
© Autores
V1.1

Informatics
Ingeniería en Electrónica y Automática Industrial

Dynamic Memory Allocation

V1.1
© Autores 2

Dynamic Memory Allocation

 Definition

 Memory map during program execution

 Dynamic memory allocation and release

 Dynamically allocated arrays

Unidimensional

Bidimensional

 Reallocation of memory blocks

V1.1
© Autores 3

Definition

 The compiler reserves memory for variables when they

are declared, before execution

If global or static, in the data segment of the program

If local, in the stack

 The dynamic memory allocation is the assignment of

memory space in execution time.

The OS assigns the required memory from the available

one in that moment

Very important tool when working with big

multidimensional arrays to use memory efficiently

V1.1
© Autores 4

Memory map during program execution

 A program in execution is an
active process that can use
the memory assigned by OS:

Code segment
• Program

Data segment
• Global and static variables

Stack segment
• Local variables

• Return addresses in
function calls

Free memory
• Dynamic allocation

V1.1
© Autores 5

Dynamic memory allocation and release (I)

 The program can ask for memory to the OS during
execution time with malloc() function

 void *malloc(unsigned size);

Declared in stdlib.h

size indicates the number of requested bytes

It returns a generic pointer to the first address of the
assigned memory block (NULL if error)

V1.1
© Autores 6

Dynamic memory allocation and release (II)

 After use, memory must be released with free()function

 void free(void *pblock);

Declared in stdlib.h

pblock is the pointer to the block to be released

The function does not return anything

V1.1
© Autores 7

Dynamic memory allocation and release (III)

 Example:

int *dat;

dat = (int *)malloc(sizeof(int)); /*Assign*/

if (dat==NULL)

 printf(“Allocation error”);

... /*Using dat*/

free(dat); /*Release*/

V1.1
© Autores 8

Dynamically allocated arrays (I)

 Are the arrays whose size is fixed in execution time
when they are allocated with calloc()function

 Unidimensional dynamically allocated arrays

void * calloc(numelements, elementsize);

 Declared in stdlib.h

 Returns a pointer to the first address of the assigned
memory block (NULL if error)

 numelements indicates the number of elements in the array

 elementsize indicates the size of each element

V1.1
© Autores 9

Dynamically allocated arrays (II)

 Example: Dynamic allocation of an array of N integers

 int *arr10; // Pointer to int

arr10= (int *)calloc(N, sizeof(int)); //Assign

if (arr10==NULL)

 printf(“Allocation error”);

 ... // Using arr10

free(arr10); // Memory release

V1.1
© Autores 10

Dynamically allocated arrays (III)

 Bidimensional dynamically allocated arrays:

1.Declare a pointer to pointer to the data type of the 2D-array

2.Assign dynamically a 1D-array of pointers

3.Assign dynamically a 1D-array of data to each of the pointers
of the previous array of pointers

4.Normal use of the 2D-array

5.Release memory in inverse order:

1.With a loop release every 1D-array of data

2.Release the 1D-array of pointers

V1.1
© Autores 11

Dynamically allocated arrays (IV)

V1.1
© Autores 12

Dynamically allocated arrays (V)

 Example: 2D-array (NROW, NCOL) of real numbers

float **arr2D; // Pointer to pointer to float

int i,j;

arr2D = (float **)calloc(NROW , sizeof(float *))

 //Assign mem for 1D-array of NROW pointers to float

for (i=0 ; i<NROW ; i++;)

 arr2D[i] = (float *)calloc(NCOL , sizeof(float));

 // Assign mem for each 1D-array of NCOL float numb

 ... // Use arr2D, elements can be accessed arr2D[i][j]

for (i=0 ; i<NROW ; i++) free(arr2D[i]);

 // Release the 1D-arrays of real data

free(arr2D); // Release the 1D-array of pointers

V1.1
© Autores 13

Reallocation of memory blocks

 In execution it is possible to change the size assigned
to an array by reallocating the memory block it occupies

 void * realloc(void *ptoldblock, numbytes);

Declared in stdlib.h

Returns a pointer to the new memory block that might
be different to the previous one (NULL if error)

Data of the original block are not lost

ptoldblock points to the original block to reallocate

numbytes indicates the size in bytes of the new block

