
© Autores V1.1

Informatics
Ingeniería en Electrónica y Automática Industrial

Input and Output With Files

V1.1
2

Input and Output With Files in C Language

 Files and streams in C language

 Opening and closing files

 Text input/output
 Characters

 Text

 Binary data input/output

 Formatted Input/Output in Files

 File positioning: fseek()

 Other operations over files
 Function ftell()

 Function rewind()

 Function remove()

 Function fflush()

 Function tmpfile()

V1.1
3

Files and streams in C language (I)

 Storing information requires a system for I/O with files
 Independent of the physical device

 Implemented with generic, powerful and flexible functions

Two general tools exist: Files and Streams

 File: Sequence of bytes stored/sent in/to some device
(hard disc, printer, keyboard, controller, screen…)

 Stream: Abstract element over which every I/O operation is
performed to make them easier for the programmer
 It works as intermediary between programs and files.

Physically is a part of the memory working as a buffer

Three special streams exist:

Stdin Standard Input Stream associated to the keyboard

Stdout Standard Output Stream associated to the screen

Stderr Standard Error Stream associated to the screen

V1.1
4

Files and streams in C language (II)

Program

in

execution

 (Process)

Input

Output

Errors

Input Stream
Error Stream

Output Stream

Default associations

Physical devices are treated
as files

http://images.google.es/imgres?imgurl=http://www.bufoland.cl/apuntes/teclado/teclado.gif&imgrefurl=http://www.bufoland.cl/apuntes/teclado/teclado_pc.php&h=336&w=608&sz=9&hl=es&start=1&tbnid=iyeArsPl3zgUVM:&tbnh=75&tbnw=136&prev=/images%3Fq%3Dteclado%26gbv%3D2%26svnum%3D10%26hl%3Des%26sa%3DG

V1.1
5

Files and streams in C language (III)

 In DOS/Windows a file can be opened in two ways:

Text mode: bytes are considered to be ASCII codes

End of line is ‘\n’ (in ASCII CR: Carriage return)

When writing, CR+LF (Intro) is converted to ‘\n’

Binary mode: bytes are considered to be binary code

 In Unix/Linux there is no such distinction

V1.1
6

Opening and closing files (I)

 To access any file it is necessary a file descriptor

Declaration:

 FILE *pfile;

FILE is a constant defined in stdio.h

The descriptor pfile points to a buffer that will contain all
the information about the file

 It is used in any operation with the file

 It must be declared before use

 It is initialized when opening a file without error

V1.1
7

Opening and closing files (II)

 Before any operation the file must be opened with fopen()

FILE *pfile

pfile = fopen(“filename”, “mode”);

 fopen receives two character chains
• First one with the file’s name (including access path)

• Second one with the opening mode

 It returns:
• The descriptor pfile that points to an structure that contains all

information about the file: name, size, attributes….

• The NULL descriptor in case of error

V1.1
8

Opening and closing files (III)

FILE OPENING MODES IN C

Opening modes

String

Observations
Text file Binary file

Open to read “r” “rb”
If it does not exist, error is

produced

Create to write “w” “wb” If it exist, content is lost

Open or create to append “a” “ab” If it does not exist, is created

Open to read and/or write “r+” “rb+” It must exist

Create to read and/or write “w+” “wb+” If it exist, content is lost

Open or create to append and/or

read
“a+” “ab+” If it does not exist, is created

V1.1
9

Opening and closing files (IV)

 When the program finishes normally all open files are
closed by the OS but

 To prevent from abnormal termination, it is recommended to
close all files in the program with

 fclose(pfile);

 It receives as argument de file descriptor pfile

 It returns
An integer with ‘0’ value if normal closing

EOF in case of error

 All information of a non-propertly closed file is lost

V1.1
10

Opening and closing files (V)

 Example:

FILE *pf; /* descriptor */

if ((pf=fopen(“myadata/draft.txt”,“w+”)) == NULL)

{

 puts(“\nFile can’t be created”);

 exit(0);

}

else printf(“\nFile has been opened”);

/* ... Program ... */

fclose(pf); /* File is closed */

V1.1
11

Opening and closing files (VI)

 The end of file is indicated with the special character EOF,
defined in stdio.h

 It is the last byte of the file

When bytes are read with fgetc(), EOF might be not
distinguished as last character so,

Function feof()of stdio.h returns a value different from
cero (true) when EOF is read

while (!feof(pfile))

{

 /* operarions with the open file */

}

V1.1
12

Text input/output (I)

 Functions to Read/Write ONE character (stdio.h)

int fgetc(FILE *pfile);

 Reads a character from the file whose descriptor pfile receives

 Returns the read character in an integer or EOF in case of error

int fputc(int char, FILE *pfile);

 Writes a character in the file whose descriptor receives

 Receives as arguments
• char: The character to write

• pfile: The file descriptor

 Returns EOF in case of error

V1.1
13

Text input/output (II)

 Example:

FILE *pf1, *pf2;

char letter;

pf1 = fopen(“read.txt”, “r”);

letter = fgetc(pf1); /* Reads 1 character */

pf2 = fopen (“write.txt”, “w”);

fputc(letter, pf2); /* Writes 1 character */

fclose(pf1);

fclose(pf2);

V1.1
14

Text input/output(III)

