
MIPS R10000 Microprocessor
User’s Manual

Version 2.0

Copyright © 1996 MIPS Technologies, Inc.

 ALL RIGHTS RESERVED

 U.S. GOVERNMENT RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the Government is subject to restrictions
as set forth in FAR 52.227.19(c)(2) or subparagraph (c)(1)(ii) of the Rights
in Technical Data and Computer Software clause at DFARS 252.227-7013
and/or in similar or successor clauses in the FAR, or the DOD or NASA
FAR Supplement. Contractor/manufacturer is Silicon Graphics, Inc., 2011
N. Shoreline Blvd., Mountain View, CA 94039-7311.

RISCompiler, RISC/os, R2000, R6000, R4000, R4400, and R10000 are
trademarks of MIPS Technologies, Inc. MIPS and R3000 are registered
trademarks of MIPS Technologies, Inc.

UNIX is a registered trademark in the United States and other countries,
licensed exclusively through X/Open Company, Ltd.

MIPS Technologies, Inc.

2011 North Shoreline

Mountain View, California 94039-7311

http://www.mips.com

R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996 iii

Acknowledgments

This book represents a consortium of efforts, and is principally derived from
material provided by Randy Martin, Yung-Chin Chen, and Ken Yeager.

Thanks also to Randy for his many painstaking reviews of this manual.

Also providing invaluable service were the following:

Shabbir Latif, for once again running point between Engineering and
Publications, answering questions, and presenting tutorials to clarify the
complicated details of the R10000 processor operations.

Charlie Price, for use of his rejuvenated MIPS-4 Instruction Set Architecture.

Steve Proffitt, for both his technical assistance, and helping handle the multitude
of niggling details involved in getting this manual printed.

The following also provided technical help in innumerable ways: Arun Mehta,
Tim Layman, Greg Shippen, Yeffi Van Atta, John Brennan, Len Widra, Roy
Johnson, Hector Sucar, Hong-Men Su, Mazin Khurshid, Steve Whitney, Doug
Yanagawa (chip illustrations and socket pinouts), Mike Gupta, Steven Peltier,
Rob Conrad, Hai Nguyen, Bill Voegtli, and Sharad Mehrotra at the University
of Illinois.

Remediating a prior deficiency, thanks to Tom McReynolds.

In Production and Creative, thanks to Melissa Miller for her design of the cover
(appreciable in hardcopy only, right now!); Yen Nguyen, for handling the
printing; both Kay Maitz and Beth Fraker for resolving various design issues; and
Michael Ritchie for tracking progress.

Joe Heinrich
December, 1995

Mt. View, California

R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996 iv

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996 v

About This Manual

This manual describes the MIPS R10000 RISC microprocessor (also referred to as
the processor in this book).

Glossary

Certain specialized terms used in this book are defined in the Glossary at the end
of this manual.

Stylistic Conventions

A brief note on some of the stylistic conventions used in this book: bits, fields, and
registers of interest from a software perspective are italicized (such as the BE bit in
the Config register).

Signal names of more importance from a hardware point of view are rendered in
bold (such as Reset*). The asterisk appended to the signal name (as in Reset*)
indicates the signal is low-active.

A range of bits uses a colon as a separator; for instance, (15:0) represents the 16-bit
range that runs from bit 0, inclusive, through bit 15. In some places an ellipsis
(15...0) or partial ellipsis (15..0) may used in place of a colon for visibility.

Unfamiliar terms presented for the first time are printed in bold letters, and are
followed as closely as possible by a definition or description.

Errata

This document is updated from changes made to the Version 1.0 document, dated
June 26, 1995. Any corrections made to this manual will be found in the R10000
User Manual Errata for Revision 2.0. The errata in this manual are indicated by the
following paragraph heading:

Errata

Specific changes to the text are underlined in the text, as shown below, while
descriptions of changes that have been made are italicized, as shown below.

PLLDis and SelDVCO signal descriptions are revised in Table 3-4.

System designers must take care, especially in desktop applications, to ensure
sufficient airflow.

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 vi

Getting MIPS Documents On-Line

The information in this manual, and other MIPS-related product information, is
also available over the Word Wide Web at:

http://www.mips.com

Requests can also be e-mailed to webteam-mips@mti.sgi.com.

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

Table of Contents vii

Contents

Acknowledgments

About This Manual

Glossary ..v
Stylistic Conventions ..v
Errata ...v
Getting MIPS Documents On-Line ...vi

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 viii Table of Contents

1
Introduction to the R10000 Processor

MIPS Instruction Set Architecture (ISA) ...2
What is a Superscalar Processor? ...3

Pipeline and Superpipeline Architecture..3
Superscalar Architecture ...3

What is an R10000 Microprocessor? ..4
R10000 Superscalar Pipeline ...5
Instruction Queues...6
Execution Pipelines ..6

64-bit Integer ALU Pipeline ..6
Load/Store Pipeline...7
64-bit Floating-Point Pipeline ...7

Functional Units ...9
Primary Instruction Cache (I-cache) ..9
Primary Data Cache (D-cache) ...9
Instruction Decode And Rename Unit ..10
Branch Unit ...10
External Interfaces..10

Instruction Queues ...11
Integer Queue ...11
Floating-Point Queue...11
Address Queue ...12

Program Order and Dependencies ..13
Instruction Dependencies..13
Execution Order and Stalling ...13
Branch Prediction and Speculative Execution ...14
Resolving Operand Dependencies...14
Resolving Exception Dependencies...15
Strong Ordering..15

An Example of Strong Ordering ..16
R10000 Pipelines ...17

Stage 1 ..17
Stage 2 ..17
Stage 3 ..18
Stages 4-6 ...18

Floating-Point Multiplier (3-stage Pipeline)...18
Floating-Point Divide and Square-Root Units ...18
Floating-Point Adder (3-stage Pipeline) ...18
Integer ALU1 (1-stage Pipeline)...18
Integer ALU2 (1-stage Pipeline)...18
Address Calculation and Translation in the TLB ..19

Implications of R10000 Microarchitecture on Software..20

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

Table of Contents ix

Superscalar Instruction Issue..20
Speculative Execution..21

Side Effects of Speculative Execution..21
Nonblocking Caches ..25

R10000-Specific CPU Instructions..26
PREF...26
LL/SC ..27
SYNC..28

Performance ..28
User Instruction Latency and Repeat Rate ...29
Other Performance Issues ...31
Cache Performance ..31

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 x Table of Contents

2
System Configurations

Uniprocessor Systems..34
Multiprocessor Systems...35

Multiprocessor Systems Using Dedicated External Agents...35
Multiprocessor Systems Using a Cluster Bus...36

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

Table of Contents xi

3
Interface Signal Descriptions

Power Interface Signals ...38
Secondary Cache Interface Signals ..39
System Interface Signals..41
Test Interface Signals ...43

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 xii Table of Contents

4
Cache Organization and Coherency

Primary Instruction Cache ..46
Primary Data Cache ...48
Secondary Cache...51
Cache Algorithms...53

Descriptions of the Cache Algorithms ..54
Uncached ...54
Cacheable Noncoherent ..54
Cacheable Coherent Exclusive ...54
Cacheable Coherent Exclusive on Write...54
Uncached Accelerated ...55

Relationship Between Cached and Uncached Operations ...56
Cache Algorithms and Processor Requests ..57
Cache Block Ownership ..58

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

Table of Contents xiii

5
Secondary Cache Interface

Tag and Data Arrays..60
Secondary Cache Interface Frequencies..61
Secondary Cache Indexing..62

Indexing the Data Array ...62
Indexing the Tag Array ...63

Secondary Cache Way Prediction Table ...64
Secondary Cache Tag...66

SCTag(25:4), Physical Tag...66
SCTag(3:2), PIdx ...67
SCTag(1:0), Cache Block State ..67

Read Sequences ..68
4-Word Read Sequence ...69
8-Word Read Sequence ...70
16 or 32-Word Read Sequence..71
Tag Read Sequence ..72

Write Sequences ...73
4-Word Write Sequence...74
8-Word Write Sequence...75
16 or 32-Word Write Sequence...76
Tag Write Sequence ...77

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 xiv Table of Contents

6
System Interface Operations

Request and Response Cycles...80
System Interface Frequencies ...80
Register-to-Register Operation...80
System Interface Signals ..81
Master and Slave States ...81
Connecting to an External Agent ...81
Cluster Bus ..82
System Interface Connections...83

Uniprocessor System ...83
Multiprocessor System Using Dedicated External Agents ..84
Multiprocessor System Using the Cluster Bus...85

System Interface Requests and Responses..86
Processor Requests ...86
External Responses...87
External Requests ...87
Processor Responses ..87
Outstanding Requests and Request Numbers ...87
Request and Response Relationship..88

System Interface Buffers ..89
Cluster Request Buffer...89
Cached Request Buffer ..89
Incoming Buffer ..90
Outgoing Buffer..91
Uncached Buffer ...92

System Interface Flow Control ...93
Processor Write and Eliminate Request Flow Control ...93
Processor Read and Upgrade Request Flow Control..93
Processor Coherency Data Response Flow Control ..93
External Request Flow Control ..93
External Data Response Flow Control ..93

System Interface Block Data Ordering ..94
External Block Data Responses ..94
Processor Coherency Data Responses...94
Processor Block Write Requests ...94

System Interface Bus Encoding ..95
SysCmd[11:0] Encoding ..95

SysCmd[11] Encoding ...95
SysCmd[10:0] Address Cycle Encoding..95
SysCmd[10:0] Data Cycle Encoding ..99
SysCmd[11:0] Map ...101

SysAD[63:0] Encoding ...102

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

Table of Contents xv

SysAD[63:0] Address Cycle Encoding ..102
SysAD[63:0] Data Cycle Encoding ..104

SysState[2:0] Encoding ..104
SysResp[4:0] Encoding ..105

Interrupts...105
Hardware Interrupts..105
Software Interrupts ..106
Timer Interrupt...106
Nonmaskable Interrupt...106

Protocol Abbreviations..107
System Interface Arbitration...108

System Interface Arbitration Rules..109
Uniprocessor System ...110
Multiprocessor System Using Cluster Bus ...111

System Interface Request and Response Protocol ...112
Processor Request Protocol...112

Processor Block Read Request Protocol..113
Processor Double/Single/Partial-Word Read Request Protocol........................115
Processor Block Write Request Protocol...117
Processor Double/Single/Partial-Word Write Request Protocol.......................119
Processor Upgrade Request Protocol ..121
Processor Eliminate Request Protocol...123
Processor Request Flow Control Protocol ..125

External Response Protocol ..127
External Block Data Response Protocol ..127
External Double/Single/Partial-Word Data Response Protocol........................129
External Completion Response Protocol ..130

External Request Protocol ...132
External Intervention Request Protocol..133
External Allocate Request Number Request Protocol ..134
External Invalidate Request Protocol ..135
External Interrupt Request Protocol..136

Processor Response Protocol ..137
Processor Coherency State Response Protocol ..138
Processor Coherency Data Response Protocol ..139

System Interface Coherency ...141
External Intervention Shared Request ..141
External Intervention Exclusive Request..141
External Invalidate Request..141
External Coherency Request Action..142
Coherency Conflicts...143

Internal Coherency Conflicts..143
External Coherency Conflicts ...144
External Coherency Request Latency..146

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 xvi Table of Contents

SysGblPerf* Signal..148
Cluster Bus Operation ...148
Support for I/O...152
Support for External Duplicate Tags ...152
Support for a Directory-Based Coherency Protocol ..153
Support for Uncached Attribute ..153
Support for Hardware Emulation..154

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

Table of Contents xvii

7
Clock Signals

System Interface Clock and Internal Processor Clock Domains ...156
Secondary Cache Clock ...157
Phase-Locked-Loop..158

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 xviii Table of Contents

8
Initialization

Initialization of Logical Registers...160
Power-On Reset Sequence...160
Cold Reset Sequence ..162
Soft Reset Sequence..163
Mode Bits ...164

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

Table of Contents xix

9
Error Protection and Handling

Correctable Errors ..168
Uncorrectable Errors..169
Propagation of Uncorrectable Errors...170
Cache Error Exception...171
CP0 CacheErr Register EW Bit ...172
CP0 Status Register DE Bit..172
CACHE Instruction..172
Error Protection Schemes Used by R10000...173

Parity ..173
Sparse Encoding ...173
ECC...173

Primary Instruction Cache Error Protection and Handling...174
Error Protection ..174
Error Handling ...174

Primary Data Cache Error Protection and Handling..175
Error Protection ..175
Error Handling ...175

Secondary Cache Error Protection and Handling ...176
Error Protection ..176
Error Handling ...176

Data Array...176
Tag Array ..179

System Interface Error Protection and Handling ..180
Error Protection ..180
Error Handling ...181

SysCmd(11:0) Bus...181
SysAD(63:0) Bus ...182
SysState(2:0) Bus...184
SysResp(4:0) Bus...184

Protocol Observation ...185

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 xx Table of Contents

10
CACHE Instructions

Notes on CACHE Instruction Operations ..188
Virtual Address ..188
Physical Address ..188
CP0 Not Usable...188
TLB Refill and TLB Invalid Exceptions on CacheOps ..189
Hit Operation Accesses ...189
Watch Exception...189
Address Error Exception ...189
Write Back ...189
Invalidation ...190
CE Bit..190
CH Bit...190
Serial Operation of CACHE Instructions..190
Instructions Not Supported ..190
Op Field Encoding ...191

Index Invalidate (I) ...192
Index WriteBack Invalidate (D)..192
Index WriteBack Invalidate (S)...193
Index Load Tag (I) ..194
Index Load Tag (D) ..194
Index Load Tag (S) ...195
Index Store Tag (I) ..195
Index Store Tag (D) ..196
Index Store Tag (S) ...196
Hit Invalidate (I) ...197
Hit Invalidate (D) ...197
Hit Invalidate (S) ..198
Cache Barrier...198
Hit Writeback Invalidate (D) ..199
Hit WriteBack Invalidate (S) ...200
Index Load Data (I) ..201
Index Load Data (D)...201
Index Load Data (S)..201
Index Store Data (I) ..202
Index Store Data (D)...202
Index Store Data (S)..202

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

Table of Contents xxi

11
JTAG Interface Operation

Test Access Port (TAP) ..204
TAP Controller (Input) ..204

Instruction Register..205
Bypass Register...205
Boundary Scan Register ..206

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 xxii Table of Contents

12
Electrical Specifications

DC Electrical Specification ..210
DC Power Supply Levels ..210
DCOk and Power Supply Sequencing ..211
Maximum Operating Conditions...211
Input Signal Level Sensing..212
Mode Definitions..212
Vref[SC,Sys] ..212
Unused Inputs ..213
DC Input/Output Specifications ...214

AC Electrical Specification ..215
Maximum Operating Conditions...215
Test Specification..215
Secondary Cache and System Interface Timing...215
Enable/Output Delay, Setup, Hold Time...216
Asynchronous Inputs ..216

Signal Integrity Issues..217
Reference Voltage...217
Power Supply Regulation ...217
Maximum Input Voltage Levels ..217
Decoupling Capacitance..218

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

Table of Contents xxiii

13
Packaging

R10000 Single-Chip Package, 599CLGA ...220
Mechanical Characteristics ...220
Electrical Characteristics ...221
Thermal Characteristics...222
Assembly Drawings and Pinout List...222
599CLGA Pinout ..224

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 xxiv Table of Contents

14
Coprocessor 0

Index Register (0)..237
Random Register (1)...238
EntryLo0 (2), and EntryLo1 (3) Registers..239
Context (4) ...241
PageMask Register (5)..242
Wired Register (6)...243
BadVAddr Register (8) ..244
Count and Compare Registers (9 and 11) ...244
EntryHi Register (10) ...245
Status Register (12) ...246

Status Register Fields ...248
Diagnostic Status Field ..249
Coprocessor Accessibility ...251

Cause Register (13) ...252
Exception Program Counter (14)..254
Processor Revision Identifier (PRId) Register (15) ..255
Config Register (16)..256
Load Linked Address (LLAddr) Register (17) ...257
WatchLo (18) and WatchHi (19) Registers..258
XContext Register (20) ...259
FrameMask Register (21)...260
Diagnostic Register (22)...261
Performance Counter Registers (25) ..264
ECC Register (26)..273
CacheErr Register (27) ...274

CacheErr Register Format for Primary Instruction Cache Errors274
CacheErr Register Format for Primary Data Cache Errors ..275
CacheErr Register Format for Secondary Cache Errors..276
CacheErr Register Format for System Interface Errors...277

TagLo (28) and TagHi (29) Registers ...278
CacheOp is Index Load/Store Tag ..278

Primary Instruction Cache Operation...279
Primary Data Cache Operation ..279
Secondary Cache Operation ...281

CacheOp is Index Load/Store Data ..282
Primary Instruction Cache Operation...282
Primary Data Cache Operation ..283
Secondary Cache Operation ...283

ErrorEPC Register (30)...284
CP0 Instructions..285

Hazards..285

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

Table of Contents xxv

Branch on Coprocessor 0...285
CP0 Move Instructions ..286
CACHE Instruction..287
DMFC0 Instruction ..290
DMTC0 Instruction ..291
 ERET Instruction ...292
MFC0 Instruction ...293
Move To/From the Performance Counter ...294
MTC0 Instruction ...296
TLBP Instruction...297
TLBR Instruction ..298
TLBWI Instruction..299
TLBWR Instruction ..300

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 xxvi Table of Contents

15
Floating-Point Unit

Floating Point Unit Operations ..302
Floating-Point Unit Control ..303
Floating-Point General Registers (FGRs) ..303

32- and 64-Bit Operations..304
Load and Store Operations ...305

Floating-Point Control Registers..308
Floating-Point Implementation and Revision Register ..308
Floating-Point Status Register (FSR)..309

Bit Descriptions of the FSR ...310
Loading the FSR ...311

FPU Instructions ...312
CVT.L.fmt ..312
Moves and Conditional Moves ..313
CFC1/CTC1 ..313

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

Table of Contents xxvii

16
Memory Management

Processor Modes...316
Processor Operating Modes..316
Addressing Modes ...317

Virtual Address Space ...317
 User Mode Operations ...318

32-bit User Mode (useg) ..319
64-bit User Mode (xuseg) ..319

 Supervisor Mode Operations ..320
32-bit Supervisor Mode, User Space (suseg)..320
32-bit Supervisor Mode, Supervisor Space (sseg) ...321
64-bit Supervisor Mode, User Space (xsuseg)..321
64-bit Supervisor Mode, Current Supervisor Space (xsseg)321
64-bit Supervisor Mode, Separate Supervisor Space (csseg)321

 Kernel Mode Operations..322
32-bit Kernel Mode, User Space (kuseg)...323
32-bit Kernel Mode, Kernel Space 0 (kseg0)...323
32-bit Kernel Mode, Kernel Space 1 (kseg1)...323
32-bit Kernel Mode, Supervisor Space (ksseg)...323
32-bit Kernel Mode, Kernel Space 3 (kseg3)...323
64-bit Kernel Mode, User Space (xkuseg)...324
64-bit Kernel Mode, Current Supervisor Space (xksseg)......................................324
64-bit Kernel Mode, Physical Spaces (xkphys) ..324
64-bit Kernel Mode, Kernel Space (xkseg)..326
64-bit Kernel Mode, Compatibility Spaces (ckseg1:0, cksseg, ckseg3)326

Address Space Access Privilege Differences Between the R4400 and R1000..............326
Virtual Address Translation ...328

Virtual Pages...328
Virtual Page Size Encodings...328
Using the TLB ...329
Cache Algorithm Field ..329
Format of a TLB Entry ...329
Address Translation...330
Address Space Identification (ASID)...330
Global Processes (G) ..330
Avoiding TLB Conflict ..330

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 xxviii Table of Contents

17
CPU Exceptions

Causing and Returning from an Exception ..332
Exception Vector Locations...332
TLB Refill Vector Selection..333

Priority of Exceptions ..335
Cold Reset Exception ...336
Soft Reset Exception...337
NMI Exception..339
Address Error Exception ...340
TLB Exceptions ...341

TLB Refill Exception ..342
TLB Invalid Exception ...343
TLB Modified Exception ...344

Cache Error Exception ...345
Virtual Coherency Exception..345
Bus Error Exception ...346
Integer Overflow Exception..347
Trap Exception..348
System Call Exception ...349
Breakpoint Exception...350
Reserved Instruction Exception ...351
Coprocessor Unusable Exception ..352
Floating-Point Exception...353
Watch Exception...354
Interrupt Exception ..355

MIPSIV Instructions...356
COP0 Instructions ..357
COP1 Instructions ..357
COP2 Instructions ..357

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

Table of Contents xxix

18
Cache Test Mode

Interface Signals..360
System Interface Clock Divisor ..360
Entering Cache Test Mode..361
Exit Sequence ..362
SysAD(63:0) Encoding...363
Cache Test Mode Protocol ..364

Normal Write Protocol ..364
Auto-Increment Write Protocol..365
Normal Read Protocol ...366
Auto-Increment Read Protocol ..367

A
Glossary

Superscalar Processor ..370
Pipeline ..370
Pipeline Latency ...370
Pipeline Repeat Rate ..370
Out-of-Order Execution ..370
Dynamic Scheduling..371
Instruction Fetch, Decode, Issue, Execution, Completion, and Graduation..........................371
Active List..371
Free List and Busy Registers...372
Register Renaming ...372
Nonblocking Loads and Stores ..373
Speculative Branching ...374
Logical and Physical Registers ...375
Register Files ...375
ANDES Architecture..375

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 xxx Table of Contents

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996 1

1. Introduction to the R10000 Processor

This user’s manual describes the R10000 superscalar microprocessor for the system
designer, paying special attention to the external interface and the transfer
protocols.

