
Alvaro Perales Eceiza
V1.1

Informática
Ingeniería en Electrónica y Automática

Industrial

Introduction to C programming language

2

Introduction to C programming language

Introduction
Main features
Functions
Variables
Compilation
Libraries and linkage
Examples

3

Introduction

 Developed in the 70's by Dennis Ritchie for a PDP-11
computer running with Unix

 Although developed in Unix is not linked to any OS and
works with all of them

 For long the standard version, developed by Rirtchie and
Kernighan, was delivered with version 5 of Unix

 Proliferation of different versions forced the creation of a
standard one: ANSI C (American National Standard
Institute)

4

 C Language main Features (I)

 It was very succesful since its creation:
 Compact
 Structured
 Portable
 Flexible
 Medium tipe
 Very popular

5

 C Language main Features (II)
COMPACT
 Just 32 reserved words in ANSI standard:

auto double int struct
break else long switch
case enum register typedef
char extern return union
const float short unsigned
continue for signed void
default goto sizeof volatile
do if static while

 It allows all algebraic and logic operations in conventionals maths
 Any program could be written just with the reserved words and

operators (difficult though).

6

 C Language main Features (III)

STRUCTURED
 The structural basic component is the function
 Does not allow to write functions inside other functions
 It allows independent code parts with their own data: functions

that can be used by other programs
 It allows code blocks: statements and propositions grouped

inside brakets «{ }» forming a logical unit
 Different conditional and iteration sentences
 goto exists but strongly NOT recommended.

7

 C Language main Features (IV)

PORTABLE
 Executables are independent from hardware if standard

libraries are used, ie,
 Same source code can be compiled in different architectures
 C is relatively simple
 There are compilers for all systems

FLEXIBLE
 Created and tested by professional programmers, so it has

few restrictions and gives the programmer a lot of control
 Advantage for advanced programmers, disadvantage for

begginers...
 It allows different data types, conversions among them and

creation of new types.

8

 C Language main Features (V)

MEDIUM TYPE
 It combines elements of high level languages with elements

of low level ones:
 Powerful sentences (high level)
 Bit-level operations, register, ports and memory

managment (low level)

VERY POPULAR
 C compilers are relatively simple, so they are the first to be

developed when a new system is launched
 Very used among professional and amateur programmers
 Very used to program OS, interpreters, compilers,

assemblers, drivers....
 Poweful extensions: C++

9

Functions in C

 Functions are the primary programming objects in C: it is
where the program activity occurs

 Each function contains an independent and portable code
block

 Generic form:

return-type function-name(Parameter list)
{ /* Function beginning*/

declarations
... /* Función body */

statements
} /* Funtion end */

10

Variables in C

 Variables in C are memory parts with a name
 Are used to store values that can be modified by the program
 They must be declared before use

 Declaration sets the data type it will contain
 C supports all basic variable types (character, int, float, etc.)

and allows to:
 Modify defined types
 Create new types

11

Identifiers
 Identifiers are the names to identify

 Variables
 Constants
 Functions

 Features:
 Must start with alphabetic character and can contain

alphanumeric characters and underscore «_»
 Reserved words are forbidden
 Upper case and lower case letters are DifFEreNT

 Recommendations
 Functions created by the programmer starts with upper case
 Identifiers of definded or symbolic constants are written with

upper case.

12

Statements in C
 Situated in any position in the line (no fields established as columns)
 Always end with «;»
 Indent is optional but recommended

 Hierarchical
 Facilitates understanding
 Ignored by compiler

 Statesmen blocks
 Statement groups between brackets «{}» forming a unit

 Comments
 Recommended but optional explanatory text
 Starts with «//» until end of line (no ANSI standard)
 Between «/* */» symbols in any number of lines

 Preprocessor directives
 Special orders for the compiler that are not part of the C language (but included

in all compilers)
 Always start with «#»
 Facilitate programming

 Examples: #include, #define

13

Libraries and Linkage

 Along with the compiler, function libraries containing
basic function are neccessary:
 They can be used in any statement
 ANSI specifies a minimal set of functions: the standard

library
 Compilers usually include many more
 User can create its own function libraries

 The linker merges user code with neccessary libraries to
create the executable machine code.

