Informatics
Ingenieria en Electronica y Automatica Industrial

Dynamic Memory Allocation

Vil © Autores

Dynamic Memory Allocation

V11

Definition
Memory map during program execution
Dynamic memory allocation and release
Dynamically allocated arrays
Unidimensional
Bidimensional
Reallocation of memory blocks

© Autores

Definition

The compiler reserves memory for variables when they
are declared, before execution

If global or static, in the data segment of the program
If local, in the stack

The dynamic memory allocation is the assignment of
memory space in execution time.

The OS assigns the required memory from the available
one in that moment

Very important tool when working with big
multidimensional arrays to use memory efficiently

Vil © Autores 3

Memory map during program execution

A program in execution is an
active process that can use
the memory assigned by OS:

Code segment T MEMORIA LIBRE PARA

ZONA ALTA
PILA

Program ASIGNACION DINAMICA

Data segment
Global and static variables VARIABLES GLOBALES

Stack segment
Local variables

PROGRAMA - CODIGO

) ZONA BAJA
Return addresses in
function calls UBICACION EN MEMORIA
Free memory DE UN PROGRAMAEN C

Dynamic allocation

Vil © Autores 4

Dynamic memory allocation and release (l)

The program can ask for memory to the OS during
execution time with malloc () function

vold *malloc (unsigned size);

Declared in stdlib.h
size indicates the number of requested bytes

It returns a generic pointer to the first address of the
assigned memory block (NULL if error)

Vil © Autores 5

Dynamic memory allocation and release (Il)

After use, memory must be released with £ree () function

volid free(void *pblock);

Declared in stdlib.h
pblock is the pointer to the block to be released
The function does not return anything

Vil © Autores 6

Dynamic memory allocation and release (lll)

Example:

int *dat;
dat = (int *)malloc(sizeof (int)); /*Assign*/
1f (dat==NULL)

printf (Y"Allocation error”);

/*Using dat*/

free(dat) ; /*Release*/

Vil © Autores 7

Dynamically allocated arrays ()

Are the arrays whose size Is fixed in execution time
when they are allocated with calloc () function

Unidimensional dynamically allocated arrays

vold * calloc (numelements, elementsize);

Declared in stdlib.h

Returns a pointer to the first address of the assigned
memory block (NULL Iif error)

numelements Indicates the number of elements in the array
elementsize Indicates the size of each element

Vil © Autores

Dynamically allocated arrays (l1)

Example: Dynamic allocation of an array of N integers

int *arrl0; // Pointer to int
arrl0= (int *)calloc (N, sizeof(int)); //Assign
1f (arrl0==NULL)

printf (Y"Allocation error”);
// Using arrl0

free(arrl0) ; // Memory release

Vil © Autores 9

Dynamically allocated arrays (l1)

Bidimensional dynamically allocated arrays:
Declare a pointer to pointer to the data type of the 2D-array
Assign dynamically a 1D-array of pointers

Assign dynamically a 1D-array of data to each of the pointers
of the previous array of pointers

Normal use of the 2D-array

Release memory in inverse order:
With a loop release every 1D-array of data
Release the 1D-array of pointers

Vil © Autores 10

Dynamically allocated arrays (1V)

hh____%h

Puntero a
un puntero

CELDAS DE MEMORIA

| Array de |
| punteros = = Arrays unidimensionales

ARRAY BIDIMENSIONAL CREADO MEDIANTE
ASIGNACION DINAMICA DE MEMORIA

Vil © Autores 11

Dynamically allocated arrays (V)
Example: 2D-array (NROW, NCOL) of real numbers

float **arr2D; // Pointer to pointer to float
int i,3;

arr2D = (float **)calloc (NROW , sizeof (float *))
//Assign mem for 1D-array of NROW pointers to float

for (i=0 ; 1<NROW ; i++;)
arr2D[1] = (float *)calloc (NCOL , sizeof(float)):;
// Assign mem for each 1D-array of NCOL float numb

// Use arr2D, elements can be accessed arr2D[i] [j]

for (1=0 ; i<NROW ; i++4+) free(arr2D[i]);
// Release the 1lD-arrays of real data
free (arr2D) ; // Release the 1D-array of pointers

Vil © Autores 12

Reallocation of memory blocks

V11

In execution it is possible to change the size assigned
to an array by reallocating the memory block it occupies

volid * realloc(void *ptoldblock, numbytes);

Declared in stdlib.h

Returns a pointer to the new memory block that might
be different to the previous one (NULL if error)

Data of the original block are not lost
ptoldblock points to the original block to reallocate
numbytes indicates the size in bytes of the new block

© Autores 13

