
© Autores V1.1

Informatics
Ingeniería en Electrónica y Automática Industrial

The Preprocessor

V1.1 © Autores 2

The preprocessor in C language

 Definition

 Preprocessor directives

 #include. Header files

 #define

Symbolic constants

Macros

 Conditional compilation directives

 Other directives

V1.1 © Autores 3

Definition

 The preprocessor is a text processor that performs

operations on the source code.

 It is a separate first step in compilation

Basically it is the inclusion in the main source code of

header files, macros and conditional compilation

The preprocessor instructions are called directives

The preprocessor main goal is to facilitate programming

V1.1 © Autores 4

Preprocessor directives (I)

 They are special instructions that are processed
before the actual compilation which produce the final
machine code

They are not regular C statements, so in the source code:

They are preceded by the symbol «#»

 No «;» expected at the end

A standard set is included in ANSI C. Compilers usually
include others

By default they just occupy one line. To continue in the
next one the symbol «\» must be used

They can be in any part of the source code but their effect
is just from the line where they are placed onwards.

V1.1 © Autores 5

Preprocessor directives (II)

 The directives included in ANSI C are

 #include #define

 #error #if

 #elif #else

 #ifdef #ifndef

 #endif #undef

 #line #pragma

V1.1 © Autores 6

#include. Header files

 Makes the preprocessor to substitute the directive by

the header file in the point where the directive is

 #include “headerfile.h”. Preprocessor looks for

the file first in the program directory and later in the
system ones (mainly for user files)

 #include <headerfile.h>. Preprocessor looks

directly in the system directories (for standard libraries)

 Typically header files collect information that is used by

different source files, as:

Macros and constants definitions, global variables,

function declarations….

V1.1 © Autores 7

#define. Symbolic constants

 #define IDENTIFIER string

 The preprocessor will substitute any occurrence of
IDENTIFIER in the source code by string

string can be a

Symbolic constant

Macro (optional parameters)

 To distinguish IDENTIFIER from variables use CAPITALS

 Definitions can use previous definitions

 For symbolic constants:
#define PI 3.141516

#define MEMERR “Error in Memory Allocation”

V1.1 © Autores 8

#define. Macros (I)

 #define MACRONAME(parameters) expression

MACRONAME is the identifier (in CAPITALS)

parameters are arguments separated by commas to
be substituted when the identifier occurs in the code

expression is any valid expression that operates with
the parameters

When the preprocessor finds a call to MACRONAME in the
source code will substitute it for expression changing
parameters by their values contained in the call.

V1.1 © Autores 9

#define. Macros (II)

 Example. Macro to obtain the greater of two numbers

#define MAX(a,b) ((a)>(b)) ? (a) : (b)

...

x = MAX(dat1, dat2);

 It looks similar to a function but it is just a substitution:
x = ((dat1)>(dat2)) ? (dat1) : (dat2)

 Macros vs functions
Macros generate longer code but are faster (no function call)

Macros can give rise easily to errors difficult to debug (always use
parenthesis in expression)

 Some standard functions are macros (getc(), gerchar())

 In general

 Use macros for small and easy code that appears many times

 Use functions for larger code

V1.1 © Autores 10

#define. Macros (III)

 In ANSI C there are five useful predefined macros:

__LINE__ Writes the code line number when compiling:
 int nline = __LINE__

__FILE__ Writes the name of the source code:
 printf(“%s\n”, __FILE_);

__DATE__ Writes the date of compilation (mm dd yyyy)
 printf(“%s\n”, __DATE__);

__TIME__ Writes the time of compilation (hh:mm:ss)
 printf(“%s\n”, __TIME__);

__STDC__ Is substituted by 1 if all code is ANSI standard
 int ansi = __STDC__

V1.1 © Autores 11

Conditional compilation directives (I)

 The conditional compilation directives allow for selective
compilation of parts of the source code:

Facilitate debugging (debug with value-check, write, etc..)

Make possible to personalize programs (eg. compile for
different platforms)

 Types:

Compilation conditioned by the value of an expression:

 #if #elif #else #endif

Compilation conditioned by the definition of a macro

 #ifdef #ifndef #endif

V1.1 © Autores 12

Conditional compilation directives (II)

 Compilation conditioned by the value of an expression

 #if constantexpression1

 statements1;

 #elif constantexpression2

 statements2;

 #elif constantexpression2

 #elif constantexpressionN

 statementsN;

 #else

 statementsM;

 #endif

V1.1 © Autores 13

Conditional compilation directives (III)

 The terms constantexpressionX are evaluated in
compilation time:

They can include logical and relational operations

They cannot include program variables

 statementX represent C code lines

 #elif is equivalent to #else #if

 #else and #elif are associated to the nearest up #if
and are optional.

V1.1 © Autores 14

Conditional compilation directives (IV)

 Example. Program to include a different header file
depending on the connected printer in that moment

 #if DEVICE == IBM

 #include ibmdrv.h

 #elif DEVICE == HP

 #include hpdrv.h

 #else

 #include gendrv.h

 #endif

V1.1 © Autores 15

Conditional compilation directives (IV)

Compilation conditioned by the definition of a macro

 #ifdef MACRONAME1

 statements1;

 #endif

 #ifndef MACRONAME2

 statements2;

 #endif

statements1 are compiled just if MACRONAME1 is
previously defined

statements2 are compiled just if MACRONAME2 is NOT
previously C

#else can be combined with them but not #elif

V1.1 © Autores 16

Other directives

 #undef. Eliminates the definition of a macro or symbolic
constant #undef MACRONAME

 #error. Stops compilation showing a message on screen:
 #error Message

 #line. Changes the value of predefined macros __LINE__
and __FILE__

 #line linename “newfilename”

 #pragma. To access compiler-specific preprocessor

extension; ie each pragma directive has different sintax,

implementation rule and use

 #pragma compilerspecificextension