 Examples: stdio.h (input/output, printf()),
math.h (mathematical functions, sin(x)

14

C program full development

 Steps:
 Algorithm design
 Program creation and writing in a text file
 Compilation to obtain the object file
 Likage of the object file with the called libraries to obtain the

final machine code executable

 For big developments the program is divided in many
files that along with libraries form a project. Each part
can be compiled and tested separately and linked with
the rest at the final stage to produce the total executable
program (i.e, any OS like Linux or Windows).

15

Examples (I)

 The simplest program
 Notice

 Preprocessor directive
 Main function
 Comment
 Function call
 Character chain

#include <stdio.h>

main() /*main function */

{

printf(“hello, world \n”);

}

16

Examples (II)

 Program to convert a Fahrenheint temperature to Celsius
 Notice

 Variable declaration
 Asignment statements and arithmetic operations
 Data types
 Comments
 Printf() function
 Return

17

Examples (III)

/* Fahrenheit to celsius conversion */

#include <stdio.h>

main()
{
int fahren, celsius; /* Entire variables */

printf("Conversion ºF to ºC:\n");

fahren = 100; /* Farhenheit
temperature */
celsius = 5*(fahren-32)/9; /* Conversion formula */
printf("%d ºF = %d ºC\n",fahren, celsius); /* Result*/
return 0;

}

18

Examples (IV)

 Program to convert any Fahrenheint temperature to
Celsius

 Notice
 Reading input from keyboard
 Real numbers declaration
 Arithmetical operations with real numbers

19

Examples (V)

/* Fahrenheit-Celsius conversion with input introduced by the user
and with real numbers. */

#include <stdio.h>

main()
{
float fahren, celsius; /* Real variables */

printf("ºF to ºC conversion:\n");
printf("Introduce Fahrenheit temperature: ");

scanf("%f", &fahren); /* real data input */

celsius = (5.0/9.0)*(fahren-32); /* Formula */
printf("%f ºF = %f ºC\n",fahren, celsius); /* Result*/

return 0;
}

20

Examples (VI)

 Program to print a table of Fahrenheit temperatures and
their Celsius equivalent using “for” loop

 Notice:
 Different data types
 Indent
 for sencence
 Formats in printf()

21

Examples (VII)
/* Conversion table Fahrenheit-Celsius. */
/* With “for” loop */

#include <stdio.h>

main()
{
float fahren, celsius; /* Variables */
int liminfe, limsup, increm;

liminfe = 0; /* lower limit */
limsup = 100; /* Upper limit */
increm = 10; /* Step size */

printf(" ºF\t ºC\n"); /* Table header*/
printf("==============\n");

for (fahren=liminfe ; fahren<=limsup ; fahren=fahren+increm)
{

celsius = (5.0/9.0)*(fahren-32.0);
printf("%3.0f\t%6.1f\n",fahren, celsius);

}
return 0;

}

22

Examples (VIII)

 Program to print a table of Fahrenheit temperatures and
their Celsius equivalent using “while” loop

 Notice:
 #define symbolic constants
 System() call
 while sentence
 Comparation «<=» (lower or equal than)

23

Examples (IX)
/* Conversion table Fahrenheit-Celsius. */
/* With “while” loop and symbolic constants*/

#include <stdio.h>
#include <stdlib.h>

#define LIMINFE 0 /* Lower limit */
#define LIMSUP 100 /* Upper limit */
#define INCREM 10 /* Step size */

main()
{
float fahren, celsius; /* Variables */

fahren = LIMINFE; /* Loweimit */
system("clear"); /* Clear terminal (Linux) */
printf(" ºF\t ºC\n"); /* Table header */
printf("==============\n");
while (fahren <= LIMSUP)
{

celsius = (5.0/9.0)*(fahren-32.0);
printf("%3.0f\t%6.1f\n", fahren, celsius);
fahren = fahren + INCREM;

}
return 0;

}

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