This chapter describes the following:

• MIPS ISA

• what makes a generic superscalar microprocessor

• specifics of the R10000 superscalar microprocessor

• implementation-specific CPU instructions

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 2 Chapter 1.

1.1 MIPS Instruction Set Architecture (ISA)
MIPS has defined an instruction set architecture (ISA), implemented in the
following sets of CPU designs:

• MIPS I, implemented in the R2000 and R3000

• MIPS II, implemented in the R6000

• MIPS III, implemented in the R4400

• MIPS IV, implemented in the R8000 and R10000

The original MIPS I CPU ISA has been extended forward three times, as shown in
Figure 1-1; each extension is backward compatible. The ISA extensions are
inclusive; each new architecture level (or version) includes the former levels.†

Figure 1-1 MIPS ISA with Extensions

The practical result is that a processor implementing MIPS IV is also able to run
MIPS I, MIPS II, or MIPS III binary programs without change.

† For more ISA information, please refer to the MIPS IV Instruction Set Architecture,
published by MIPS Technologies, and written by Charles Price. Contact information
is provided both in the Preface, and inside the front cover, of this manual.

MIPS I

 MIPS II

MIPS III

MIPS IV

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

Introduction to the R10000 Processor 3

1.2 What is a Superscalar Processor?
A superscalar processor is one that can fetch, execute and complete more than one
instruction in parallel.

Pipeline and Superpipeline Architecture

Previous MIPS processors had linear pipeline architectures; an example of such a
linear pipeline is the R4400 superpipeline, shown in Figure 1-2. In the R4400
superpipeline architecture, an instruction is executed each cycle of the pipeline
clock (PCycle), or each pipe stage.

Figure 1-2 R4400 Pipeline

Superscalar Architecture

The structure of 4-way superscalar pipeline is shown in Figure 1-3. At each stage,
four instructions are handled in parallel. Note that there is only one EX stage for
integers.

Figure 1-3 4-Way Superscalar Pipeline

1 PCycle

IF IS RF EX DF DS TC WB

IF IS RF EX DF DS TC WB

IF IS RF EX DF DS TC WB

IF IS RF EX DF DS TC WB

1 Pipe
Stage

Instruction 4

Instruction 3

Instruction 2

Instruction 1

Instruction 1 IF ID IS EX WB

Instruction 2 IF ID IS EX WB

Instruction 3 IF ID IS EX WB

Instruction 4 IF ID IS EX WB

Instruction 5 IF ID IS EX WB

Instruction 6 IF ID IS EX WB

Instruction 7 IF ID IS EX WB

Instruction 8 IF ID IS EX WB

IF = instruction fetch

ID = instruction decode and dependency

IS = instruction issue

EX = execution (1 only)

WB = write back

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 4 Chapter 1.

1.3 What is an R10000 Microprocessor?
The R10000 processor is a single-chip superscalar RISC microprocessor that is a
follow-on to the MIPS RISC processor family that includes, chronologically, the
R2000, R3000, R6000, R4400, and R8000.

The R10000 processor uses the MIPS ANDES architecture, or Architecture with Non-
sequential Dynamic Execution Scheduling.

The R10000 processor has the following major features (terms in bold are defined
in the Glossary):

• it implements the 64-bit MIPS IV instruction set architecture (ISA)

• it can decode four instructions each pipeline cycle, appending them to
one of three instruction queues

• it has five execution pipelines connected to separate internal integer and
floating-point execution (or functional) units

• it uses dynamic instruction scheduling and out-of-order execution

• it uses speculative instruction issue (also termed “speculative
branching”)

• it uses a precise exception model (exceptions can be traced back to the
instruction that caused them)

• it uses non-blocking caches

• it has separate on-chip 32-Kbyte primary instruction and data caches

• it has individually-optimized secondary cache and System interface
ports

• it has an internal controller for the external secondary cache

• it has an internal System interface controller with multiprocessor
support

Errata

The R10000 processor is implemented using 0.35-micron CMOS VLSI circuitry on
a single 17 mm-by-18 mm chip that contains about 6.7 million transistors,
including about 4.4 million transistors in its primary caches.

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

Introduction to the R10000 Processor 5

R10000 Superscalar Pipeline

The R10000 superscalar processor fetches and decodes four instructions in parallel
each cycle (or pipeline stage). Each pipeline includes stages for fetching (stage 1
in Figure 1-4), decoding (stage 2) issuing instructions (stage 3), reading register
operands (stage 3), executing instructions (stages 4 through 6), and storing results
(stage 7).

Figure 1-4 Superscalar Pipeline Architecture in the R10000

FMpy -1 FMpy - 2 Result

Data Cache

Result

Result

Issue RF

Issue RF ALU1

Issue RF

TLB

Addr.Calc.

ResultIssue RF ALU2

FMpy - 3

FAdd - 1 FAdd - 2 ResultIssue RF FAdd - 3

Stage 1
Fetch

Stage 3
Issue

Instruction
Cache

DecodePrimary
Instruction

Cache

FMpy -1 FMpy - 2 Result

Data Cache

Result

Result

Stage 4
Execute

Stage 5
Execute

Stage 6
Execute

Decode

Branch Unit

Issue RF

Issue RF ALU1

FP Multiply Pipeline

Integer ALU Pipeline

Load/Store Pipeline

Branch Address (one branch can be handled each cycle)

Issue RF

TLB

FAdd - 1 FAdd - 2 ResultIssue RFFP Add Pipeline

Instruction Fetch Pipeline Translation-Lookaside BufferRead operands from Floating-Point

Queues

Floating-Point Queue

Integer Register Operands

Addr.Calc.

2-way Interleaved Cache

Functional Units (Execute Instruction)

ResultIssue RF ALU2Integer ALU Pipeline

 and Registers

FAdd - 3

Stage 7
Store

FMpy - 3

7 Pipeline Stages

5
Execution
Pipelines

(Integer Queue)

(Integer Queue)

(Address Queue)

(FP Queue)

(FP Queue)

4 Instruction/Cycle Fetch and Decode

Stage 2
Decode

or Integer Register Files

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 6 Chapter 1.

Instruction Queues

As shown in Figure 1-4, each instruction decoded in stage 2 is appended to one of
three instruction queues:

• integer queue

• address queue

• floating-point queue

Execution Pipelines

The three instruction queues can issue (see the Glossary for a definition of issue)
one new instruction per cycle to each of the five execution pipelines:

• the integer queue issues instructions to the two integer ALU pipelines

• the address queue issues one instruction to the Load/Store Unit
pipeline

• the floating-point queue issues instructions to the floating-point adder
and multiplier pipelines

A sixth pipeline, the fetch pipeline, reads and decodes instructions from the
instruction cache.

64-bit Integer ALU Pipeline

The 64-bit integer pipeline has the following characteristics:

• it has a 16-entry integer instruction queue that dynamically issues
instructions

• it has a 64-bit 64-location integer physical register file, with seven read
and three write ports (32 logical registers; see register renaming in the
Glossary)

• it has two 64-bit arithmetic logic units:

- ALU1 contains an arithmetic-logic unit, shifter, and integer
branch comparator

- ALU2 contains an arithmetic-logic unit, integer multiplier, and
divider

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

Introduction to the R10000 Processor 7

Load/Store Pipeline

The load/store pipeline has the following characteristics:

• it has a 16-entry address queue that dynamically issues instructions,
and uses the integer register file for base and index registers

• it has a 16-entry address stack for use by non-blocking loads and
stores

• it has a 44-bit virtual address calculation unit

• it has a 64-entry fully associative Translation-Lookaside Buffer (TLB),
which converts virtual addresses to physical addresses, using a 40-bit
physical address. Each entry maps two pages, with sizes ranging from
4 Kbytes to 16 Mbytes, in powers of 4.

64-bit Floating-Point Pipeline

The 64-bit floating-point pipeline has the following characteristics:

• it has a 16-entry instruction queue, with dynamic issue

• it has a 64-bit 64-location floating-point physical register file, with five
read and three write ports (32 logical registers)

• it has a 64-bit parallel multiply unit (3-cycle pipeline with 2-cycle
latency) which also performs move instructions

• it has a 64-bit add unit (3-cycle pipeline with 2-cycle latency) which
handles addition, subtraction, and miscellaneous floating-point
operations

• it has separate 64-bit divide and square-root units which can operate
concurrently (these units share their issue and completion logic with
the floating-point multiplier)

A block diagram of the processor and its interfaces is shown in Figure 1-5,
followed by a description of its major logical blocks.

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 8 Chapter 1.

Figure 1-5 Block Diagram of the R10000 Processor

E
xt

er
na

l A
ge

nt
or

 C
lu

st
er

 C
oo

rd
in

at
or System Interface Secondary Cache Ctlr

32 Kbytes

Data Cache

2-way Set Associative

2 Banks

128-bit refill or writeback

64-bit load or store

32 Kbytes
Instruction Cache

2-way Set Associative

Unaligned access

128-bit refill

Four 32-bit instr. fetch

B
ra

nc
h

U
ni

t

R
eg

is
te

r
M

ap
pi

ng
In

st
ru

ct
io

n
D

ec
od

e

Up to 4 R10000 Microprocessors may be directly connected.

Queue
Integer ALU1

Queue
FP

R
eg

is
te

rs
64

 F
lt.

P
t.

ALU2

Adder

Multiplier

Adr.Calc.

TLB
R

eg
is

te
rs

64
 In

te
ge

r

Secondary Cache

Synchronous Static RAM

128+10

26+7

Secondary Cache

19+way SC Address

Tag

Data

Addr Addr

16-word blocks
8-word blocks

R10000

S
ys

te
m

 B
us

: 6
4-

bi
t d

at
a,

 8
-b

it
ch

ec
k,

 1
2-

bi
t c

om
m

an
d

E
dg

e
of

 K
no

w
n

W
or

ld

Switch

C
lo

ck
s

(512 Kbytes to 16 Mbytes)

(4-Mbyte cache requires
ten 256Kx18-bit

RAM chips)Queue
Address

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

Introduction to the R10000 Processor 9

Functional Units

The five execution pipelines allow overlapped instruction execution by issuing
instructions to the following five functional units:

• two integer ALUs (ALU1 and ALU2)

• the Load/Store unit (address calculate)

• the floating-point adder

• the floating-point multiplier

There are also three “iterative” units to compute more complex results:

• Integer multiply and divide operations are performed by an Integer
Multiply/Divide execution unit; these instructions are issued to ALU2.
ALU2 remains busy for the duration of the divide.

• Floating-point divides are performed by the Divide execution unit;
these instructions are issued to the floating-point multiplier.

• Floating-point square root are performed by the Square-root execution
unit; these instructions are issued to the floating-point multiplier.

Primary Instruction Cache (I-cache)

The primary instruction cache has the following characteristics:

• it contains 32 Kbytes, organized into 16-word blocks, is 2-way set
associative, using a least-recently used (LRU) replacement algorithm

• it reads four consecutive instructions per cycle, beginning on any
word boundary within a cache block, but cannot fetch across a block
boundary.

• its instructions are predecoded, its fields are rearranged, and a 4-bit
unit select code is appended

• it checks parity on each word

• it permits non-blocking instruction fetch

Primary Data Cache (D-cache)

The primary data cache has the following characteristics:

• it has two interleaved arrays (two 16 Kbyte ways)

• it contains 32 Kbytes, organized into 8-word blocks, is 2-way set
associative, using an LRU replacement algorithm.

• it handles 64-bit load/store operations

• it handles 128-bit refill or write-back operations

• it permits non-blocking loads and stores

• it checks parity on each byte

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 10 Chapter 1.

Instruction Decode And Rename Unit

The instruction decode and rename unit has the following characteristics:

• it processes 4 instructions in parallel

• it replaces logical register numbers with physical register numbers
(register renaming)

- it maps integer registers into a 33-word-by-6-bit mapping table
that has 4 write and 12 read ports

- it maps floating-point registers into a 32-word-by-6-bit mapping
table that has 4 write and 16 read ports

• it has a 32-entry active list of all instructions within the pipeline.

Branch Unit

The branch unit has the following characteristics:

• it allows one branch per cycle

• conditional branches can be executed speculatively, up to 4-deep

• it has a 44-bit adder to compute branch addresses

• it has a 4-quadword branch-resume buffer, used for reversing
mispredicted speculatively-taken branches

Errata

• the Branch Return Cache contains four instructions following a
subroutine call, for rapid use when returning from leaf subroutines

• it has program trace RAM that stores the program counter for each
instruction in the pipeline

External Interfaces

The external interfaces have the following characteristics:

• a 64-bit System interface allows direct-connection for 2-way to
4-way multiprocessor systems. 8-bit ECC Error Check and Correction
is made on address and data transfers.

• a secondary cache interface with 128-bit data path and tag fields. 9-bit
ECC Error Check and Correction is made on data quadwords, 7-bit
ECC is made on tag words. It allows connection to an external
secondary cache that can range from 512 Kbytes to 16 Mbytes, using
external static RAMs. The secondary cache can be organized into
either 16- or 32-word blocks, and is 2-way set associative.

Bit definitions are given in Chapter 3.

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

Introduction to the R10000 Processor 11

1.4 Instruction Queues
The processor keeps decoded instructions in three instruction queues, which
dynamically issue instructions to the execution units. The queues allow the
processor to fetch instructions at its maximum rate, without stalling because of
instruction conflicts or dependencies.

Each queue uses instruction tags to keep track of the instruction in each execution
pipeline stage. These tags set a Done bit in the active list as each instruction is
completed.

Integer Queue

The integer queue issues instructions to the two integer arithmetic units: ALU1
and ALU2.

The integer queue contains 16 instruction entries. Up to four instructions may be
written during each cycle; newly-decoded integer instructions are written into
empty entries in no particular order. Instructions remain in this queue only until
they have been issued to an ALU.

Branch and shift instructions can be issued only to ALU1. Integer multiply and
divide instructions can be issued only to ALU2. Other integer instructions can be
issued to either ALU.

The integer queue controls six dedicated ports to the integer register file: two
operand read ports and a destination write port for each ALU.

Floating-Point Queue

The floating-point queue issues instructions to the floating-point multiplier and
the floating-point adder.

The floating-point queue contains 16 instruction entries. Up to four instructions
may be written during each cycle; newly-decoded floating-point instructions are
written into empty entries in random order. Instructions remain in this queue
only until they have been issued to a floating-point execution unit.

The floating-point queue controls six dedicated ports to the floating-point register
file: two operand read ports and a destination port for each execution unit.

The floating-point queue uses the multiplier’s issue port to issue instructions to
the square-root and divide units. These instructions also share the multiplier’s
register ports.

The floating-point queue contains simple sequencing logic for multiple-pass
instructions such as Multiply-Add. These instructions require one pass through
the multiplier, then one pass through the adder.

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 12 Chapter 1.

Address Queue

The address queue issues instructions to the load/store unit.

The address queue contains 16 instruction entries. Unlike the other two queues,
the address queue is organized as a circular First-In First-Out (FIFO) buffer. A
newly decoded load/store instruction is written into the next available sequential
empty entry; up to four instructions may be written during each cycle.

The FIFO order maintains the program’s original instruction sequence so that
memory address dependencies may be easily computed.

Instructions remain in this queue until they have graduated; they cannot be
deleted immediately after being issued, since the load/store unit may not be able
to complete the operation immediately.

The address queue contains more complex control logic than the other queues. An
issued instruction may fail to complete because of a memory dependency, a cache
miss, or a resource conflict; in these cases, the queue must continue to reissue the
instruction until it is completed.

The address queue has three issue ports:

• First, it issues each instruction once to the address calculation unit.
This unit uses a 2-stage pipeline to compute the instruction’s memory
address and to translate it in the TLB. Addresses are stored in the
address stack and in the queue’s dependency logic. This port controls
two dedicated read ports to the integer register file. If the cache is
available, it is accessed at the same time as the TLB. A tag check can be
performed even if the data array is busy.

• Second, the address queue can re-issue accesses to the data cache. The
queue allocates usage of the four sections of the cache, which consist of
the tag and data sections of the two cache banks. Load and store
instructions begin with a tag check cycle, which checks to see if the
desired address is already in cache. If it is not, a refill operation is
initiated, and this instruction waits until it has completed. Load
instructions also read and align a doubleword value from the data
array. This access may be either concurrent to or subsequent to the tag
check. If the data is present and no dependencies exist, the instruction
is marked done in the queue.

• Third, the address queue can issue store instructions to the data cache.
A store instruction may not modify the data cache until it graduates.
Only one store can graduate per cycle, but it may be anywhere within
the four oldest instructions, if all previous instructions are already
completed.