 Functions to Read/Write strings (stdio.h)

char * fgets(char *cad, int numchar, FILE *pf);

 It receives as arguments
• cad: Pointer to where the string will be stored

• numchar-1: Number of character to read (‘\0’ is added)

• pf: file descriptor
 It returns a pointer to the chain or NULL in case of error

 The character \n is the last one read if found

int fputs(char *pstring, FILE *pf);

 It receives as arguments
• pstring: A pointer to the string to be written

• pf: File descriptor

 It returns the last written character or EOF in case of error

V1.1
15

Text input/output(IV)

 Example:

FILE *pf1, *pf2;

char rea[50];

char writ[]=“Message to keep in the file”;

int num=50-1;

pf1 = fopen(“read.txt”, “r”);

fgets(rea, num, pf1);

 /* Reads a string of 49 chars from read.txt */

pf2 = fopen (“write.txt”, “w”);

fputs(writ, pf2);

/*Writes the string “Message to …” in write.txt*/

fclose(pf1);

fclose(pf2);

V1.1
16

Binary data Input/Output (I)

 To read binary data: fread() (in stdio.h)

unsigned fread(void *pdat, unsigned numbytes,

 unsigned numdat, FILE *pfile);

 To write binary data: fwrite() (in stdio.h)

unsigned fwrite(void *pdat, unsigned numbytes,

 unsigned numdat, FILE *pfile);

 They return the number of read/written data

 They receive
 pdat: A pointer to the read/written data
 numbytes: number of bytes that each data occupies (sizeof)
 numdat: Total number of data
 pfile: File descriptor

V1.1
17

Binary data Input/Output (II)

 Example:

FILE *pf;

float value1=3.5, value2;

pf=fopen (“file.dat”, “a+”);

fwrite(&value1, sizeof(value1), 1, pf); /*Writes*/

fread(&value2, sizeof(float), 1, pf); /*Reads */

fclose(pf)

V1.1
18

Formatted Input/Output in Files (I)

 fprintf() y fcanf() in stdio.h are analogous to
printf() and scanf() but using a file descriptor

 int fprintf(FILE *pf, char *format, arglist);

 int fscanf(FILE *pf, char *format, arglist);

 They receive

 pf: File descriptor

 format: A string that specifies formats

 arglist: Arguments to be written/read

 They return

 fprintf() returns the number of written bytes

 fscanf() returns the number of read bytes or EOF

V1.1
19

Formatted Input/Output in Files (II)

 Example:

FILE *pf;

int i = 100;

char c = 'C';

float f = 1.234;

pf = fopen(“myfile.dat", "w+");

fprintf(pf, "%d %c %f", i, c, f);

 /* Writes in the file */

fscanf(pf, "%d %c %f", &i, &c, &f);

 /* Read from the file */

fclose(pf);

V1.1
20

File positioning: fseek()(I)

 With fseek()the program can access directly any
position in the file (random vs sequential access)

 FILE pointer points to an structure created by the OS to
control operations over the file
 It incudes a read/write pointer that contains the current

position to read/write

When opening a file this pointer points to the beginning of
the file (except if open to append)

 Therefore fseek()allows to read/write in any position of
the file by setting the value of the read/write pointer

V1.1
21

File positioning: fseek()(II)

int fseek(FILE *pf, long offset, int origin);

 It returns ‘true’ if success (right movement) or NULL otherwise

 It receives

•pf: File descriptor

•origin: Initial reference point. Some references defined in
stdio.h can be taken:

 SEEK_SET: beginning of the file

 SEEK_CUR: current position

 SEEK_END : end of the file

•offset: Value to add to origin to obtain the new position

V1.1
22

File positioning: fseek() (III)

 Example:

FILE * pFile;

pFile = fopen ("example.txt" , "w");

fputs ("This is an apple." , pFile);

fseek (pFile , 9 , SEEK_SET);

fputs (" sam" , pFile);

fclose (pFile);

After execution, example.txt will contain:
"This is an sample."

V1.1
23

Other operations over files (I)

 Function ftell()

long ftell(FILE *pf);

Returns a long integer with the position of the write/read

pointer with respect to the origin of the file.

Receives the file descriptor pf

Defined in stdio.h

V1.1
24

Other operations over files (II)

 Function rewind()

void rewind(FILE *pf);

Initilializes read/write pointer the beginning of the file

Does not return anything

It receives the file descriptor

Defined in stdio.h

V1.1
25

Other operations over files (III)

 Function remove()

int remove(char *filename);

It removes the file pointed by filename

Returns 0 if success and -1 if error

• In case of error, global variable errno, defined in errno.h

will indicate the kind of error

Defined in stdio.h

V1.1
26

Other operations over files (IV)

 Function fflush()

int fflush(FILE *pf);

It empties I/O buffers associated to the descriptor pf

Returns 0 if success and NULL if error

Defined in stdio.h

Very used to erase keyboard buffer and when working
with printers

V1.1
27

Other operations over files (V)

 Function tmpfile()

 FILE * tmpfile(void));

It creates a temporal file that is automatically removed

when the file is closed or the program ends.

The temporal file is created in “w+” mode

It returns a file descriptor to the temporal file (or null

pointer if cannot be created)

Defined in stdio.h

