressions
� Other operators

� Conditional operator
� Comma operator
� Address and indirection operators
� sizeof operator

� Precedence and order of evaluation
� Type conversions

2

© AutoresV1.1 3

Numerical expressions and operators

� A numerical expression is formed by
�Operators
�Operands

� An operator is a symbol that indicates how the
operands must be processed in the expressions

� An operand is the object that is processed: variables,
constants, etc.

© AutoresV1.1 4

Arithmetical operators
� If the operands are of different types, the lower precision

ones are transformed to the greater type

OPERATOR OPERATION OPERANDS

+ Addition Integers or reals

- Subtraction Integers or reals

* Multiplication Integers or reals

/ Division Integers or reals

% Modulus: Remainder of
integer division Integers

- Unary minus
(sign change) Just one operand (integer or real)

3

© AutoresV1.1 5

Relational and logical operators (I)

� Operands can be of any type but the result is always an
integer with just two possible values: 1 (true) or 0 (false)

LOGICAL OPERATORS

OPERATOR OPERATION AND RESULT

&& Logical AND. Result is 1 if both operands are non-zero
(ie. if one or both are 0, result is 0).

|| Logical OR. Result is 1 if any of the operands is non-zero
(ie. result is 0 just when both operands are 0).

! Logical NOT. Result is 1 if the operand is 0, and 0 otherwise.

© AutoresV1.1 6

Relational and logical operators (II)

RELATIONAL OPERATORS
OPERATOR OPERATION AND RESULT

< Result is 1 if the left operand is lower than the right one;
0 otherwise.

> Result is 1 if the left operand is greater than the right
one; 0 otherwise

<= Result is 1 if the left operand is lower than or equal to
the right one; 0 otherwise.

>= Result is 1 if the left operand is greater than or equal to
the right one; 0 otherwise.

!= Result is 1 if the operands are different ; 0 otherwise.

== Result is 1 if the operands are equal ; 0 otherwise.

4

© AutoresV1.1 7

Bitwise operators

� They operate with the individual bits of the operands, which
must be integer type (int or char)

OP. OPERATION AND RESULT

& AND between bits of the operands

| OR between bits of the operands

^ XOR (Exclusive OR) between bits of the operands

~ 1’Complement of the operand (at the right of the operator)

<< Left shift of the left operand by the number of positions given by the positive
right operand (filling vacants with zeros).

>>
Right shift of the left operand by the number of position given by the positive
right operand. If the operand is unsigned fills vacants with zeros, if signed, fill
vacants with sign bit (arithmetic shift).

© AutoresV1.1 8

Assignment operators (I)

� They assign values to one variable
�Simple assignment operator =

� a = 2

� Increment ++ and decrement -- operators
� Increment/decrement by 1 the value of a variable in a expression

++variable . First increment, later use.
x = 1;
y = ++x; // x is now 2, y is also 2
y = x++; // x is now 3, y is 2

variable++ . First use, later increment
x = 3;
y = x--; // x is now 2, y is 3
y = --x; // x is now 1, y is also 1.

5

© AutoresV1.1 9

Assignment operators (II)

� Operation and asignment
variable (op)= expresion;

Is equivalent to
variable = variable (op) expresion;

�(op) is the assignment operator

�expresion is the expression that will be evaluated along with
variable to obtain its new value

i += 2

i = i + 2 are equivalent expressions

© AutoresV1.1 10

Assignment operators (III)

OP. OPERACIÓN Y RESULTADO

*= Multiplication and assignment . C *= A equiv. to C = C*A

/= Division and assignment . C /= A equiv. to C = C/A

%= Modulus and assignment . C %= A equiv. to C = C%A

+= Addition and assignment . C += A equiv. to C = C+A

-= Subtraction and assignment . C -= A equiv. to C = C-A

6

© AutoresV1.1 11

Assignment operators (IV)

OP. OPERATION (bit level) AND RESULT

<<= Left shift AND assignment C <<= 2 equiv. to C = C<<2

>>= Right shift AND assignment C >>= 2 equiv. to C = C>>2

&= Bitwise AND and assignment C &= 2 equiv. to C = C&2

|= Bitwise OR and assignment C |= 2 equiv. to C = C|2

^= Bitwise XOR and assignment . C ^= 2 equiv. to C = C^2

© AutoresV1.1 12

Other operators (I)

� Condicional Operator « ?:»
expr1 ? expr2 : expr3
�If expr1 is true, then expr2 , is evaluated
�If expr1 is false, then expr3 is evaluated
�Ex. (a >= b) ? puts(“a>=b”) : puts(“b>a”);

� Comma Operator « ,»
�Mostly used in the for statement.
�When used to concatenates expressions and variables or

to separates elements in argument lists is NOT an
operator (do not guarantee left to right evaluation)

7

© AutoresV1.1 13

Other operators (II)

� Address operator « &»
�&variable obtains the memory address of variable

� Indirection operator « *»
�*identifier refers to the content of memory address

identifier

� Operator « sizeof»
�Returns the number of bytes that the operand occupies

in memory

© AutoresV1.1 14

Precedence and order of evaluation (I)

Order OPERATORS ASOCIATIVITY

1º () [] . -> sizeof Left to Right

2º - ∼ ! * ++ -- (tipo) Right to Left

3º * / % Left to Right

4º + - Left to Right

5º << >> Left to Right

6º < <= > >= Left to Right

7º == != Left to Right

8º & Left to Right

9º ^ Left to Right

10º | Left to Right

11º && Left to Right

12º || Left to Right

13º ?: Right to Left
.14º = *= /= %= += -= <<= >>= &= |= ^= Right to Left

15º , Left to Right

8

© AutoresV1.1 15

Precedence and order of evaluation (II)

� Precedence and order of evaluation (table)
�Operators in the same line have the same priority
�Priority decreases from top to bottom
�Parenthesis are evaluated from inside to outside (as

usual)
�Some ambiguities may exists dependin on the compiler

USE PARENTHESIS!! when doubting

© AutoresV1.1 16

Type conversions (I)
� In expressions operands are type-converted automatically

�With reals involved, all are converted to the high precision one
�Real constants are double by default

�char and short are converted to int or to unsigned int

�With integers involved, all are converted to the longest one

EXAMPLE

long a
char b;
int c, f;
float d;
f = a + b*c/d ;

� b is converted c type (int) and b*c is int
� b*c is converted to float and divided by d
� a is converted to float and added to b*c/d .
� float a+b*c/d is converted to int (eliminating

fractional part) and saved in integer f

Better try not to mix types…

9

© AutoresV1.1 17

Type conversions (III)

� Explicit conversion: « (cast)» operator

(newtype)expresion;

�Example:
� 7/2 gives 3 as result

� (float)7/2 gives 3.5 as result