The access and store ports share four register file ports (integer read and write,
floating-point read and write). These shared ports are also used for Jump and Link
and Jump Register instructions, and for move instructions between the integer and
register files.

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

Introduction to the R10000 Processor 13

1.5 Program Order and Dependencies
From a programmer’s perspective, instructions appear to execute sequentially,
since they are fetched and graduated in program order (the order they are
presented to the processor by software). When an instruction stores a new value
in its destination register, that new value is immediately available for use by
subsequent instructions.

Internal to the processor, however, instructions are executed dynamically, and
some results may not be available for many cycles; yet the hardware must behave
as if each instruction is executed sequentially.

This section describes various conditions and dependencies that can arise from
them in pipeline operation, including:

• instruction dependencies

• execution order and stalling

• branch prediction and speculative execution

• resolving operand dependencies

• resolving exception dependencies

Instruction Dependencies

Each instruction depends on all previous instructions which produced its
operands, because it cannot begin execution until those operands become valid.
These dependencies determine the order in which instructions can be executed.

Execution Order and Stalling

The actual execution order depends on the processor’s organization; in a typical
pipelined processor, instructions are executed only in program order. That is, the
next sequential instruction may begin execution during the next cycle, if all of its
operands are valid. Otherwise, the pipeline stalls until the operands do become
valid.

Since instructions execute in order, stalls usually delay all subsequent
instructions.

A clever compiler can improve performance by re-arranging instructions to
reduce the frequency of these stall cycles.

• In an in-order superscalar processor, several consecutive instructions may
begin execution simultaneously, if all their operands are valid, but the
processor stalls at any instruction whose operands are still busy.

• In an out-of-order superscalar processor, such as the R10000, instructions
are decoded and stored in queues. Each instruction is eligible to begin
execution as soon as its operands become valid, independent of the
original instruction sequence. In effect, the hardware rearranges
instructions to keep its execution units busy. This process is called
dynamic issuing.

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 14 Chapter 1.

Branch Prediction and Speculative Execution

Although one or more instructions may begin execution during each cycle, each
instruction takes several (or many) cycles to complete. Thus, when a branch
instruction is decoded, its branch condition may not yet be known. However, the
R10000 processor can predict whether the branch is taken, and then continue
decoding and executing subsequent instructions along the predicted path.

Errata

When a branch prediction is wrong, the processor must back up to the original
branch and take the other path. This technique is called speculative execution.
Whenever the processor discovers a mispredicted branch, it aborts all
speculatively-executed instructions and restores the processor’s state to the state it
held before the branch. However, the cache state is not restored (see the section
titled “Side Effects of Speculative Execution”).

Branch prediction can be controlled by the CP0 Diagnostic register. Branch Likely
instructions are always predicted as taken, which also means the instruction in the
delay slot of the Branch Likely instruction will always be speculatively executed.
Since the branch predictor is neither used nor updated by branch-likely
instructions, these instructions do not affect the prediction of “normal” conditional
branches.

Resolving Operand Dependencies

Operands include registers, memory, and condition bits. Each operand type has
its own dependency logic. In the R10000 processor, dependencies are resolved in
the following manner:

• register dependencies are resolved by using register renaming and the
associative comparator circuitry in the queues

• memory dependencies are resolved in the Load/Store Unit

• condition bit dependencies are resolved in the active list and
instruction queues

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

Introduction to the R10000 Processor 15

Resolving Exception Dependencies

In addition to operand dependencies, each instruction is implicitly dependent
upon any previous instruction that generates an exception. Exceptions are caused
whenever an instruction cannot be properly completed, and are usually due to
either an untranslated virtual address or an erroneous operand.

The processor design implements precise exceptions, by:

• identifying the instruction which caused the exception

• preventing the exception-causing instruction from graduating

• aborting all subsequent instructions

Thus, all register values remain the same as if instructions were executed singly.
Effectively, all previous instructions are completed, but the faulting instruction
and all subsequent instructions do not modify any values.

Strong Ordering

A multiprocessor system that exhibits the same behavior as a uniprocessor system
in a multiprogramming environment is said to be strongly ordered.

The R10000 processor behaves as if strong ordering is implemented, although it
does not actually execute all memory operations in strict program order.

In the R10000 processor, store operations remain pending until the store
instruction is ready to graduate. Thus, stores are executed in program order, and
memory values are precise following any exception.

For improved performance however, cached load operations my occur in any
order, subject to memory dependencies on pending store instructions. To
maintain the appearance of strong ordering, the processor detects whenever the
reordering of a cached load might alter the operation of the program, backs up,
and then re-executes the affected load instructions. Specifically, whenever a
primary data cache block is invalidated due to an external coherency request, its
index is compared with all outstanding load instructions. If there is a match and
the load has been completed, the load is prevented from graduating. When it is
ready to graduate, the entire pipeline is flushed, and the processor is restored to
the state it had before the load was decoded.

An uncached or uncached accelerated load or store instruction is executed when
the instruction is ready to graduate. This guarantees strong ordering for
uncached accesses.

Since the R10000 processor behaves as if it implemented strong ordering, a
suitable system design allows the processor to be used to create a shared-memory
multiprocessor system with strong ordering.

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 16 Chapter 1.

An Example of Strong Ordering

Given that locations X and Y have no particular relationship—that is, they are not
in the same cache block—an example of strong ordering is as follows:

• Processor A performs a store to location X and later executes a load
from location Y.

• Processor B performs a store to location Y and later executes a load
from location X.

The two processors are running asynchronously, and the order of the above two
sequences is unknown.

For the system to be strongly ordered, either processor A must load the new value
of Y, or processor B must load the new value of X, or both processors A and B must
load the new values of Y and X, respectively, under all conditions.

If processors A and B both load old values of Y and X, respectively, under any
conditions, the system is not strongly ordered.

New Value Strongly
OrderedProcessor A Processor B

No No No

Yes No Yes

No Yes Yes

Yes Yes Yes

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

Introduction to the R10000 Processor 17

1.6 R10000 Pipelines
This section describes the stages of the superscalar pipeline.

Instructions are processed in six partially-independent pipelines, as shown in
Figure 1-4. The Fetch pipeline reads instructions from the instruction cache†,
decodes them, renames their registers, and places them in three instruction
queues. The instruction queues contain integer, address calculate, and floating-
point instructions. From these queues, instructions are dynamically issued to the
five pipelined execution units.

Stage 1

In stage 1, the processor fetches four instructions each cycle, independent of their
alignment in the instruction cache — except that the processor cannot fetch across
a 16-word cache block boundary. These words are then aligned in the 4-word
Instruction register.

If any instructions were left from the previous decode cycle, they are merged with
new words from the instruction cache to fill the Instruction register.

Stage 2

In stage 2, the four instructions in the Instruction register are decoded and
renamed. (Renaming determines any dependencies between instructions and
provides precise exception handling.) When renamed, the logical registers
referenced in an instruction are mapped to physical registers. Integer and floating-
point registers are renamed independently.

A logical register is mapped to a new physical register whenever that logical
register is the destination of an instruction. Thus, when an instruction places a
new value in a logical register, that logical register is renamed (mapped) to a new
physical register, while its previous value is retained in the old physical register.

As each instruction is renamed, its logical register numbers are compared to
determine if any dependencies exist between the four instructions decoded
during this cycle. After the physical register numbers become known, the
Physical Register Busy table indicates whether or not each operand is valid. The
renamed instructions are loaded into integer or floating-point instruction queues.

Only one branch instruction can be executed during stage 2. If the instruction
register contains a second branch instruction, this branch is not decoded until the
next cycle.

The branch unit determines the next address for the Program Counter; if a branch
is taken and then reversed, the branch resume cache provides the instructions to
be decoded during the next cycle.

† The processor checks only the instruction cache during an instruction fetch; it does
not check the data cache.

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 18 Chapter 1.

Stage 3

In stage 3, decoded instructions are written into the queues. Stage 3 is also the start
of each of the five execution pipelines.

Stages 4-6

In stages 4 through 6, instructions are executed in the various functional units.
These units and their execution process are described below.

Floating-Point Multiplier (3-stage Pipeline)

Single- or double-precision multiply and conditional move operations are
executed in this unit with a 2-cycle latency and a 1-cycle repeat rate. The
multiplication is completed during the first two cycles; the third cycle is used to
pack and transfer the result.

Floating-Point Divide and Square-Root Units

Single- or double-precision division and square-root operations can be executed in
parallel by separate units. These units share their issue and completion logic with
the floating-point multiplier.

Floating-Point Adder (3-stage Pipeline)

Single- or double-precision add, subtract, compare, or convert operations are
executed with a 2-cycle latency and a 1-cycle repeat rate. Although a final result is
not calculated until the third pipeline stage, internal bypass paths set a 2-cycle
latency for dependent add or multiply instructions.

Integer ALU1 (1-stage Pipeline)

Integer add, subtract, shift, and logic operations are executed with a 1-cycle latency
and a 1-cycle repeat rate. This ALU also verifies predictions made for branches
that are conditional on integer register values.

Integer ALU2 (1-stage Pipeline)

Integer add, subtract, and logic operations are executed with a 1-cycle latency and
a 1-cycle repeat rate. Integer multiply and divide operations take more than one
cycle.

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

Introduction to the R10000 Processor 19

Address Calculation and Translation in the TLB

A single memory address can be calculated every cycle for use by either an integer
or floating-point load or store instruction. Address calculation and load
operations can be calculated out of program order.

Errata

The calculated address is translated from a 44-bit virtual address into a 40-bit
physical address using a translation-lookaside buffer. The TLB contains 64
entries, each of which can translate two pages. Each entry can select a page size
ranging from 4 Kbytes to 16 Mbytes, inclusive, in powers of 4, as shown in Figure
1-6.

Figure 1-6 TLB Page Sizes

Load instructions have a 2-cycle latency if the addressed data is already within the
data cache.

Store instructions do not modify the data cache or memory until they graduate.

4 Kbytes

212Exponent

16 Kbytes

214

64 Kbytes

216

256 Kbytes

218

1 Mbyte

220

4 Mbytes

222

16 Mbytes

224

VA(11) VA(13) VA(15) VA(17) VA(19) VA(21) VA(23)

Page Size

Virtual address

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 20 Chapter 1.

1.7 Implications of R10000 Microarchitecture on Software
The R10000 processor implements the MIPS architecture by using the following
techniques to improve throughput:

• superscalar instruction issue

• speculative execution

• non-blocking caches

These microarchitectural techniques have special implications for compilation and
code scheduling.

Superscalar Instruction Issue

The R10000 processor has parallel functional units, allowing up to four
instructions to be fetched and up to five instructions to be issued or completed
each cycle. An ideal code stream would match the fetch bandwidth of the
processor with a mix of independent instructions to keep the functional units as
busy as possible.

To create this ideal mix, every cycle the hardware would select one instruction
from each of the columns below. (Floating-point divide, floating-point square
root, integer multiply and integer divide cannot be started on each cycle.) The
processor can look ahead in the code, so the mix should be kept close to the ideal
described below.

Data dependencies are detected in hardware, but limit the degree of parallelism
that can be achieved. Compilers can intermix instructions from independent code
streams.

Column A Column B Column C Column D Column E

FPadd FP mul FPload add/sub add/sub

FPdiv FPstore shift mul

FPsqrt load branch div

store logical logical

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

Introduction to the R10000 Processor 21

Speculative Execution

Speculative execution increases parallelism by fetching, issuing, and completing
instructions even in the presence of unresolved conditional branches and possible
exceptions. Following are some suggestions for increasing program efficiency:

• Compilers should reduce the number of branches as much as possible

• “Jump Register” instructions should be avoided.

• Aggressive use of the new integer and floating point conditional move
instructions is recommended.

• Branch prediction rates may be improved by organizing code so that
each branch goes the same direction most of the time, since a branch
that is taken 50% of the time has higher average cost than one taken
90% of the time. The MIPS IV conditional move instructions may be
effective in improving performance by replacing unpredictable
branches.

Errata

Side Effects of Speculative Execution

To improve performance, R10000 instructions can be speculatively fetched and
executed. Side-effects are harmless in cached coherent operations; however there
are potential side-effects with non-coherent cached operations. These side-effects
are described in the sections that follow.

Speculatively fetched instructions and speculatively executed loads or stores to a
cached address initiate a Processor Block Read Request to the external interface if it
misses in the cache. The speculative operation may modify the cache state and/
or data, and this modification may not be reversed even if the speculation turns
out to be incorrect and the instruction is aborted.

Speculative Processor Block Read Request to an I/O Address

Accesses to I/O addresses often cause side-effects. Typically, such I/O addresses
are mapped to an uncached region and uncached reads and writes are made as
double/single/partial-word reads and writes (non-block reads and writes) in
R10000. Uncached reads and writes are guaranteed to be non-speculative.

However, if R10000 has a “garbage” value in a register, a speculative block read
request to an unpredictable physical address can occur, if it speculatively fetches
data due to a Load or Jump Register instruction specifying this register. Therefore,
speculative block accesses to load-sensitive I/O areas can present an unwanted
side-effect.

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 22 Chapter 1.

Unexpected Write Back Due to Speculative Store Instruction

When a Store instruction is speculated and the target address of the speculative
Store instruction is missing in the cache, the cache line is refilled and the state is
marked to be Dirty. However the refilled data may not be actually changed in the
cache if this store instruction is later aborted. This could present a side-effect in
cases such as the one described below:

• The processor is storing data sequentially to memory area A, using a
code-loop that includes Store and Cond.branch instructions.

• A DMA write operation is performed to memory area B.

• DMA area B is contiguous to the sequential storage area A.

• The DMA operation is noncoherent.

• The processor does not cache any lines of DMA area B.

If the processor and the DMA operations are performed in sequence, the following
could occur:

1. Due to speculative execution at the exit of the code-loop, the line of data
beyond the end of the memory area A — that is, the starting line of memory
area B — is refilled to the cache. This cache line is then marked Dirty.

2. The DMA operation starts writing noncoherent data into memory area B.

3. A cache line replacement is caused by later activities of the processor, in which
the cache line is written back to the top of area B. Thus, the first line of the
DMA area B is overwritten by old cache data, resulting in incorrect DMA
operation and data.

The OS can restrict the writable pages for each user process and so can prevent a
user process from interfering with an active DMA space. The kernel, on the other
hand, retains xkphys and kseg0 addresses in registers. There is no write protection
against the speculative use of the address values in these registers. User processes
which have pages mapped to physical spaces not in RAM may also have side-
effects. These side-effects can be avoided if DMA is coherent.

Speculative Instruction Fetch

The change in a cache line’s state due to a speculative instruction fetch is not
reversed if the speculation is aborted. This does not cause any problems visible to
the program except during a noncoherent memory operation. Then the following
side-effect exists: if a noncoherent line is changed to Clean Exclusive and this line is
also present in noncoherent space, the noncoherent data could be modified by an
external component and the processor would then have stale data.

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

Introduction to the R10000 Processor 23

Workarounds for Noncoherent Cached Systems

The suggestions presented below are not exhaustive; the solutions and trade-offs
are system dependent. Any one or more of the items listed below might be
suitable in a particular system, and testing and simulations should be used to
verify their efficacy.

1. The external agent can reject a processor block read request to any I/O location
in which a speculative load would cause an undesired affect. Rejection is
made by returning an external NACK completion response.

2. A serializing instruction such as a cache barrier or a CP0 instruction can be used
to prevent speculation beyond the point where speculative stores are allowed
to occur. This could be at the beginning of a basic block that includes
instructions that can cause a store with an unsafe pointer. (Stores to addresses
like stack-relative, global-pointer-relative and pointers to non-I/O memory
might be safe.) Speculative loads can also cause a side-effect. To make sure
there is no stale data in the cache as a result of undesired speculative loads,
portions of the cache referred by the address of the DMA read buffers could
be flushed after every DMA transfer from the I/O devices.

3. Make references to appropriate I/O spaces uncached by changing the cache
coherency attribute in the TLB.

4. Generally, arbitrary accesses can be controlled by mapping selected addresses
through the TLB. However, references to an unmapped cached xkphys region
could have hazardous affects on I/O. A solution for this is given below:

First of all, note that the xkphys region is hard-wired into cached and uncached
regions, however the cache attributes for the kseg0 region are programmed
through the Config register. Therefore, clear the KX bit (to a zero) and set (to
ones) the SX and UX bits in the Status register. This disables access to the
xkphys region and restricts access to only the User and Supervisor portions of
the 64-bit address space.

In general, the system needs either a coherent or a noncoherent protocol —
but not both. Therefore these cache attributes can be used by the external
hardware to filter accesses to certain parts of the kseg0 region. For instance, the
cache attributes for the kseg0 address space might be defined in the Config
register to be cache coherent while the cache attributes in the TLB for the rest of
virtual space are defined to be cached-noncoherent or uncached. The external
hardware could be designed to reject all cache coherent mode references to the
memory except to that prior-defined safe space in kseg0 within which there is
no possibility of an I/O DMA transfer. Then before the DMA read process
and before the cache is flushed for the DMA read buffers, the cache attributes
in the TLB for the I/O buffer address space are changed from noncoherent to
uncached. After the DMA read, the access modes are returned to the cached-
noncoherent mode.

5. Just before load/store instruction, use a conditional move instruction which
tests for the reverse condition in the speculated branch, and make all aborted
branch assignments safe. An example is given below:

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 24 Chapter 1.

bne r1, r0, label

movn ra, r0, r1 # test to see if r1 != 0; if r1 != 0 then branch

 # is mispredicted; move safe address (r0)
 # into ra

ld r4, 0 (ra) # Without the previous movn, this lld
 # could create damaging read.

label: -----

In the above example, without the MOVN the read to the address in register
ra could be speculatively executed and later aborted. It is possible that this
load could be premature and thus damaging. The MOVN guarantees that if
there is a misprediction (r1 is not equal to 0) ra will be loaded with an address
to which a read will not be damaging.

6. The following is similar to the conditional-move example given above, in that
it protects speculation only for a single branch, but in some instances it may be
more efficient than either the conditional move or the cache barrier
workarounds.

This workaround uses the fact that branch-likely instructions are always
predicted as taken by the R10000. Thus, any incorrect speculation by the
R10000 on a branch-likely always occurs on a taken path. Sample code is:

beql rx, r1, label
nop
sw r2, 0x0(r1)

label: -----

The store to r1 will never be to an address referred to by the content of rx,
because the store will never be executed speculatively. Thus, the address
referred to by the content of rx is protected from any spurious write-backs.

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

Introduction to the R10000 Processor 25

This workaround is most useful when the branch is often taken, or when there
are few instructions in the protected block that are not memory operations.
Note that no instructions in a block following a branch-likely will be initiated
by speculation on that branch; however, in the case of a serial instruction
workaround, only memory operations are prevented from speculative
initiation. In the case of the conditional-move workaround, speculative
initiation of all instructions continues unimpeded. Also, similar to the
conditional-move workaround, this workaround only protects fall-through
blocks from speculation on the immediately preceding branch. Other
mechanisms must be used to ensure that no other branches speculate into the
protected block. However, if a block that dominates† the fall-through block can
be shown to be protected, this may be sufficient. Thus, if block (a) dominates
block (b), and block (b) is the fall-through block shown above, and block (a) is
the immediately previous block in the program (i.e., only the single
conditional branch that is being replaced intervenes between (a) and (b)), then
ensuring that (a) is protected by serial instruction means a branch-likely can
safely be used as protection for (b).

