Informatics

Ingenieria en Electronica y Automatica Industrial

The Preprocessor

V1.1 © Autores

The preprocessor in C language

Definition
Preprocessor directives
#include. Header files

#fdefine

Symbolic constants
Macros

Conditional compilation directives

Other directives

V1.1 © Autores

Definition

The preprocessor Is a text processor that performs
operations on the source code.

It is a separate first step in compilation

Basically it is the inclusion in the main source code of
header files, macros and conditional compilation

The preprocessor instructions are called directives

The preprocessor main goal is to facilitate programming

V1.1 © Autores

Preprocessor directives (I)

They are special instructions that are processed

before the actual compilation which produce the final
machine code

They are not regular C statements, so in the source code:
They are preceded by the symbol «#»
NoO «; » expected at the end

A standard set is included in ANSI C. Compilers usually
Include others

By default they just occupy one line. To continue in the
next one the symbol «\» must be used

They can be in any part of the source code but their effect
IS just from the line where they are placed onwards.

V1.1 © Autores

Preprocessor directives (Il)

V1.1

The directives included in ANSI C are

#include
#error
#elif
#ifdef
#endif

#line

© Autores

#define
#if
#else
#ifndef
#undef

#pragma

#include. Header files

Makes the preprocessor to substitute the directive by
the header file in the point where the directive is

#include “headerfile.h”. Preprocessor looks for

the file first in the program directory and later in the
system ones (mainly for user files)

#include <headerfile.h>. Preprocessor looks
directly in the system directories (for standard libraries)

Typically header files collect information that is used by
different source files, as:

Macros and constants definitions, global variables,
function declarations....

V1.1 © Autores

#define. Symbolic constants

#define IDENTIFIER string

The preprocessor will substitute any occurrence of
IDENTIFIER In the source code by string

string can be a

Symbolic constant

Macro (optional parameters)
To distinguish IDENTIFIER from variables use CAPITALS
Definitions can use previous definitions

For symbolic constants:
#define PI 3.141516
#define MEMERR “Error in Memory Allocation”

V1.1 © Autores

#define. Macros (I)

#define MACRONAME (parameters) expression

MACRONAME s the identifier (in CAPITALYS)

parameters are arguments separated by commas to
be substituted when the identifier occurs in the code

expression IS any valid expression that operates with
the parameters

When the preprocessor finds a call to MACRONAME In the
source code will substitute it for expression changing
parameters by their values contained in the call.

V1.1 © Autores

#define. Macros (I

Example. Macro to obtain the greater of two numbers
#define MAX(a,b) ((a)>(D)) 2 (a) : (b)

x = MAX (datl, dat2);

It looks similar to a function but it is just a substitution:
X = ((datl)>(dat2)) ? (datl) : (dat2)

Macros vs functions
Macros generate longer code but are faster (no function call)

Macros can give rise easily to errors difficult to debug (always use
parenthesis in expression)

Some standard functions are macros (getc (), gerchar())
In general
Use macros for small and easy code that appears many times
Use functions for larger code

V1.1 © Autores 9

#define. Macros (Il

In ANSI C there are five useful predefined macros:

__LINE Writes the code line number when compiling:
int nline = LINE

__FILE Writes the name of the source code:
printf (“%s\n”, FILE);

~ DATE Writes the date of compilation (mm dd yyyy)
printf (“%s\n”, DATE);

__TIME Writes the time of compilation (hh:mm:ss)
printf (“%s\n”, TIME);

__STDC Is substituted by 1 if all code is ANSI standard
int ansi = STDC

V1.1 © Autores 10

Conditional compilation directives (I)

The conditional compilation directives allow for selective
compilation of parts of the source code:

Facilitate debugging (debug with value-check, write, etc..)

Make possible to personalize programs (eg. compile for
different platforms)

Types:
Compilation conditioned by the value of an expression:
#1f #elif felse #endif

Compilation conditioned by the definition of a macro
#ifdef #ifndef #endif

V1.1 © Autores 11

Conditional compilation directives (ll)

V1.1

#1f constantexpressionl
statementsl;

#elif constantexpressionZ
statements?’?;

#elif constantexpressionZ

#elif constantexpressionN
statementsN;

felse
statementsM;

fendif

© Autores

Compilation conditioned by the value of an expression

12

Conditional compilation directives (lll)

V1.1

The terms constantexpressionX are evaluated in
compilation time:

They can include logical and relational operations
They cannot include program variables

statementX represent C code lines
#elif IS equivalentto #else #if

#else and #elif are associated to the nearest up #if
and are optional.

© Autores 13

Conditional compilation directives (V)

Example. Program to include a different header file
depending on the connected printer in that moment

#1f DEVICE == IBM
#include ibmdrv.h
#elif DEVICE == HP
#include hpdrv.h
telse

#include gendrv.h

#fendif

V1.1 © Autores

14

Conditional compilation directives (V)

Compilation conditioned by the definition of a macro

#ifdef MACRONAME]I
statementsl;

fendif

#ifndef MACRONAME?2
statements?;

fendif
statementsl are compiled just if MACRONAMEI IS
previously defined

statements2 are compiled just if MACRONAME2 is NOT
previously C

#else can be combined with them but not #elif

V1.1 © Autores 15

Other directives

#undef. Eliminates the definition of a macro or symbolic
constant #undef MACRONAME

#ferror. Stops compilation showing a message on screen:
#ferror Message

#line. Changes the value of predefined macros LINE
and FILE

#l1ine Jlinename “newfilename”

#pragma. To access compiler-specific preprocessor

extension; ie each pragma directive has different sintax,
Implementation rule and use

fpragma compilerspecificextension

V1.1 © Autores 16