Nonblocking Caches

As processor speed increases, the processor’s data latency and bandwidth
requirements rise more rapidly than the latency and bandwidth of cost-effective
main memory systems. The memory hierarchy of the R10000 processor tries to
minimize this effect by using large set-associative caches and higher bandwidth
cache refills to reduce the cost of loads, stores, and instruction fetches. Unlike the
R4400, the R10000 processor does not stall on data cache misses, instead defers
execution of any dependent instructions until the data has been returned and
continues to execute independent instructions (including other memory
operations that may miss in the cache). Although the R10000 allows a number of
outstanding primary and secondary cache misses, compilers should organize
code and data to reduce cache misses. When cache misses are inevitable, the data
reference should be scheduled as early as possible so that the data can be fetched
in parallel with other unrelated operations.

As a further antidote to cache miss stalls, the R10000 processor supports prefetch
instructions, which serve as hints to the processor to move data from memory into
the secondary and primary caches when possible. Because prefetches do not
cause dependency stalls or memory management exceptions, they can be
scheduled as soon as the data address can be computed, without affecting
exception semantics. Indiscriminate use of prefetch instructions can slow
program execution because of the instruction-issue overhead, but selective use of
prefetches based on compiler miss prediction can yield significant performance
improvement for dense matrix computations.

† In compiler parlance, block (a) dominates block (b) if and only if every time block (b)
is executed, block (a) is executed first. Note that block (a) does not have to
immediately precede block (b) in execution order; some other block may intervene.

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 26 Chapter 1.

1.8 R10000-Specific CPU Instructions
This section describes the processor-specific implementations of the following
instructions:

• PREF

• LL/SC

• SYNC

Chapter 14, the section titled “CP0 Instructions,” describes the CP0-specific
instructions, and Chapter 15, the section titled “FPU Instructions,” describes the
FPU-specific instructions.

PREF

In the R1000 processor, the Prefetch instruction, PREF, attempts to fetch data into
the secondary and primary data caches. The action taken by a Prefetch instruction
is controlled by the instruction hint field, as decoded in Table 1-1.

Table 1-1 PREF Instruction Hint Field

For a “store” Prefetch, an Exclusive copy of the cache block must be obtained, in
order that it may be written.

Hint Value Name of Hint Action Taken

0 Load Prefetch data into cache LRU way

1 Store Prefetch data into cache LRU way

2-3 undefined

4 load_streamed Prefetch data into cache way 0

5 store_streamed Prefetch data into cache way 0

6 load_retained Prefetch data into cache way 1

7 store_retained Prefetch data into cache way 1

8-31 undefined

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

Introduction to the R10000 Processor 27

LL/SC

Load Linked and Store Conditional instructions are used together to implement a
memory semaphore. Each LL/SC sequence has three sections:

1. The LL loads a word from memory.

2. A short sequence of instructions checks or modifies this word. This sequence
must not contain any of the events listed below, or the Store Conditional will
fail:

• exception

• execution of ERET

• load instruction

• store instruction

• SYNC instruction

• CACHE instruction

• PREF instruction

• external intervention exclusive or invalidate to the secondary cache
block containing the linked address

3. The SC stores a new value into the memory word, unless the new value has
been modified. If the word has not been modified, the store succeeds and a 1
is stored in the destination register. Otherwise the Store Conditional fails,
memory is not modified, and a 0 is loaded into the destination register. Since
the instruction format has only a single field to select a data register (rt), this
destination register is the same as the register which was stored.

Load Linked and Store Conditional instructions (LL, LLD, SC, and SCD) do not
implicitly perform SYNC operations in the R10000 processor.

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 28 Chapter 1.

SYNC

The SYNC instruction is implemented in a “lightweight” manner: after decoding
a SYNC instruction, the processor continues to fetch and decode further
instructions. It is allowed to issue load and store instructions speculatively and
out-of-order, following a SYNC.

The R10000 processor only allows a SYNC instruction to graduate when the
following conditions are met:

• all previous instructions have been successfully completed

• the uncached buffer does not contain any uncached stores

• the address cycle of a processor double/single/partial-word write
request resulting from an uncached store was not issued to the System
interface in any of the prior three SysClk cycles

• the SysGblPerf* signal is asserted

A SYNC instruction is not prevented from graduating if the uncached buffer
contains any uncached accelerated stores.

1.9 Performance
As it executes programs, the R10000 superscalar processor performs many
operations in parallel. Instructions can also be executed out of order. Together,
these two facts greatly improve performance, but they also make it difficult to
predict the time required to execute any section of a program, since it often
depends on the instruction mix and the critical dependencies between
instructions.

The processor has five largely independent execution units, each of which are
individualized for a specific class of instructions. Any one of these units may limit
processor performance, even as the other units sit idle. If this occurs, instructions
which use the idle units can be added to the program without adding any
appreciable delay.

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

Introduction to the R10000 Processor 29

User Instruction Latency and Repeat Rate

Table 1-2 shows the latencies and repeat rates for all user instructions executed in
ALU1, ALU2, Load/Store, Floating-Point Add and Floating-Point Multiply
functional units (definitions of latency and repeat rate are given in the Glossary).
Kernel instructions are not included, nor are control instructions not issued to
these execution units.

Table 1-2 Latencies and Repeat Rates for User Instructions

Instruction Type Execution Unit Latency
Repeat

Rate
Comment

Integer Instructions
Add/Sub/Logical/Set ALU 1/2 1 1
MF/MT HI/LO ALU 1/2 1 1
Shift/LUI ALU 1 1 1
Cond. Branch Evaluation ALU 1 1 1
Cond. Move ALU 1 1 1
MULT ALU 2 5/6 6 Latency relative to Lo/Hi
MULTU ALU 2 6/7 7 Latency relative to Lo/Hi
DMULT ALU 2 9/10 10 Latency relative to Lo/Hi
DMULTU ALU 2 10/11 11 Latency relative to Lo/Hi
DIV/DIVU ALU 2 34/35 35 Latency relative to Lo/Hi
DDIV/DDIVU ALU 2 66/67 67 Latency relative to Lo/Hi
Load (not include loads to CP1) Load/Store 2 1 Assuming cache hit
Store Load/Store - 1 Assuming cache hit

Floating-Point Instructions
MTC1/DMTC1 ALU 1 3 1
Add/Sub/Abs/Neg/Round/
Trunc/Ceil/Floor/C.cond

FADD 2 1

CVT.S.W/CVT.S.L FADD 4 2 Repeat rate is on average
CVT (others) FADD 2 1
Mul FMPY 2 1
MFC1/DMFC1 FMPY 2 1
Cond. Move/Move FMPY 2 1
DIV.S/RECIP.S FMPY 12 14
DIV.D/RECIP.D FMPY 19 21
SQRT.S FMPY 18 20
SQRT.D FMPY 33 35
RSQRT.S FMPY 30 20
RSQRT.D FMPY 52 35

MADD FADD+FMPY 2/4 1
Latency is 2 only if the result is used as the
operand specified by fr of another MADD

LWC1/LDC1/LWXC1/LDXC1 LoadStore 3 1 Assuming cache hit

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 30 Chapter 1.

Please note the following about Table 1-2:

• For integer instructions, conditional trap evaluation takes a single
cycle, like conditional branches.

• Branches and conditional moves are not conditionally issued.

• The repeat rate above for Load/Store does not include Load Link
and Store Conditional.

• Prefetch instruction is not included here.

• The latency for multiplication and division depends upon the next
instruction.

• An instruction using register Lo can be issued one cycle earlier than
one using Hi.

• For floating-point instructions, CP1 branches are evaluated in the
Graduation Unit.

• CTC1 and CFC1 are not included in this table.

• The repeat pattern for the CVT.S.(W/L) is “I I x x I I x x ...”; the
repeat rate given here, 2, is the average.

• The latency for MADD instructions is 2 cycles if the result is used
as the operand specified by fr of the second MADD instruction.

• Load Linked and Store Conditional instructions (LL, LLD, SC, and
SCD) do not implicitly perform SYNC operations in the R10000.
Any of the following events that occur between a Load Linked and
a Store Conditional will cause the Store Conditional to fail: an
exception; execution of an ERET, a load, a store, a SYNC, a
CacheOp, a prefetch, or an external intervention/invalidation on
the block containing the linked address. Instruction cache misses
do not cause the Store Conditional to fail.

• Up to four branches can be evaluated at one cycle.†

For more information about implementations of the LL, SC, and SYNC
instructions, please see the section titled, R10000-Specific CPU Instructions, in this
chapter.

† Only one branch can be decoded at any particular cycle. Since each conditional
branch is predicted, the real direction of each branch must be “evaluated.” For
example,

beq r2,r3,L1
nop

A comparison of r2 and r3 is made to determine whether the branch is taken or not.
If the branch prediction is correct, the branch instruction is graduated. Otherwise,
the processor must back out of the instruction stream decoded after this branch, and
inform the IFetch to fetch the correct instructions. The evaluation is made in the
ALU for integer branches and in the Graduation Unit for floating-point branches. A
single integer branch can be evaluated during any cycle, but there may be up to 4
condition codes waiting to be evaluated for floating-point branches. Once the
condition code is evaluated, all dependant FP branches can be evaluated during the
same cycle.

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

Introduction to the R10000 Processor 31

Other Performance Issues

Table 1-2 shows execution times within the functional units only. Performance
may also be affected by instruction fetch times, and especially by the execution of
conditional branches.

In an effort to keep the execution units busy, the processor predicts branches and
speculatively executes instructions along the predicted path. When the branch is
predicted correctly, this significantly improves performance: for typical
programs, branch prediction is 85% to 90% correct. When a branch is
mispredicted, the processor must discard instructions which were speculatively
fetched and executed. Usually, this effort uses resources which otherwise would
have been idle, however in some cases speculative instructions can delay previous
instructions.

Cache Performance

The execution of load and store instructions can greatly affect performance. These
instructions are executed quickly if the required memory block is contained in the
primary data cache, otherwise there are significant delays for accessing the
secondary cache or main memory. Out-of-order execution and non-blocking
caches reduce the performance loss due to these delays, however.

The latency and repeat rates for accessing the secondary cache are summarized in
Table 1-3. These rates depend on the ratio of the secondary cache’s clock to the
processor’s internal pipeline clock. The best performance is achieved when the
clock rates are equal; slower external clocks add to latency and repeat times.

The primary data cache contains 8-word blocks, which are refilled using 2-cycle
transfers from the quadword-wide secondary cache. Latency runs to the time in
which the processor can use the addressed data.

The primary instruction cache contains 16-word blocks, which are refilled using
4-cycle transfers.

Table 1-3 Latency and Repeat Rates for Secondary Cache Reads

‡ Assumes the cache way was correctly predicted, and there are no conflicting requests.

* Repeat rate = PClk cycles needed to transfer 2 quadwords (data cache) or 4 quadwords
(instruction cache). Rate is valid for bursts of 2 to 3 cache misses; if more than three cache
misses in a row, there can be a 1-cycle “bubble.”

† Clock synchronization causes variability.

SCClkDiv
Mode

Latency‡

(PClk Cycles)

Repeat
Rate*

(PClk Cycles)

1 6 2 (data cache)
4 (instruction cache)

1.5 8-10† 3 (data cache)
6 (instruction cache)

2 9-12† 4 (data cache)
8 (instruction cache)

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 32 Chapter 1.

The processor mitigates access delays to the secondary cache in the following
ways:

• The processor can execute up to 16 load and store instructions
speculatively and out-of-order, using non-blocking primary and
secondary caches. That is, it looks ahead in its instruction stream to
find load and store instructions which can be executed early; if the
addressed data blocks are not in the primary cache, the processor
initiates cache refills as soon as possible.

• If a speculatively executed load initiates a cache refill, the refill is
completed even if the load instruction is aborted. It is likely the data
will be referenced again.

• The data cache is interleaved between two banks, each of which
contains independent tag and data arrays. These four sections can be
allocated separately to achieve high utilization. Five separate circuits
compete for cache bandwidth (address calculate, tag check, load unit,
store unit, external interface.)

• The external interface gives priority to its refill and interrogate
operations. The processor can execute tag checks, data reads for load
instructions, or data writes for store instructions. When the primary
cache is refilled, any required data can be streamed directly to waiting
load instructions.

• The external interface can handle up to four non-blocking memory
accesses to secondary cache and main memory.

Main memory typically has much longer latencies and lower bandwidth than the
secondary cache, which make it difficult for the processor to mitigate their effect.
Since main memory accesses are non-blocking, delays can be reduced by
overlapping the latency of several operations. However, although the first part of
the latency may be concealed, the processor cannot look far enough ahead to hide
the entire latency.

Programmers may use pre-fetch instructions to load data into the caches before it
is needed, greatly reducing main memory delays for programs which access
memory in a predictable sequence.

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 199633

2. System Configurations

The R10000 processor provides the capability for a wide range of computer
systems; this chapter describes some of the uni- and multiprocessor alternatives.

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 34 Chapter 2.

2.1 Uniprocessor Systems
In a typical uniprocessor system, the System interface of the R10000 processor
connects in a point-to-point fashion with an external agent. Such a system is
shown in Figure 2-1. The external agent is typically an ASIC that provides a
gateway to the memory and I/O subsystems; in fact, this ASIC may incorporate
the memory controller itself.

If hardware I/O coherency is desired, the external agent may use the
multiprocessor primitives provided by the processor to maintain cache coherency
for interventions and invalidations. External duplicate tags can be used by the
external agent to filter external coherency requests.

Figure 2-1 Uniprocessor System Organization

R10000

Secondary
Cache

External
Agent

Secondary Cache Interface

System Interface

R10000

Secondary
Cache

External
Agent

To Other System Resources

Duplicate
Tags

Secondary Cache Interface

System Interface

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

System Configurations 35

2.2 Multiprocessor Systems
Two types of multiprocessor systems can be implemented with R10000 processor:

• a dedicated external agent interfaces with each R10000 processor

• up to four R10000 processors and an external agent reside on a cluster
bus

Multiprocessor Systems Using Dedicated External Agents

A multiprocessor system may be created with R10000 processors by providing a
dedicated external agent for each processor; such a system is shown in Figure 2-2.
The external agent provides a path between the processor System interface and
some type of coherent interconnect. In such a system, the processor provides
support for three coherency schemes:

• snoopy-based

• snoopy-based with external duplicate tags and control

• directory-based with external directory structure and control

Figure 2-2 Multiprocessor System Organization using Dedicated External Agents

R10000

Secondary
Cache

External
Agent

Secondary Cache Interface

System Interface

R10000

Secondary
Cache

External
Agent

Secondary Cache Interface

System Interface

Coherent Interconnect

To Other System Resources

R10000

Secondary
Cache

External
Agent

Duplicate
Tags

Secondary Cache Interface

System Interface

R10000

Secondary
Cache

External
Agent

Duplicate
Tags

Secondary Cache Interface

System Interface

Directory
Structure

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 36 Chapter 2.

Multiprocessor Systems Using a Cluster Bus

A multiprocessor system may be created with R10000 processors by using a cluster
bus configuration. Such a system is shown in Figure 2-3. A cluster bus is created
by attaching the System interfaces of up to four R10000 processors with an external
agent (the cluster coordinator). The cluster coordinator is responsible for managing
the flow of data within the cluster.

This organization can reduce the number of ASICs and the pin count needed for a
small multiprocessor systems.

The cluster bus protocol supports three coherency schemes:

• snoopy-based

• snoopy-based with external duplicate tags and control

• directory-based with external directory structure and control

Figure 2-3 Multiprocessor System Organization Using the Cluster Bus

Directory
Structure

Cluster
Coordinator

R10000

Secondary
Cache

Secondary Cache Interface

System Interface

R10000

Secondary
Cache

Secondary Cache Interface

System Interface

Cluster
Coordinator

Duplicate
Tags

Cluster Bus

To Other System Resources

R10000

Secondary
Cache

Secondary Cache Interface

System Interface

R10000

Secondary
Cache

Secondary Cache Interface

System Interface

Directory
Structure

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 199637

3. Interface Signal Descriptions

This chapter gives a list and description of the interface signals.

The R10000 interface signals may be divided into the following groups:

• Power interface

• Secondary Cache interface

• System interface

• Test interface

The following sections present a summary of the external interface signals for each
of these groups. An asterisk (*) indicates signals that are asserted as a logical 0.

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 38 Chapter 3.

3.1 Power Interface Signals
Table 3-1 presents the R10000 processor power interface signals.

Table 3-1 Power Interface Signals

Errata

VrefByp description changed in Table 3-1.

Signal Name Description Type

Vcc Vcc core
Vcc for the core circuits. Input

VccQSC Vcc output driver secondary cache
Vcc for the secondary cache interface output drivers. Input

VccQSys Vcc output driver system
Vcc for the System interface output drivers. Input

VrefSC Voltage reference secondary cache
Voltage reference for the secondary cache interface input receivers. Input

VrefSys Voltage reference system
Voltage reference for the System interface input receivers. Input

VrefByp
Voltage reference bypass
This pin must be tied to Vss (preferably) or VrefSys, through at least a
100 ohm resistor.

Input

Vss Vss
Vss for the core circuits and output drivers. Input

VccPa Vcc PLL analog
Vcc for the PLL analog circuits. Input

VssPa Vss PLL analog
Vss for the PLL analog circuits. Input

VccPd Vcc PLL digital
Vcc for the PLL digital circuits. Input

VssPd Vss PLL digital
Vss for the PLL digital circuits. Input

DCOk
DC voltages are OK
The external agent asserts these two signals when Vcc,
VccQ[SC,Sys], Vref[SC,Sys], Vcc[Pa,Pd], and SysClk are stable.

Input

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

Interface Signal Descriptions 39

3.2 Secondary Cache Interface Signals

Errata

Table 3-2; description of SCBAddr(18:0) is revised. Table 3-2 presents the R10000
processor secondary cache interface signals.

Table 3-2 Secondary Cache Interface Signals

‡ All cache static RAM (SRAM) are synchronous SRAM (SSRAM).

Signal Name Description Type

SSRAM‡ Clock Signals

SCClk(5:0)
SCClk*(5:0)

Secondary cache clock
Duplicated complementary secondary cache clock outputs. Output

SSRAM Address Signals

SCAAddr(18:0)
SCBAddr(18:0)

Secondary cache address bus
SCBAddr is complementary SCAAddr 19-bit bus, which specifies the set
address of the secondary cache data and tag SSRAM that is to be accessed.

Output

SCTagLSBAddr
Secondary cache tag LSB address
Signal that specifies the least significant bit of the address for the secondary
cache tag SSRAM.

Output

SSRAM Data Signals

SCADWay
SCBDWay

Secondary cache data way
Duplicated signal that indicates the way of the secondary cache data SSRAM
that is to be accessed.

Output

SCData(127:0) Secondary cache data bus
128-bit bus to read/write cache data from/to secondary cache data SSRAM. Bidirectional

SCDataChk(9:0)
Secondary cache data check bus
A 10-bit bus used to read/write ECC and even parity from/to the secondary
cache data SSRAM.

Bidirectional

SCADOE*
SCBDOE*

Secondary cache data output enable
Duplicated signal that enables the outputs of the secondary cache data SSRAM. Output

SCADWr*
SCBDWr*

Secondary cache data write enable
Duplicated signal that enables writing the secondary cache data SSRAM. Output

SCADCS*
SCBDCS*

Secondary cache data chip select
Duplicated signal that enables the secondary cache data SSRAM. Output

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 40 Chapter 3.

Table 3-2 (cont.) Secondary Cache Interface Signals

Signal Name Description Type

SSRAM Tag Signals

SCTWay Secondary cache tag way
Signal indicating the way of the secondary cache tag SSRAM to be accessed. Output

SCTag(25:0) Secondary cache tag bus
A 26-bit bus to read/write cache tags from/to the secondary cache tag SSRAM. Bidirectional

SCTagChk(6:0) Secondary cache tag check bus
A 7-bit bus used to read/write ECC from/to the secondary cache tag SSRAM. Bidirectional

SCTOE* Secondary cache tag output enable
A signal that enables the outputs of the secondary cache tag SSRAM. Output

SCTWr* Secondary cache tag write enable
A signal that enables writing the secondary cache tag SSRAM. Output

SCTCS* Secondary cache tag chip select
A signal which enables the secondary cache tag SSRAM. Output

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

Interface Signal Descriptions 41

3.3 System Interface Signals
Table 3-3 presents the R10000 processor System interface signals.

Table 3-3 System Interface Signals

Signal Name Description Type

System Clock Signals

SysClk
SysClk*

System clock
Complementary system clock input. Input

SysClkRet
SysClkRet*

System clock return
Complementary system clock return output used for termination of the
system clock.

Output

System Arbitration Signals

SysReq*
System request
The processor asserts this signal when it wants to perform a processor
request and it is not already master of the System interface.

Output

SysGnt*
System grant
The external agent asserts this signal to grant mastership of the System
interface to the processor.

Input

SysRel*

System release
The master of the System interface asserts this signal for one SysClk cycle
to indicate that it will relinquish mastership of the System interface in the
following SysClk cycle.

Bidirectional

System Flow Control Signals

SysRdRdy*
System read ready
The external agent asserts this signal to indicate that it can accept
processor read and upgrade requests.

Input

SysWrRdy*
System write ready
The external agent asserts this signal to indicate that it can accept
processor write and eliminate requests.

Input

System Address/Data Bus Signals

SysCmd(11:0)
System command
A 12-bit bus for transferring commands between processor and the
external agent.

Bidirectional

SysCmdPar System command bus parity
Odd parity for the system command bus. Bidirectional

SysAD(63:0)
System address/data bus
A 64-bit bus for transferring addresses and data between R10000 and the
external agent.

Bidirectional

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 42 Chapter 3.

Table 3-3 (cont.) System Interface Signals

Signal Name Description Type

System State Bus Signals

SysADChk(7:0) System address/data check bus
An 8-bit ECC bus for the system address/data bus. Bidirectional

SysVal*

System valid
The master of the System interface asserts this signal when it is driving
valid information on the system command and system address/data
buses.

Bidirectional

SysState(2:0)
System state bus
A 3-bit bus used for issuing processor coherency state responses and also
additional status indications.

Output

SysStatePar System state bus parity
Odd parity for the system state bus. Output

SysStateVal*
System state bus valid
The processor asserts this signal for one SysClk cycle when issuing a
processor coherency state response on the system state bus.

Output

System Response Bus Signals

SysResp(4:0)
System response bus
A 5-bit bus used by the external agent for issuing external completion
responses.

Input

SysRespPar System response bus parity
Odd parity for the system response bus. Input

SysRespVal*
System response bus valid
The external agent asserts this signal for one SysClk cycle when issuing
an external completion response on the system response bus.

Input

System Miscellaneous Signals

SysReset* System reset
The external agent asserts this signal to reset the processor. Input

SysNMI*
System non-maskable interrupt
The external agent asserts this signal to indicate a non-maskable
interrupt.

Input

SysCorErr*
System correctable error
The processor asserts this signal for one SysClk cycle when a correctable
error is detected and corrected.

Output

SysUncErr*
System uncorrectable error
The processor asserts this signal for one SysClk cycle when an
uncorrectable tag error is detected.

Output

SysGblPerf*

System globally performed
The external agent asserts this signal to indicate that all processor
requests have been globally performed with respect to all external
agents.

Input

SysCyc*
System cycle
The external agent may use this signal to define a virtual System interface
clock in a hardware emulation environment.

Input

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

Interface Signal Descriptions 43

3.4 Test Interface Signals
Table 3-4 presents the R10000 processor test interface signals.

Errata

PLLDis and SelDVCO signal descriptions are revised in Table 3-4.

Table 3-4 Test Interface SignalsPLLDis

Signal Name Description Type

JTAG Signals

JTDI JTAG serial data input
Serial data input. Input

JTDO JTAG serial data output
Serial data output. Output

JTCK JTAG clock
Clock input. Input

JTMS JTAG mode select
Mode select input. Input

Miscellaneous Test Signals

TCA Testability control A (for manufacturing test only)
This signal must be tied to Vss, through a 100 ohm resistor. Input

TCB Testability control B (for manufacturing test only)
This signal must be tied to Vss, through a 100 ohm resistor. Input

PLLDis PLL disable (for manufacturing test only)
This signal must be tied to Vss through a 100 ohm resistor. Input

PLLRC PLL Control Node (for manufacturing test only)
There must be no connection made to this signal.

PLLSpare(1:4) These four pins must be tied to Vss.

Spare(1,3) These two pins must be tied to Vss, through a 100 ohm resistor.

TriState
Tristate Control
The system asserts this signal to tristate all outputs and input/
output pads except for SCClk, SCCLK*, and JTDO.

Input

SelDVCO Select differential VCO (for manufacturing test only)
This signal must be tied to Vcc. Input

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 44 Chapter 3.

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 199645

4. Cache Organization and Coherency

The processor implements a two-level cache structure consisting of separate
primary instruction and data caches and a joint secondary cache.

Each cache is two-way set associative and uses a write back protocol; that is, two
cache blocks are assigned to each set (as shown in Figure 4-1), and a cache store
writes data into the cache instead of writing it directly to memory. Some time later
this data is independently written to memory.

A write-invalidate cache coherency protocol (described later in this chapter) is
supported through a set of cache states and external coherency requests.

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 46 Chapter 4.

4.1 Primary Instruction Cache
The processor has an on-chip 32-Kbyte primary instruction cache (also referred to
simply as the instruction cache), which is a subset of the secondary cache.
Organization of the instruction cache is shown in Figure 4-1.

The instruction cache has a fixed block size of 16 words and is two-way set
associative with a least-recently-used (LRU) replacement algorithm.†

The instruction cache is indexed with a virtual address and tagged with a physical
address.

Figure 4-1 Organization of Primary Instruction Cache

Each instruction cache block is in one of the following two states:

• Invalid

• Valid

† The precise implementation of the LRU algorithm is affected by the speculative
execution of instructions.

150
Word Word

Tag 0
Data 0

Way 0 16 Kbytes

150
Word WordData 1

Way 1 16 Kbytes

Tag 1

Virtual
Index

Set

block

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

Cache Organization and Coherency 47

An instruction cache block can be changed from one state to the other as a result
of any one of the following events:

• a primary instruction cache read miss

• subset property enforcement

• any of various CACHE instructions

• external intervention exclusive and invalidate requests

These events are illustrated in Figure 4-2, which shows the primary instruction
cache state diagram.

Figure 4-2 Primary Instruction Cache State Diagram

CACHE Hit Invalidate (I, S)

CACHE Index Invalidate (I)
CACHE Index Store Tag (I)

Invalid Read hit

Legend:

Externally initiated action:
Internally initiated action:

Read miss

Valid

CACHE Index Store Tag (I)

Intervention exclusive hit
Invalidate hit

Subset enforcement

CACHE Index WriteBack Invalidate (S)

(I) Instruction cache
(S) Secondary cache

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 48 Chapter 4.

4.2 Primary Data Cache
The processor has an on-chip 32-Kbyte primary data cache (also referred to simply
as the data cache), which is a subset of the secondary cache. The data cache uses a
fixed block size of 8 words and is two-way set associative (that is, two cache blocks
are assigned to each set, as shown in Figure 4-3) with an LRU replacement
algorithm.†

Figure 4-3 Organization of Primary Data Cache

The data cache uses a write back protocol, which means a cache store writes data
into the cache instead of writing it directly to memory. Sometime later this data is
independently written to memory, as shown in Figure 4-4.

Figure 4-4 Write Back Protocol

Write back from the primary data cache goes to the secondary cache, and write
back from the secondary cache goes to main memory, through the system
interface. The primary data cache is written back to the secondary cache before the
secondary cache is written back to the system interface.

† The precise implementation of the LRU algorithm is affected by the speculative
execution of instructions.

70
Word Word

Tag 0
Data 0

Way 0 16 Kbytes

70
Word WordData 1

Way 1 16 Kbytes

Tag 1

Processor
Primary
Cache

write back Secondary
Cache

write back Main
Memory

Time

Virtual
Index

Set

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

Cache Organization and Coherency 49

The data cache is indexed with a virtual address and tagged with a physical
address. Each primary cache block is in one of the following four states:

• Invalid

• CleanExclusive

• DirtyExclusive

• Shared

A primary data cache block is said to be Inconsistent when the data in the primary
cache has been modified from the corresponding data in the secondary cache. The
primary data cache is maintained as a subset of the secondary cache where the
state of a block in the primary data cache always matches the state of the
corresponding block in the secondary cache.

A data cache block can be changed from one state to another as a result of any one
of the following events:

• primary data cache read/write miss

• primary data cache write hit

• subset enforcement

• a CACHE instruction

• external intervention shared request

• intervention exclusive request

• invalidate request

These events are illustrated in Figure 4-5, which shows the primary data cache
state diagram.

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 50 Chapter 4.

Figure 4-5 Primary Data Cache State Diagram

CACHE Index WriteBack Invalidate (D, S)
Subset enforcement

Invalid

Shared

Clean
Exclusive

Dirty
Exclusive

Read hit

Read hit
Write hit

W
rit

e
hi

t

Intervention shared hit

Intervention shared hit

Legend:

Externally initiated action:
Internally initiated action:

Read miss obtained CleanExclusive

Read miss obtained Shared

Invalidate hit
Intervention exclusive hit

Write hit and Upgrade ACK

CACHE Index Store Tag (D)

CACHE Index Store Tag (D)

Subset enforcement
Write miss
Read miss obtained DirtyExclusive

CACHE Index Store Tag (D)

CACHE Hit Invalidate (D, S)

Read hit

Intervention shared hit

CACHE Hit WriteBack Invalidate (D, S)

CACHE Index Store Tag (D)

(S) Secondary cache
(D) Data cache

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

Cache Organization and Coherency 51

4.3 Secondary Cache
The R10000 processor must have an external secondary cache, ranging in size
from 512 Kbytes to 16 Mbytes, in powers of 2, as set by the SCSize mode bit. The
SCBlkSize mode bit selects a block size of either 16 or 32 words.

The secondary cache is two-way set associative (that is, two cache blocks are
assigned to each set, as shown in Figure 4-6) with an LRU replacement algorithm.†

The secondary cache uses a write back protocol, which means a cache store writes
data into the cache instead of writing it directly to memory. Some time later this
data is independently written to memory.

The secondary cache is indexed with a physical address and tagged with a
physical address.

Figure 4-6 Organization of Secondary Cache

Each secondary cache block is in one of the following four states:

• Invalid

• CleanExclusive

• DirtyExclusive

• Shared

† The precise implementation of the LRU algorithm is affected by the speculative
execution of instructions.

0
Word Word

Tag 0
Data 0

Way 0 256 Kbytes to 8 Mbytes

0
Word WordData 1

Way 1 256 Kbytes to 8 Mbytes

Tag 17/15 7/15

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 52 Chapter 4.

A secondary cache block can be changed from one state to another as a result of
any of the following events:

• primary cache read/write miss

• primary cache write hit to a Shared or CleanExclusive block

• secondary cache read miss

• secondary cache write hit to a Shared or CleanExclusive block

• a CACHE instruction

• external intervention shared request

• intervention exclusive request

• invalidate request

These events are illustrated in Figure 4-7, which shows the secondary cache state
diagram.

Figure 4-7 Secondary Cache State Diagram

CACHE Index Store Tag (S)
CACHE Index WriteBack Invalidate (S)

Invalid

Shared

Clean
Exclusive

Dirty
Exclusive

Read hit

Read hit
Write hit

W
rit

e
hi

t

Intervention shared hit

Intervention shared hit

Legend:

Externally initiated action:
Internally initiated action:

Read miss obtained CleanExclusive

Read miss obtained Shared

Invalidate hit
Intervention exclusive hit

Write hit and Upgrade ACK

CACHE Hit Invalidate (S)

CACHE Index Store Tag (S)

Write miss
Read miss obtained DirtyExclusive
CACHE Index Store Tag (S)CACHE Index Store Tag (S)

CACHE Hit WriteBack Invalidate (S)

Read hit

Intervention shared hit

(S) Secondary cache

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

Cache Organization and Coherency 53

4.4 Cache Algorithms
The behavior of the processor when executing load and store instructions is
determined by the cache algorithm specified for the accessed address. The
processor supports five different cache algorithms:

• uncached

• cacheable noncoherent

• cacheable coherent exclusive

• cacheable coherent exclusive on write

• uncached accelerated

Cache algorithms are specified in three separate places, depending upon the
access:

• the cache algorithm for the mapped address space is specified on a
per-page basis by the 3-bit cache algorithm field in the TLB

• the cache algorithm for the kseg0 address space is specified by the 3-bit
K0 field of the CP0 Config register

• the cache algorithm for the xkphys address space is specified by
VA[61:59]

Table 4-1 presents the encoding of the 3-bit cache algorithm field used in the TLB;
EntryLo0 and EntryLo1 registers; CP0 Config register K0 field for the kseg0 address
space; and VA[61:59] for the xkphys address space.

Table 4-1 Cache Algorithm Field Encodings

Value Cache Algorithm

0 Reserved

1 Reserved

2 Uncached

3 Cacheable noncoherent

4 Cacheable coherent exclusive

5 Cacheable coherent exclusive on write

6 Reserved

7 Uncached accelerated

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 54 Chapter 4.

Descriptions of the Cache Algorithms

This section describes the cache algorithms listed in Table 4-1.

Uncached

Loads and stores under the Uncached cache algorithm bypass the primary and
secondary caches. They are issued directly to the System interface using processor
double/single/partial-word read or write requests.

Cacheable Noncoherent

Under the Cacheable noncoherent cache algorithm, load and store secondary cache
misses result in processor noncoherent block read requests. External agents
containing caches need not perform a coherency check for such processor requests.

Cacheable Coherent Exclusive

Under the Cacheable coherent exclusive cache algorithm, load and store secondary
cache misses result in processor coherent block read exclusive requests. Such
processor requests indicate to external agents containing caches that a coherency
check must be performed and that the cache block must be returned in an Exclusive
state.

Cacheable Coherent Exclusive on Write

The Cacheable coherent exclusive on write cache algorithm is similar to the Cacheable
coherent exclusive cache algorithm except that load secondary cache misses result in
processor coherent block read shared requests. Such processor requests indicate
to external agents containing caches that a coherency check must be performed
and that the cache block may be returned in either a Shared or Exclusive state.

Store hits to a Shared block result in a processor upgrade request. This indicates to
external agents containing caches that the block must be invalidated.

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

Cache Organization and Coherency 55

Uncached Accelerated

The R10000 processor implements a new cache algorithm, Uncached accelerated.
This allows the kernel to mark the TLB entries for certain regions of the physical
address space, or certain blocks of data, as uncached while signalling to the
hardware that data movement optimizations are permissible. This permits the
hardware implementation to gather a number of uncached writes together, either
a series of writes to the same address or sequential writes to all addresses in the
block, into an uncached accelerated buffer and then issue them to the system
interface as processor block write requests. The uncached accelerated algorithm
differs from the uncached algorithm in that block write gathering is not performed.

There is no difference between an uncached accelerated load and an uncached
load. Only word or doubleword stores can take advantage of this mode.

Stores under the Uncached accelerated cache algorithm bypass the primary and
secondary caches. Stores to identical or sequential addresses are gathered in the
uncached buffer, described in Chapter 6, the section titled “Uncached Buffer.”

Completely gathered uncached accelerated blocks are issued to the System
interface as processor block write requests. Incompletely gathered uncached
accelerated blocks are issued to the System interface using processor double/
single-word write requests; this is also described in Chapter 6, the section titled
“Uncached Buffer.”

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 56 Chapter 4.

4.5 Relationship Between Cached and Uncached Operations
Uncached and uncached accelerated load and store instructions are executed in
order, and non-speculatively. Such accesses are buffered in the uncached buffer
by the processor until they can be issued to the System interface.

All uncached and uncached accelerated accesses retain program order within the
uncached buffer. The processor continues issuing cached accesses while uncached
accesses are queued in the uncached buffer.

NOTE: Cached accesses do not probe the uncached buffer for conflicts.

Buffered uncached stores prevent a SYNC instruction from graduating. However
buffered uncached accelerated stores do not prevent a SYNC instruction from
graduating. The processor continues issuing cached accesses speculatively and
out of order beyond a SYNC instruction that is waiting to graduate.

An uncached load may be used to guarantee that the uncached buffer is flushed of
all uncached and uncached accelerated accesses.

A SYNC instruction and the SysGblPerf* signal may be used to guarantee that all
cache accesses and uncached stores have been globally performed as described in
Chapter 6, the section titled “SysGblPerf* Signal.”

An uncached load followed by a SYNC instruction may be used to guarantee that
all cache accesses, uncached accesses, and uncached accelerated accesses have
been globally performed.

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

Cache Organization and Coherency 57

4.6 Cache Algorithms and Processor Requests
The cache algorithm determines the type of processor request generated for
secondary cache load misses, secondary cache store misses, and store hits.
Table 4-2 presents the relationship between the cache algorithm and processor
requests.

Table 4-2 Cache Algorithms and Processor Requests

‡ Should not occur under normal circumstances. Most systems return the Exclusive state for a cacheable noncoherent line; therefore, the Shared
state is not normal.

Cache Algorithm Load Miss Store Miss Store Hit

Uncached Double/single/partial-word
read

Double/single/partial-
word write NA

Cacheable noncoherent Noncoherent block read Noncoherent block read Upgrade if Shared‡

Cacheable coherent
exclusive

Coherent block read
exclusive

Coherent block read
exclusive Upgrade if Shared*

Cacheable coherent
exclusive on write Coherent block read shared Coherent block read

exclusive Upgrade if Shared

Uncached accelerated Double/single/partial-word
read

Gather identical or
sequential double/single-
word stores in the uncached
buffer. Block write for
completely gathered blocks.
Double/single-word write
for incompletely gathered
blocks. Partial-word write
for partial-word stores.

NA

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 58 Chapter 4.

4.7 Cache Block Ownership
The processor requires cache blocks to have a single owner at all times. The owner
is responsible for providing the current contents of the cache block to any
requestor.

The processor uses the following ownership rules:

• The processor assumes ownership of a cache block if the state of the
cache block becomes DirtyExclusive. For a processor block read
request, the processor assumes ownership of the block after receiving
the last doubleword of a DirtyExclusive external block data response
and an external ACK completion response. For a processor upgrade
request, the processor assumes ownership of the block after receiving
an external ACK completion response.

• The processor gives up ownership of a cache block if the state of the
cache block changes to Invalid, CleanExclusive, or Shared.

• CleanExclusive and Shared cache blocks are always considered to be
owned by memory.

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 199659

5. Secondary Cache Interface

The processor supports a mandatory secondary cache by providing an internal
secondary cache controller with a dedicated secondary cache port.

The cache’s tag and data arrays each consist of an external bank of industry-
standard synchronous SRAM (SSRAM). This SSRAM must have registered inputs
and outputs, asynchronous output enables, and use the late write protocol (data is
expected one cycle after the address).

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 60 Chapter 5.

5.1 Tag and Data Arrays
The secondary cache consists of a 138-bit wide data array (128 data bits + 9 ECC
bits + 1 parity bit) and a 33-bit wide tag array (26 tag bits + 7 ECC bits), as shown
in Figure 5-1. ECC is supported for both the data and tag arrays to improve data
integrity.

Figure 5-1 Secondary Cache Data and Tag Array

The secondary cache is implemented as a two-way set associative, combined
instruction/data cache, which is physically addressed and physically tagged, as
described in Chapter 4, the section titled “Cache Organization and Coherency.”

Errata

The SCSize mode bits specify the secondary cache size; minimum secondary cache
size is 512 Kbytes and the maximum secondary cache size is 16 Mbytes, in power
of 2 (512 Kbytes, 1 Mbyte, 2 Mbytes, etc.).

The SCBlkSize mode bit specifies the secondary cache block size. When negated,
the block size is 16 words, and when asserted, the block size is 32 words.

10 Check Bits

26 Tag Bits

128 Data Bits

0127136

025

7 Check bits

32

Data
Array

Tag
Array

137

P ECC

ECC

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

Secondary Cache Interface 61

5.2 Secondary Cache Interface Frequencies
The secondary cache interface operates at the frequency of SCClk, which is
derived from PClk. The SCClkDiv mode bits select a PClk to SCClk divisor of 1,
1.5, 2, 2.5, or 3, using the formula described in Chapter 7, the section titled
“Secondary Cache Clock.”

Synchronization between the PClk and SCClk is performed internally and is
invisible to the system. The processor supplies six complementary copies of the
secondary cache clock on SCClk(5:0) and SCClk(5:0)*.

Errata

The outputs and inputs at this interface are triggered by an internal SCClk. The
relationship between the internal SCClk and the external SCClk[5:0]/SCClk[5:0]*
can be programmed during boot time by setting the SCClkTap mode bits (see the
section titled “Mode Bits” in Chapter 8 for detail on mode bits).

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 62 Chapter 5.

5.3 Secondary Cache Indexing
The secondary cache data array width is one quadword, and therefore PA(3:0),
which specify a byte within a quadword, are unused by the Secondary Cache
interface.

Indexing the Data Array

Since the maximum secondary cache size is 16 Mbytes (8 Mbytes per way), each
way requires a maximum of 23 bits to index a byte within a selected way, or 19 bits
to index a quadword within a way. Consequently, the processor supplies PA(22:4)
on SC(A,B)Addr(18:0) to index a quadword within a way. The processor selects a
secondary cache data way with the SC(A,B)DWay signal.

Table 5-1 presents the secondary cache data array index for each secondary cache
size; for instance, a 4 Mbyte cache uses the 17 address bits, PA(20:4) on
SC(A,B)Addr(16:0), concatenated with the way bit, SC(A,B)DWay, to index a
quadword within a 2 Mbyte way.

Table 5-1 Secondary Cache Data Array Index

SCSize
Mode
Bits

Secondary
Cache Size

Secondary Cache Data Array Index
Physical

Address Bits
Used

0 512 Kbyte SC(A,B)DWay || SC(A,B)Addr(13:0) PA(17:4)

1 1 Mbyte SC(A,B)DWay || SC(A,B)Addr(14:0) PA(18:4)

2 2 Mbyte SC(A,B)DWay || SC(A,B)Addr(15:0) PA(19:4)

3 4 Mbyte SC(A,B)DWay || SC(A,B)Addr(16:0) PA(20:4)

4 8 Mbyte SC(A,B)DWay || SC(A,B)Addr(17:0) PA(21:4)

5 16 Mbyte SC(A,B)DWay || SC(A,B)Addr(18:0) PA(22:4)

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

Secondary Cache Interface 63

Indexing the Tag Array

The processor supplies the secondary cache tag array’s least significant index bit
on SCTagLSBAddr to support two block sizes without system hardware changes.
This signal functions normally as a least significant index bit when the secondary
cache block size is 16 words. However, when the secondary cache block size is 32
words, this signal is always negated, since only half as many tags are required.
The processor supplies the secondary cache tag way on SCTWay.

Table 5-2 presents the secondary cache tag array index for each secondary cache
size; it shows each index is composed of a physical address loaded onto
SC(A,B)Addr(), concatenated with SCTWay and SCTagLSBAddr.

Table 5-2 Secondary Cache Tag Array Index

For a system design that only supports a secondary cache block size of 32 words,
the secondary cache tag array need not use SCTagLSBAddr as an index bit.

SCSize
Mode
Bits

Secondary
Cache Size

Secondary Cache Tag Array Index

0 512 Kbyte SCTWay || SC(A,B)Addr(13:3) || SCTagLSBAddr

1 1 Mbyte SCTWay || SC(A,B)Addr(14:3) || SCTagLSBAddr

2 2 Mbyte SCTWay || SC(A,B)Addr(15:3) || SCTagLSBAddr

3 4 Mbyte SCTWay || SC(A,B)Addr(16:3) || SCTagLSBAddr

4 8 Mbyte SCTWay || SC(A,B)Addr(17:3) || SCTagLSBAddr

5 16 Mbyte SCTWay || SC(A,B)Addr(18:3) || SCTagLSBAddr

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 64 Chapter 5.

5.4 Secondary Cache Way Prediction Table
The primary and secondary caches are two-way set associative. However, the
implementation of the secondary cache is different than the primary caches.

The primary caches read simultaneously from two separate tag arrays,
corresponding to each way in the cache, and then select the data based on the
result of two parallel tag compares.

The secondary cache does not use this implementation because it would either
require too many pins to read in two full copies of the data and tags, or add latency
to externally multiplex two banks of memory. Instead, a way prediction table is
used to determine which way to read from first.

The way prediction table is internal to the processor and has 8K one-bit entries,
each entry corresponding to a pair of secondary cache blocks. The bit entry
indicates which way of the addressed set has been most-recently used (MRU).
When the secondary cache is accessed, this prediction bit is used as an address bit;
thus the two ways in the secondary cache are shared in the same SSRAM bank.

The secondary cache way prediction table is indexed with a subset of 11 to 13 bits
of the physical address, based on both the secondary cache block size, and the
secondary cache size, as shown in Table 5-3. “0 || ” indicates a zero bit
concatenated to the address to pad the index out to a full 13-bits.

Table 5-3 Secondary Cache Way Prediction Table Index

SCSize
Mode Bits

Secondary Cache
Size

SCBlkSize
Mode Bit

Secondary Cache
Block Size

Secondary Cache
Way Prediction Table Index

0 512 Kbyte
0 16-word 0 || PA(17:6)

1 32-word 0 || 0 || PA(17:7)

1 1 Mbyte
0 16-word PA(18:6)

1 32-word 0 || PA(18:7)

2 to 5 2M to 16 Mbyte
0 16-word PA(18:6)

1 32-word PA(19:7)

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

Secondary Cache Interface 65

Three states are possible in the way prediction table:

• the desired data is in the predicted way

• the desired data is in the non-predicted way

• the desired data is not in the secondary cache

The tags for both ways are read “underneath” the data access cycles in order to
discern as rapidly as possible which of these states are valid. This reading is
possible because it takes two accesses to read a primary data block (8 words) and
4 cycles to read a primary instruction block (16 words); thus the bandwidth
needed to read the tag array twice exists in all cases. Only an extra address pin to
the tag array is needed to make this operation parallel and this is implemented by
the SCTWay pin.

The three possible states are handled in the following manner:

• If, after reading the tags for both ways, it is discovered that the data
exists in the predicted way, the processor continues normally.

• If the data exists in the non-predicted way, the processor accesses this
non-predicted way in the secondary cache and updates the way
prediction table to point to this way.

Errata

• If the access misses in both ways of the secondary cache, the data is
fetched from the system interface. If the state of the predicted way is
found to be invalid, the fetched data is placed in it and the MRU is
unchanged. However, if the state of the predicted way is found to be
valid then the fetched data is placed into the non-predicted way, and the
way prediction table is updated to point to this way since it is now the
most-recently-used.

The way prediction table can cover up to a 2 Mbyte secondary cache when the
secondary cache block size is 32 words. If the secondary cache exceeds this size,
the accuracy of the way prediction table diminishes slightly. However, the
extremely large performance gain made by making the secondary cache larger far
outstrips any performance loss in the way prediction table.

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 66 Chapter 5.

5.5 Secondary Cache Tag
The secondary cache tag, transferred on the SCTag(25:0) bus, is divided into three
fields, as shown in Figure 5-2 below.

Figure 5-2 Secondary Cache Tag Fields

SCTag(25:4), Physical Tag

The minimum secondary cache size is 512 Kbytes (256 Kbytes per way), so a
minimum of 18 bits are required to index a data byte within a selected way. Since
the processor supports 40 physical bits, a maximum of 22 bits are required for the
physical tag:

 40 physical address bits - 18 minimum required = 22

Consequently, the processor supplies the 22 physical address bits, PA(39:18), on
SCTag(25:4) for the physical tag.

When the secondary cache is larger than the minimum size, the secondary cache
tag array must still maintain the full physical tag supplied by the processor, even
though some bits are redundant.

0

StatePhysical Tag

1225

22 2

34

2

PIdx

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

Secondary Cache Interface 67

SCTag(3:2), PIdx

Bits SCTag(3:2) of the secondary cache tag contain the primary cache index, PIdx.

The PIdx field contains VA(13:12), which are the two lowest virtual address bits
above the minimum 4 Kbyte page size. This field is written into the secondary
cache tag during a secondary cache refill. For each processor-initiated secondary
cache access, the virtual address bits are compared with the PIdx field of the
secondary cache tag. If a mismatch occurs, a virtual coherency condition exists
and the value of the PIdx field is used by internal control logic to purge primary
cache locations, so that all primary cache blocks holding valid data have indices
known to the secondary cache. This mechanism, unlike that of the R4400
processor, is implemented in hardware. It helps preserve the integrity of cached
accesses to a physical address using different virtual addresses, an occurrence
called virtual aliasing. For each external coherency request, the PIdx field of the
secondary cache tag provides a mechanism to locate subset lines in the primary
caches.

SCTag(1:0), Cache Block State

The lower two bits of the secondary cache tag, SCTag(1:0), contain the cache block
state, which can be Invalid, Shared, CleanExclusive, or DirtyExclusive as shown in
Table 5-4.

Table 5-4 Secondary Cache Tag State Field Encoding

Since the secondary cache tags are updated immediately for stores to the primary
data cache, and all caches use a write back protocol, the data in the secondary
cache may not always be consistent with data in the primary cache even though
the tags always reflect the correct state of a secondary cache block.

SCTag(1:0) State

0 Invalid

1 Shared

2 CleanExclusive

3 DirtyExclusive

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 68 Chapter 5.

5.6 Read Sequences
There are five basic read sequences:

• a 4-word read

• an 8-word read

• a 16-word read

• a 32-word read

• a tag read

Errata

The SCClk referred in the secondary cache read and write timing diagrams is an
internal SCClk. The relationship between this internal SCClk and the external
SCClk[5:0]/SCClk[5:0]* can be programmed during boot time by setting the
SCClkTap mode bits (see the section titled “Mode Bits” in Chapter 8 for detail on
mode bits).

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

Secondary Cache Interface 69

4-Word Read Sequence

A 4-word read sequence is performed by a CACHE Index Load Data (S)
instruction to read a doubleword of data and 10 check bits from the secondary
cache data array.

Figure 5-3 depicts a secondary cache 4-word read sequence. A quadword is read
from the index specified by PA(23:6), and the way specified by VA(0) of the
CACHE instruction.

The doubleword specified by VA(3) is then stored into the CP0 TagHi and TagLo
registers, and the corresponding check bits are stored into the CP0 ECC(9:0)
register. The data may be examined by copying the CP0 TagHi, TagLo, and ECC
registers to the general registers with the MTC0 instruction.

Figure 5-3 4-Word Read Sequence

Cycle

SCClk

SCData(127:0)

SCDataChk(9:0)

SCTag(25:0)

SCTWr*

SCTOE*

SCTagChk(6:0)

SC[A,B]DOE*

SC[A,B]DWay

SC[A,B]DCS*

SC[A,B]DWr*

SCTagLSBAddr

SCTWay

1 2 3 4 5 10 11 12 13 14 15 166 7 8 9 17

DatX0

SCTCS*

SC[A,B]Addr(18:0) Adr0

X

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 70 Chapter 5.

8-Word Read Sequence

An 8-word read sequence refills the primary data cache from the secondary cache
after a primary data cache miss.

Figure 5-4 depicts a secondary cache 8-word read sequence. In it, SC(A,B)DWay
and SCTWay are driven with value X on the first address cycle, which is obtained
from the way prediction table.

On the next address cycle, SCTWay is complemented in order to read the tag from
the non-predicted way of the addressed set. SC(A,B)DWay is not changed since it
is assumed that the way prediction table is correct and the read is likely to hit in
the predicted way.

The tag for the non-predicted way is returned to the processor in the same cycle as
the second quadword of data. Reads that miss in the predicted way, but hit in the
non-predicted way, are noted by the internal control logic and reissued to the
secondary cache as soon as possible.

Figure 5-4 8-Word Read Sequence

Cycle

SCClk

SCData(127:0)

SCDataChk(9:0)

SCTag(25:0)

SCTWr*

SCTOE*

SCTagChk(6:0)

SC[A,B]DOE*

SC[A,B]DWay

SC[A,B]DCS*

SC[A,B]DWr*

SCTagLSBAddr

SCTWay

1 2 3 4 5 10 11 12 13 14 15 166 7 8 9 17

DatX0

SCTCS*

SC[A,B]Addr(18:0)

DatX1

Adr0 Adr1

TagX TagX’

X X’

X

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

Secondary Cache Interface 71

16 or 32-Word Read Sequence

A 16-word read sequence refills the primary instruction cache from the secondary
cache after a primary instruction cache miss. A 16-word read sequence is also
performed when the secondary cache block size is 16 words, and a DirtyExclusive
secondary cache block must be written back to the System interface.

A 32-word read sequence is performed when the secondary cache block size is 32
words, and a DirtyExclusive secondary cache block must be written back to the
System interface.

Figure 5-5 depicts a secondary cache 16 or 32-word read sequence. This is similar
to an 8-word read sequence except that more addresses must be issued, in order
to read the appropriate number of quadwords.

Figure 5-5 16 or 32-Word Read Sequence

Cycle

SCClk

SCData(127:0)

SCDataChk(9:0)

SCTag(25:0)

SCTWr*

SCTOE*

SCTagChk(6:0)

SC[A,B]DOE*

SC[A,B]DWay

SC[A,B]DCS*

SC[A,B]DWr*

SCTagLSBAddr

SCTWay

1 2 3 4 5 10 11 12 13 14 15 166 7 8 9 17

DatX0

SCTCS*

SC[A,B]Addr(18:0)

DatX1 DatXN-1 DatXN

Adr0 Adr1 Adr2 AdrN

TagX TagX’

X X’

X

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 72 Chapter 5.

Tag Read Sequence

A tag read sequence is performed when the state of a secondary cache block is
required, but it is not necessary to access the data array. This sequence is used for
the CACHE Index Load Tag (S) instruction.

Figure 5-6 depicts a secondary cache tag read sequence.

Figure 5-6 Tag Read Sequence

Cycle

SCClk

SCData(127:0)

SCDataChk(9:0)

SCTag(25:0)

SCTWr*

SCTOE*

SCTagChk(6:0)

SC[A,B]DOE*

SC[A,B]DWay

SC[A,B]DCS*

SC[A,B]DWr*

SCTagLSBAddr

SCTWay

1 2 3 4 5 10 11 12 13 14 15 166 7 8 9 17

SCTCS*

SC[A,B]Addr(18:0)

TagX

X

Adr0

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

Secondary Cache Interface 73

5.7 Write Sequences
There are five basic write sequences:

• a 4-word write.

• an 8-word write

• a 16-word write

• a 32-word write

• a tag write

Errata

The SCClk referred in the secondary cache read and write timing diagrams is an
internal SCClk. The relationship between this internal SCClk and the external
SCClk[5:0]/SCClk[5:0]* can be programmed during boot time by setting the
SCClkTap mode bits (see the section titled “Mode Bits” in Chapter 8 for detail on
mode bits).

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 74 Chapter 5.

4-Word Write Sequence

A 4-word write sequence is performed by a CACHE Index Store Data (S)
instruction to store a quadword of data and 10 check bits into the secondary cache
data array.

Figure 5-7 depicts a secondary cache 4-word write sequence. A quadword is
written to the index specified by PA(23:6), and the way specified by VA(0) of the
CACHE instruction.

A doubleword specified by VA(3) is obtained from the CP0 TagHi and TagLo
registers, and the other half of the doubleword is padded to zeros. Normal ECC
and parity generation is bypassed and the check field of the data array is written
with the contents of the CP0 ECC(9:0) register.

Figure 5-7 4-Word Write Sequence

Cycle

SCClk

SCData(127:0)

SCDataChk(9:0)

SCTag(25:0)

SCTWr*

SCTOE*

SCTagChk(6:0)

SC[A,B]DOE*

SC[A,B]DWay

SC[A,B]DCS*

SC[A,B]DWr*

SCTagLSBAddr

SCTWay

1 2 3 4 5 10 11 12 13 14 15 166 7 8 9 17

Dat0

SCTCS*

SC[A,B]Addr(18:0) Adr0

X

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

Secondary Cache Interface 75

8-Word Write Sequence

An 8-word write sequence writes back a dirty block from the primary data cache
to the secondary cache.

Figure 5-8 depicts a secondary cache 8-word write sequence. SC(A,B)DWay are
driven with the way bit obtained from the primary data cache tag. The secondary
cache tag is not written since it was previously updated when the primary data
cache block was modified.

Figure 5-8 8-Word Write Sequence

Cycle

SCClk

SCData(127:0)

SCDataChk(9:0)

SCTag(25:0)

SCTWr*

SCTOE*

SCTagChk(6:0)

SC[A,B]DOE*

SC[A,B]DWay

SC[A,B]DCS*

SC[A,B]DWr*

SCTagLSBAddr

SCTWay

1 2 3 4 5 10 11 12 13 14 15 166 7 8 9 17

Dat0

SCTCS*

SC[A,B]Addr(18:0)

Dat1

Adr0 Adr1

X

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 76 Chapter 5.

16 or 32-Word Write Sequence

A 16- or 32-word write sequence refills a secondary cache block from the System
interface after a secondary cache miss. A 16-word write sequence is performed
when the secondary cache block size is 16 words, and a 32-word write sequence is
performed when the secondary cache block size is 32 words.

Figure 5-9 depicts a secondary cache 16 or 32-word write sequence.

Figure 5-9 16/ 32-Word Write Sequence

Cycle

SCClk

SCData(127:0)

SCDataChk(9:0)

SCTag(25:0)

SCTWr*

SCTOE*

SCTagChk(6:0)

SC[A,B]DOE*

SC[A,B]DWay

SC[A,B]DCS*

SC[A,B]DWr*

SCTagLSBAddr

SCTWay

1 2 3 4 5 10 11 12 13 14 15 166 7 8 9 17

Dat0

SCTCS*

SC[A,B]Addr(18:0)

Dat1 DatN-1 DatN

Adr0 Adr1 AdrN-1 AdrN

Tag

X

X

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

Secondary Cache Interface 77

Tag Write Sequence

A tag write sequence updates the secondary cache tag array without affecting the
data array. This sequence is used for the following:

• to reflect primary cache state changes in the secondary cache

• for external coherency requests

• for the CACHE Index Store Tag (S) instruction

Figure 5-10 depicts the secondary cache tag write protocol.

Figure 5-10 Tag Write Sequence

Cycle

SCClk

SCData(127:0)

SCDataChk(9:0)

SCTag(25:0)

SCTWr*

SCTOE*

SCTagChk(6:0)

SC[A,B]DOE*

SC[A,B]DWay

SC[A,B]DCS*

SC[A,B]DWr*

SCTagLSBAddr

SCTWay

1 2 3 4 5 10 11 12 13 14 15 166 7 8 9 17

SCTCS*

SC[A,B]Addr(18:0) Adr0

Tag

X

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 78 Chapter 5.

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 199679

6. System Interface Operations

The R10000 System interface provides a gateway between processor, with its
associated secondary cache, and the remainder of the computer system.

For convenience, any device communicating with the processor through the
System interface is referred to as the external agent.

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 80 Chapter 6.

6.1 Request and Response Cycles
The System interface supports the following request and response cycles:

• Processor requests are generated by the processor, when it requires a
system resource.

• External responses are supplied by an external agent in response to a
processor request.

• External requests are generated by an external agent when it requires a
resource within the processor.

• Processor responses are supplied by the processor in response to an
external request.

6.2 System Interface Frequencies
The System interface operates at SysClk frequency, supplied by the external agent.
The internal processor clock, PClk, is derived from this same SysClk.

The SysClkDiv mode bits select a PClk to SysClk divisor of 1, 1.5, 2, 2.5, 3, 3.5, or
4, using the formula described in Chapter 7, the section titled “System Interface
Clock and Internal Processor Clock Domains.”

6.3 Register-to-Register Operation
The System interface is designed to operate in the following register-to-register
fashion with the external agent:

• all System interface outputs are sourced directly from registers clocked
on the rising edge of SysClk

• all System interface inputs directly feed registers that are clocked on
the rising edge of SysClk

This allows the System interface to run at the highest possible clock frequency.

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

System Interface Operations 81

6.4 System Interface Signals
The R10000 System interface is composed of:

• 3 arbitration signals

• 2 flow-control input signals

• a bidirectional 12-bit command bus

• a bidirectional 64-bit multiplexed address/data bus

• a 3-bit state output bus

• a 5-bit response input bus

6.5 Master and Slave States
At any time, the System interface is either in master or slave state.

In master state, the processor drives the bidirectional System interface signals and
is permitted to issue processor requests to the external agent.

In slave state, the processor tristates the bidirectional System interface signals and
accepts external requests from the external agent.

6.6 Connecting to an External Agent
In a uni- or multiprocessor system using dedicated external agents, the System
interface connects to a single external agent.

In a multiprocessor system using the cluster bus (see below), the system can
connect up to four R10000 processors to an external agent. This external agent is
referred to as the cluster coordinator.

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 82 Chapter 6.

6.7 Cluster Bus
In a multiprocessor system using the cluster bus, the cluster coordinator performs
the cluster bus arbitration and data flow management. The arbitration scheme
assures that either one of the processors or the cluster coordinator is master at any
given time, while the remaining devices are slave.

A processor request issued by the master processor is observed as an external
request by all slave R10000 processors, as shown in Figure 6-1. Similarly, a
processor coherency data response issued by a master processor is observed as an
external data response by the slave processors.

Figure 6-1 Processor Request Master/Slave Status

In a multiprocessor system using the cluster bus, a mode bit specifies whether
processor coherent requests are to target the external agent only, or all processors
and the external agent. This allows systems with efficient snoopy, duplicate tag,
or directory-based coherency protocols to be created.

Cluster
Coordinator

R10000

Cluster
Coordinator

Cluster Bus

R10000

System Interface
R10000

R10000

System Interface
R10000

R10000

System Interface
R10000

R10000

System Interface

(Slave)(Master) (Slave)(Slave)

Processor Request External Request

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

System Interface Operations 83

6.8 System Interface Connections
The major System interface connections required for various system
configurations are presented in this section.

Uniprocessor System

Figure 6-2 shows the major System interface connections required for a typical
uniprocessor system.

Figure 6-2 System Interface Connections for Uniprocessor System

External

SysCmd(11:0)
SysCmdPar

SysAD(63:0)
SysADChk(7:0)

Agent

SysVal*

SysReq*

SysState(2:0)
SysStatePar
SysStateVal*

Mem, I/O

SysGnt*

SysRdRdy*
SysWrRdy*

SysRel*

SysResp(4:0)
SysRespPar

S
S

R
A

M
s

Wr*
CS*
OE*

Addr

Data

S
S

R
A

M
sWr*

CS*
OE*

Addr

Data

SysGnt*
SysReq*

SysRdRdy*

R10000
SysState(2:0)
SysStatePar
SysStateVal*

SysResp(4:0)
SysRespPar

SC(A,B)Addr(18:0)

SCTWr*
SCTCS*
SCTOE*

SC(A,B)DWr*
SC(A,B)DCS*
SC(A,B)DOE*

SCData(127:0)
SCDataChk(9:0)

SysWrRdy*

SysRel*

SCTagChk(6:0)
SCTag(25:0)

SysRespVal*SysRespVal*

Tag
D

ata

SCTWay

SC(A,B)DWay

SysCmd(11:0)
SysCmdPar
SysAD(63:0)
SysADChk(7:0)
SysVal*

SCTagLSBAddr

R10000

SysReq*
SysGnt*

SysRdRdy*

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 84 Chapter 6.

Multiprocessor System Using Dedicated External Agents

Figure 6-3 shows the major System interface connections required for a typical
multiprocessor system using dedicated external agents.

Figure 6-3 System Interface Connections for Multiprocessor using Dedicated External Agents

C
oh

er
en

t I
nt

er
co

nn
ec

t
S

S
R

A
M

s

Wr*
CS*
OE*

Addr

Data

S
S

R
A

M
sWr*

CS*
OE*

Addr

Data

Tag
D

ata
S

S
R

A
M

s

Wr*
CS*
OE*

Addr

Data

S
S

R
A

M
sWr*

CS*
OE*

Addr

Data

Tag
D

ata

External

SysCmd(11:0)
SysCmdPar

SysAD(63:0)
SysADChk(7:0)

Agent

SysVal*

SysReq*

SysState(2:0)
SysStatePar
SysStateVal*

SysGnt*

SysRdRdy*
SysWrRdy*

SysRel*

SysResp(4:0)
SysRespPar
SysRespVal*

External

SysCmd(11:0)
SysCmdPar

SysAD(63:0)
SysADChk(7:0)

Agent

SysVal*

SysReq*

SysState(2:0)
SysStatePar
SysStateVal*

SysGnt*

SysRdRdy*
SysWrRdy*

SysRel*

SysResp(4:0)
SysRespPar
SysRespVal*

SysGnt*
SysReq*

SysRdRdy*

R10000
SysState(2:0)
SysStatePar
SysStateVal*

SysResp(4:0)
SysRespPar

SC(A,B)Addr(18:0)

SCTWr*
SCTCS*
SCTOE*

SC(A,B)DWr*
SC(A,B)DCS*
SC(A,B)DOE*

SCData(127:0)
SCDataChk(9:0)

SysWrRdy*

SysRel*

SCTagChk(6:0)
SCTag(25:0)

SysRespVal*

SCTWay

SC(A,B)DWay

SysCmd(11:0)
SysCmdPar
SysAD(63:0)
SysADChk(7:0)
SysVal*

SCTagLSBAddr

SysGnt*
SysReq*

SysRdRdy*

R10000
SysState(2:0)
SysStatePar
SysStateVal*

SysResp(4:0)
SysRespPar

SC(A,B)Addr(18:0)

SCTWr*
SCTCS*
SCTOE*

SC(A,B)DWr*
SC(A,B)DCS*
SC(A,B)DOE*

SCData(127:0)
SCDataChk(9:0)

SysWrRdy*

SysRel*

SCTagChk(6:0)
SCTag(25:0)

SysRespVal*

SCTWay

SC(A,B)DWay

SysCmd(11:0)
SysCmdPar
SysAD(63:0)
SysADChk(7:0)
SysVal*

SCTagLSBAddr

R10000

SysReq*
SysGnt*

R10000

SysReq*
SysGnt*

SysRdRdy*

SysRdRdy*

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

System Interface Operations 85

Multiprocessor System Using the Cluster Bus

Figure 6-4 presents the major System interface connections required for a typical
multiprocessor system using the cluster bus.

Figure 6-4 System Interface Connections for Multiprocessor Using the Cluster Bus

Cluster

SysCmd(11:0)
SysCmdPar

SysAD(63:0)
SysADChk(7:0)

Coordinator

SysVal*

SysReq1*

SysState1(2:0)
SysStatePar1
SysStateVal1*

Mem, I/O

SysReq0*

SysState0(2:0)
SysStatePar0
SysStateVal0*

SysGnt1*

SysGnt0*

SysRdRdy*
SysWrRdy*

SysRel*

SysResp(4:0)
SysRespPar
SysRespVal*

C
lu

st
er

 B
us

S
S

R
A

M
s

Wr*
CS*
OE*

Addr

Data

S
S

R
A

M
sWr*

CS*
OE*

Addr

Data

Tag
D

ata
S

S
R

A
M

s

Wr*
CS*
OE*

Addr

Data

S
S

R
A

M
sWr*

CS*
OE*

Addr

Data

Tag
D

ata

SysGnt*
SysReq*

SysRdRdy*

R10000
SysState(2:0)
SysStatePar
SysStateVal*

SysResp(4:0)
SysRespPar

SC(A,B)Addr(18:0)

SCTWr*
SCTCS*
SCTOE*

SC(A,B)DWr*
SC(A,B)DCS*
SC(A,B)DOE*

SCData(127:0)
SCDataChk(9:0)

SysWrRdy*

SysRel*

SCTagChk(6:0)
SCTag(25:0)

SysRespVal*

SCTWay

SC(A,B)DWay

SysCmd(11:0)
SysCmdPar
SysAD(63:0)
SysADChk(7:0)
SysVal*

SCTagLSBAddr

SysGnt*
SysReq*

SysRdRdy*

R10000
SysState(2:0)
SysStatePar
SysStateVal*

SysResp(4:0)
SysRespPar

SC(A,B)Addr(18:0)

SCTWr*
SCTCS*
SCTOE*

SC(A,B)DWr*
SC(A,B)DCS*
SC(A,B)DOE*

SCData(127:0)
SCDataChk(9:0)

SysWrRdy*

SysRel*

SCTagChk(6:0)
SCTag(25:0)

SysRespVal*

SCTWay

SC(A,B)DWay

SysCmd(11:0)
SysCmdPar
SysAD(63:0)
SysADChk(7:0)
SysVal*

SCTagLSBAddr

R10000

SysReq*
SysGnt*

SysRdRdy*

R10000

SysReq*
SysGnt*

SysRdRdy*

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 86 Chapter 6.

6.9 System Interface Requests and Responses
The System interface supports the following:

• processor request

• external response

• external request

• processor response

The following sections describe these request and response types, and their
operations.

Processor Requests

Processor requests are generated by the processor when it requires a system
resource. The following processor requests are supported:

• coherent block read shared request

• coherent block read exclusive request

• noncoherent block read request

• double/single/partial-word read request

• block write request

• double/single/partial-word write request

• upgrade request

• eliminate request

Processor write and eliminate requests do not require or expect a response by the
external agent. However, if an external agent detects an error in a processor write
or eliminate request, it may use an interrupt to signal the processor. It is not
possible to generate precise exceptions for processor write and eliminate requests
for which an external agent detects an error.

Processor read and upgrade requests require some type of response by the external
agent.

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

System Interface Operations 87

External Responses

External responses are supplied by an external agent or another processor in
response to a processor request. The following external responses are supported:

• block data response

• double/single/partial-word data response

• completion response

External Requests

External requests are generated by an external agent when it requires a resource
within the processor. The following external requests are supported:

• intervention shared request

• intervention exclusive request

• allocate request number request

• invalidate request

• interrupt request

External intervention and invalidate requests require some type of response by
the processor.

Processor Responses

Processor responses are supplied by the processor in response to an external
request. The following processor responses are supported:

• coherency state response

• coherency data response

Outstanding Requests and Request Numbers

The processor allows requests and corresponding responses to be split
transactions, which enables additional processor and external requests to be
issued while waiting for a prior response. The System interface supports a request
number field to link requests with their corresponding responses, so responses
can be returned out of order.

The processor allows a maximum of eight outstanding requests on the System
interface through a 3-bit request number. These outstanding requests may be
composed of any mix of processor and external requests.

An individual processor (as opposed to the System interface, above) supports a
maximum of four outstanding processor requests at any given time.

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 88 Chapter 6.

Request and Response Relationship

The relationship between processor and external requests, and their acceptable
responses, is presented in Table 6-1. The data in this table is given with respect to
a single processor, in either a uni- or multiprocessor system (independent of
cluster/non-cluster configuration).

Table 6-1 Request and Response Relationship

‡ External completion response is required to free the request number.

Request Acceptable Response Sequences

Processor block read request

External NACK or ERR completion response

0 or more external block data responses followed by a final external block
data response with a coincidental or subsequent external ACK, NACK, or
ERR completion response

Processor double/single/partial-
word read request

External NACK or ERR completion response

0 or more external double/single/partial-word data responses followed
by a final external double/single/partial-word data response with a
coincidental or subsequent external ACK, NACK, or ERR completion
response

Processor block write request None

Processor double/single/partial-
word write request None

Processor upgrade request

External ACK, NACK, or ERR completion response

0 or more external block data responses followed by a final external block
data response with a coincidental or subsequent external ACK, NACK, or
ERR completion response

Processor eliminate request None

External intervention request
Processor coherency state response followed by processor coherency data
response (if DirtyExclusive) with a coincidental or subsequent external
ACK, NACK, or ERR completion response‡

External allocate request number
request External ACK, NACK, or ERR completion response*

External invalidate request Processor coherency state response followed by external ACK, NACK, or
ERR completion response*

External interrupt request None

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

System Interface Operations 89

6.10 System Interface Buffers
The processor contains the following five buffers to enhance the performance of
the System interface and to simplify the system design:

• cluster request buffer

• cached request buffer

• incoming buffer

• outgoing buffer

• uncached buffer

These buffers are described in the following sections.

Cluster Request Buffer

The System interface contains an 8-entry cluster request buffer. This buffer
maintains the status of the eight possible outstanding requests on the System
interface. When the System interface is in master state, and it issues the address
cycle of processor read or upgrade request, the processor places an entry into the
cluster request buffer. When the System interface is in slave state, and an external
agent issues an external coherency or allocate request number request, it places an
entry into the cluster request buffer.

Once an entry is placed into the cluster request buffer, the associated request
number transitions from free to busy. An entry remains busy until the processor
receives an external completion response. Processor requests that are ready to be
issued to the System interface bus probe the cluster request buffer to detect
conflict conditions.

Cached Request Buffer

The System interface contains a four-entry cached request buffer. This buffer
holds the status of the four possible outstanding processor cached requests,
including processor block read and upgrade requests. The relative order of the
requests is maintained in the cached request buffer.

External coherency requests probe the cached request buffer to detect conflict
conditions.

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 90 Chapter 6.

Incoming Buffer

The System interface contains an incoming buffer for external block and double/
single/partial-word data responses. The four 32-word entries of the incoming
buffer correspond to the four possible outstanding processor requests. Block data
in each entry of the incoming buffer is stored in subblock order, beginning with a
quadword-aligned address.

The incoming buffer eliminates the need for the processor to flow-control the
external agent that is providing the external data responses. Regardless of the
cache bandwidth or internal resource availability, the external agent may supply
external data response data for all outstanding read and upgrade requests at the
maximum System interface data rate.

The external agent may issue any number of external data responses for a
particular request number before issuing a corresponding external completion
response. An external data response remains in the incoming buffer until a
corresponding external completion response is received. A former buffered
external data response for a particular request number is over-written by a
subsequent external data response for the same request number.

An external ACK completion response frees buffered data to be forwarded to the
caches and other internal resources while an external NACK or ERR completion
response purges any corresponding buffered data. For minimum latency, the
external agent should issue an external ACK completion response coincident with
the first doubleword of an external data response.

External coherency requests that target blocks residing in the incoming buffer are
stalled until the incoming buffer data is forwarded to the secondary cache, and the
instruction that caused the secondary miss is satisfied.

Each doubleword of the incoming buffer has an Uncorrectable Error flag. When
an external data response provides a doubleword, the processor asserts the
corresponding incoming buffer Uncorrectable Error flag if the data quality
indicator, SysCmd[5], is asserted, or if an uncorrectable ECC error is encountered
on the system address/data bus and the ECC check indication on SysCmd[0] is
asserted.

When the processor forwards block data from an incoming buffer entry after
receiving an external ACK completion response, the associated incoming buffer
Uncorrectable Error flags are checked, and if any are asserted, a single Cache Error
exception is posted. When the processor forwards double/single/partial-word
data from an incoming buffer entry after receiving an external ACK completion
response, the associated incoming buffer Uncorrectable Error flag is checked, and
if asserted, a Bus Error exception is posted.

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

System Interface Operations 91

Outgoing Buffer

The System interface contains a five-entry outgoing buffer to provide buffering
for the following:

• DirtyExclusive blocks that are cast out of the secondary cache because
of a block replacement

• various CACHE instructions

• an external intervention request.

Four 32-word typical entries are associated with the four possible outstanding
processor cached requests allowed by the processor. One 32-word special entry is
reserved for external intervention requests only. The data is stored in each entry
of the outgoing buffer in sequential order, beginning with a secondary cache
block-aligned address.

An instruction or data access that misses in the secondary cache but targets an
entry in the outgoing buffer is stalled until the outgoing buffer entry is issued as
a processor block write request or coherency data response to the System interface
bus.

External coherency requests probe the four typical outgoing buffer entries, with
the following results:

• If an external intervention request hits a typical entry, that entry is
converted from a processor block write request to a processor
coherency data response.

• If an external invalidate request hits a typical outgoing buffer entry,
that entry is deleted.

• If an external intervention request does not hit a typical outgoing
buffer entry, but hits a DirtyExclusive block in the secondary cache, the
special outgoing buffer entry is used to buffer the processor coherency
data response.

A typical outgoing buffer entry containing a block write is ready for issue to the
System interface bus when the first quadword is received from the secondary
cache. The processor allows data to stream from the secondary cache to the
System interface bus through the outgoing buffer.

Errata

An outgoing buffer entry containing a coherency data response is ready for issue
to the System interface bus when the quadword specified by the corresponding
external intervention request is received from the secondary cache. The processor
then allows the data to stream from the secondary cache to the System interface
bus through the outgoing buffer.

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 92 Chapter 6.

Each quadword of the outgoing buffer maintains an Uncorrectable Error flag. If
an uncorrectable error is encountered while a block is being cast out of the
secondary cache, the associated outgoing buffer quadword Uncorrectable Error
flag is asserted. When the processor empties an outgoing buffer entry by issuing
a processor block write or coherency data response, the outgoing buffer
Uncorrectable Error flags are reflected by the data quality indication on
SysCmd[5].

Uncached Buffer

The System interface contains an uncached buffer to provide buffering for
uncached and uncached accelerated load and store operations. All operations
retain program order within the uncached buffer.

The uncached buffer is organized as a 4-entry FIFO followed by a 2-entry gatherer.
Each gathered entry has a capacity of 16 or 32 words, as specified by the
SCBlkSize mode bit.

The uncached buffer begins gathering when an uncached accelerated double or
singleword block-aligned store is executed. Gathering continues if the subsequent
uncached operation executed is an uncached accelerated double or singleword
store to a sequential or identical address. Once a second uncached accelerated
store is gathered, the gathering mode is determined to be sequential or identical.
Gathering continues until one of the following conditions occurs:

• a complete block is gathered

• an uncached or uncached accelerated load is executed

• an uncached or uncached accelerated partial-word store is executed

• an uncached store is executed

• a change in the current gathering mode is observed

• a change in the uncached attribute is observed

When gathering terminates, the data is ready for issue to the System interface bus.
A processor uncached accelerated block write request is used to issue a completely
gathered uncached accelerated block. One or more disjoint processor uncached
accelerated double or singleword write requests are used to issue an incompletely
gathered uncached accelerated block.

When gathering in an identical mode, uncached accelerated double or singleword
stores may be freely mixed. The uncached buffer packs the associated data into the
gatherer. When gathering in sequential mode, uncached accelerated singleword
stores must occur in pairs, to prevent an address error exception. For instance, SW,
SW, SD, SW, SW is legal. SD, SW, SD, is not.

External coherency requests have no effect on the uncached buffer.

CACHE instructions have no effect on the uncached buffer. SYNC instructions are
prevented from graduating if an uncached store resides in the uncached buffer.

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

System Interface Operations 93

6.11 System Interface Flow Control
The System interface supports a maximum request rate of one request per SysClk
cycle, and a maximum data rate of one doubleword per SysClk cycle.

Various flow control mechanisms are provided to limit these rates, as described
below.

Processor Write and Eliminate Request Flow Control

The processor can only issue a processor write or eliminate request if:

• the System interface is in master state

• SysWrRdy* was asserted two SysClk cycles previously

Processor Read and Upgrade Request Flow Control

The processor can only issue a processor read or upgrade request if:

• the System interface is in master state

• SysRdRdy* was asserted two SysClk cycles previously

• the maximum number of outstanding processor requests specified by
the PrcReqMax mode bits is not exceeded

• there is a free request number

Processor Coherency Data Response Flow Control

The processor can only issue a processor coherency data response if:

• the System interface is in master state

• SysWrRdy* was asserted two SysClk cycles previously

External Request Flow Control

When the System interface is in Slave state, it is capable of accepting external
requests. An external agent may issue external requests in adjacent SysClk cycles.

External Data Response Flow Control

Since the processor has an incoming buffer, an external agent may supply external
data response data in adjacent SysClk cycles, without regard to cache bandwidth
or internal resource availability.

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 94 Chapter 6.

6.12 System Interface Block Data Ordering
During block data transfers on the System interface SysAD[63:0] bus, even
doublewords (Dat0, Dat2,...) always correspond to SCData[127:64], and odd
doublewords (Dat1, Dat3,...) always correspond to SCData[63:0].

External Block Data Responses

During the address cycle of processor block read and upgrade requests, the
processor specifies a quadword-aligned address. The processor expects the
external block data response to be supplied in a subblock order sequence,
beginning at the specified quadword-aligned address.

Processor Coherency Data Responses

The address of external intervention requests are internally aligned by the
processor to a quadword address. If the processor determines that it must issue a
processor coherency data response, it supplies the data in a subblock order
sequence beginning at the quadword-aligned address specified by the
corresponding external coherency request.

Processor Block Write Requests

During the address cycle of processor block write requests, the processor specifies
a cache block-aligned address. During the subsequent data cycles for typical
processor block write requests, the processor supplies the data in sequence,
beginning with the secondary cache block-aligned address.

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

System Interface Operations 95

6.13 System Interface Bus Encoding
This section presents the encoding of the following four System interface buses:

• SysCmd[11:0]

• SysAD[63:0]

• SysState[2:0]

• SysResp[4:0]

SysCmd[11:0] Encoding

This section describes address and data cycle encodings for the system command
bus, SysCmd[11:0].

SysCmd[11] Encoding

When SysVal* is asserted, SysCmd[11] indicates whether the SysAD[63:0] bus
represents an address or a data cycle, as shown in Table 6-2.

Table 6-2 Encoding of SysCmd[11]

SysCmd[10:0] Address Cycle Encoding

During the address cycle of processor read and upgrade requests, SysCmd[10:8]
contain the request number, as shown in Table 6-3. The request number provides
a mechanism to associate an external response with the corresponding processor
request.

Table 6-3 Encoding of SysCmd[10:8] for Processor Read and Upgrade Requests

SysCmd[11] Data/Address Cycle Indication

 0 SysAD[63:0] address cycle

 1 SysAD[63:0] data cycle

SysCmd[10:8] Request Number

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 96 Chapter 6.

During the address cycle of processor requests, SysCmd[7:5] contain the
command, as shown in Table 6-4.

Table 6-4 Encoding of SysCmd[7:5] for Processor Requests

During the address cycle of processor read requests, SysCmd[4:3] contain the read
cause indication, as shown in Table 6-5. This information is useful in handling the
associated external response.

Table 6-5 Encoding of SysCmd[4:3] for Processor Read Requests

During the address cycle of processor write requests, SysCmd[4:3] contain the
write cause indication, as shown in Table 6-6. This information is useful in
handling the associated write data.

Table 6-6 Encoding of SysCmd[4:3] for Processor Write Requests

SysCmd[7:5] Command

 0 Coherent block read shared

 1 Coherent block read exclusive

 2 Noncoherent block read

 3 Double/single/partial-word read

 4 Block write

 5 Double/single/partial-word write

 6 Upgrade

 7 Special

SysCmd[4:3] Read Cause Indication

 0 Instruction access

 1 Data typical access

 2 Data LL/LLD access

 3 Data prefetch access

SysCmd[4:3] Write Cause Indication

 0 Reserved

 1 Data typical access

 2 Data uncached accelerated sequential access

 3 Data uncached accelerated identical access

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

System Interface Operations 97

During the address cycle of processor upgrade requests, SysCmd[4:3] contain the
upgrade cause indication, as shown in Table 6-7. This information useful in
handling the associated external response.

Table 6-7 Encoding of SysCmd[4:3] for Processor Upgrade Requests

During the address cycle of processor special requests, SysCmd[4:3] contain the
processor special cause indication, as shown in Table 6-8. This information
differentiates between the various processor special requests.

Table 6-8 Encoding of SysCmd[4:3] for Processor Special Requests

During the address cycle of processor block read, typical block write, upgrade,
and eliminate requests, SysCmd[2:1] contain the secondary cache block former
state, as shown in Table 6-9. This information may be useful for system designs
implementing a duplicate tag or a directory-based coherency protocol.

Table 6-9 Encoding of SysCmd[2:1] for Processor Block Read/Write,
Upgrade, Eliminate Requests

SysCmd[4:3] Upgrade Cause Indication

 0 Reserved

 1 Data typical access

 2 Data SC/SCD access

 3 Data prefetch access

SysCmd[4:3] Special Cause Indication

 0 Reserved

 1 Eliminate

 2 Reserved

 3 Reserved

SysCmd[2:1] Secondary Cache Block Former State

 0 Invalid

 1 Shared

 2 CleanExclusive

 3 DirtyExclusive

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 98 Chapter 6.

During the address cycle of processor double/single/partial-word read and write
requests, SysCmd[2:0] contain the data size indication, as shown in Table 6-10.

Table 6-10 Encoding of SysCmd[2:0] for Processor Double/Single/Partial-Word Read/
Write Requests

During the address cycle of external intervention and invalidate requests,
SysCmd[10:8] contain the request number, as shown in Table 6-11. The request
number provides a mechanism to associate a potential processor coherency data
response with the corresponding external coherency request.

Table 6-11 Encoding of SysCmd[10:8] for External Intervention
and Invalidate Requests

During the address cycle of external requests, SysCmd[7:5] contain the command,
as shown in Table 6-12.

Table 6-12 Encoding of SysCmd[7:5] for External Requests

SysCmd[2:0] Data Size Indication

 0 One byte valid (Byte)

 1 Two bytes valid (Halfword)

 2 Three bytes valid (Tribyte)

 3 Four bytes valid (Word)

 4 Five bytes valid (Quintibyte)

 5 Six bytes valid (Sextibyte)

 6 Seven bytes valid (Septibyte)

 7 Eight bytes valid (Doubleword)

SysCmd[10:8] Request Number

SysCmd[7:5] Command

 0 Intervention shared

 1 Intervention exclusive

 2 Allocate request number

 3 Allocate request number

 4 NOP

 5 NOP

 6 Invalidate

 7 Special

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

System Interface Operations 99

During the address cycle of external special requests, SysCmd[4:3] contain the
external special cause indication, as shown in Table 6-13. This information is used
to differentiate between the various external special requests.

Table 6-13 Encoding of SysCmd[4:3] for External Special Requests

Errata

During external address cycles, SysCmd[0] specifies whether ECC checking and
correcting is to be performed for the SysAD[63:0] bus, as shown in Table 6-14.
During the address cycle of processor block read, data typical block write,
upgrade, and eliminate requests, the processor asserts SysCmd[0]. Consequently,
in a multiprocessor system using the cluster bus, ECC checking and correcting is
enabled for external coherency requests resulting from processor coherent block
read and upgrade requests.

Table 6-14 Encoding of SysCmd[0] for External Address Cycles

SysCmd[10:0] Data Cycle Encoding

During the data cycles of an external data response or a processor coherency data
response, SysCmd[10:8] contain the request number associated with the original
request, as shown in Table 6-15.

Table 6-15 Encoding of SysCmd[10:8] for Data Responses

During data cycles, SysCmd[5] indicates the data quality, as shown in Table 6-16.

Table 6-16 Encoding of SysCmd[5] for Data Cycles

SysCmd[4:3] Special Cause Indication

 0 Reserved

 1 NOP

 2 Interrupt

 3 Reserved

SysCmd[0] ECC check indication

 0 ECC checking and correcting disable

 1 ECC checking and correcting enable

SysCmd[10:8] Request Number

SysCmd[5] Data quality indication

 0 Data is good

 1 Data is bad

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 100 Chapter 6.

During data cycles, SysCmd[4:3] indicate the data type, as shown in Table 6-17.
Processor block write and double/single/partial-word write requests use request
data and request last data type indications. External data and processor coherency
data responses use response data and response last data type indications.

Table 6-17 Encoding of SysCmd[4:3] for Data Cycles

During data cycles of an external block data response or processor coherency data
response, SysCmd[2:1] contain the state of the cache block, as shown in Table 6-18.

Table 6-18 Encoding of SysCmd[2:1] for Block Data Responses

During data cycles, SysCmd[0] specifies whether ECC checking and correcting is
to be performed for the SysAD[63:0] bus, as shown in Table 6-19. During
processor data cycles, the processor asserts SysCmd[0]. Consequently, in a
multiprocessor system using the cluster bus, ECC checking and correcting will be
enabled for external block data responses resulting from processor coherency data
responses.

Table 6-19 Encoding of SysCmd[0] for External Data Cycles

SysCmd[4:3] Data type Indication

 0 Request data

 1 Response data

 2 Request last

 3 Response last

SysCmd[2:1] Cache Block State

 0 Reserved

 1 Shared

 2 CleanExclusive

 3 DirtyExclusive

SysCmd[0] ECC check indication

 0 ECC checking and correcting disable

 1 ECC checking and correcting enable

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

System Interface Operations 101

SysCmd[11:0] Map

Table 6-20 presents a map for the SysCmd[11:0] bus.

Table 6-20 SysCmd[11:0] Map

Cycle
Type

Command
SysCmd[11:0] Bit

11 10 9 8 7 6 5 4 3 2 1 0

Processor
address
cycles

Coherent block read shared

0

Request number

0 0 0

Read cause
Block state 1Coherent block read exclusive 0 0 1

Noncoherent block read 0 1 0

Double/single/partial-word read 0 1 1 Data size

Block write
0

1 0 0
Write cause

Block state 1

Double/single/partial-word write 1 0 1 Data size

Upgrade Request number 1 1 0 Upgrade cause Block state 1

Special

Reserved Reserved

1 1 1

0 0 Reserved

Eliminate 0 0 1 Block state 1

Reserved Reserved
1 0

Reserved
1 1

Processor
data cycles

Double/single/partial-word write

1
0

0

0

Data type

0

1Block write Data
quality

Block state
Coherency data response Request number

External
address
cycles

Intervention shared

0

Request number

0 0 0

X

ECC
Intervention exclusive 0 0 1

Allocate request number
0 1 0

X
0 1 1

NOP X
1 0 0

1 0 1

Invalidate Request number 1 1 0 ECC

Special

NOP

X 1 1 1

0 0

X

X
0 1

Interrupt 1 0 ECC

NOP 1 1 X

External
data cycles

Block data response
1 Request number X

Data
quality

Data type
Block state

ECCDouble/single/partial-word data
response

X

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 102 Chapter 6.

SysAD[63:0] Encoding

This section describes the system address/data bus encoding.

SysAD[63:0] Address Cycle Encoding

Table 6-21 presents the encoding of the SysAD[63:0] bus for address cycles.

Table 6-21 Encoding of SysAD[63:0] for Address Cycles

SysAD[63:60]

During the address cycle of processor noncoherent block read, double/single/
partial-word read, block write, double/single/partial-word write, and eliminate
requests, the processor always drives a target indication of 0 on SysAD[63:60].
This indicates that the request targets the external agent only. When the
CohPrcReqTar mode bit is negated, during the address cycle of processor
coherent block read and upgrade requests, the processor also drives a target
indication of 0 on SysAD[63:60]. However, when the CohPrcReqTar mode bit is
asserted, during the address cycle of processor coherent block read and upgrade
requests, the processor drives a target indication of 0xF on SysAD[63:60]. This
indicates that the request targets all processors, together with the external agent,
on the cluster bus. In multiprocessor systems using the cluster bus, the
CohPrcReqTar mode bit is asserted for a snoopy-based coherency protocol, and
negated for a duplicate tag or directory-based coherency protocol.

When the processor is in slave state, an external agent uses the target indication
field to specify which processors are targets of an external request.

SysAD[59:58] Uncached Attribute

During the address cycle of processor double/single/partial-word read and write
requests and during the address cycle of processor Uncached accelerated block write
requests, the processor drives the uncached attribute onto SysAD[59:58]. See the
section titled, Support for Uncached Attribute, in this chapter for more
information.

SysAD[63:60] Target Indication

 SysAD[63] Target processor with DevNum = 3

 SysAD[62] Target processor with DevNum = 2

 SysAD[61] Target processor with DevNum = 1

 SysAD[60] Target processor with DevNum = 0

SysAD[59:58] Uncached attribute

SysAD[57] Secondary cache block way indication

SysAD[56:40] Reserved

SysAD[39:0] Physical address

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

System Interface Operations 103

SysAD[57]

During the address cycle of processor block read, typical block write, upgrade,
and eliminate requests, SysAD[57] contains the secondary cache block way
indication. This information may be useful for system designs implementing a
duplicate tag or a directory-based coherency protocol.

SysAD[56:40]

When processor is in master state, it drives SysAD[56:40] to zero during address
cycles.

SysAD[39:0]

During the address cycle of processor and external requests, SysAD[39:0] contain
the physical address.

Table 6-22 presents the processor request address cycle address alignment.

Table 6-22 Processor Request Address Cycle Alignment

Table 6-23 presents the external coherency request address cycle address
alignment.

Table 6-23 External Coherency Request Address Cycle Alignment

Processor Request Type Address Alignment
Address Bits Which

Are Driven to 0

Block read Quadword 3:0

Doubleword read/write Doubleword 2:0

Singleword read/write Singleword 1:0

Halfword read/write Halfword 0

Byte, tribyte, quintibyte, sextibyte,
septibyte read/write Byte -

Block write Secondary cache block 5:0 (SCBlkSize = 0)
6:0 (SCBlkSize = 1)

Upgrade Quadword 3:0

Eliminate Secondary cache block 5:0 (SCBlkSize = 0)
6:0 (SCBlkSize = 1)

External Request Type Address Alignment
Address Bits Which

Are Ignored

Intervention Quadword 3:0

Invalidate Secondary cache block 5:0 (SCBlkSize = 0)
6:0 (SCBlkSize = 1)

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 104 Chapter 6.

SysAD[63:0] Data Cycle Encoding

During System interface data cycles, when less than a doubleword is transferred
on the SysAD[63:0] bus, the valid byte lanes depend on the request address and
the MemEnd mode bit.

For example, consider the data cycle for a byte request whose address modulo 8 is
1. When MemEnd is negated (little endian), the SysAD[15:8] byte lane is valid.
When MemEnd is asserted (big endian), the SysAD[55:48] byte lane is valid.

SysState[2:0] Encoding

The processor provides a processor coherency state response by driving the
targeted secondary cache block tag quality indication on SysState[2], driving the
targeted secondary cache block former state on SysState[1:0] and asserting
SysStateVal* for one SysClk cycle. Table 6-24 presents the encoding of the
SysState[2:0] bus when SysStateVal* is asserted.

Table 6-24 Encoding of SysState[2:0] when SysStateVal* Asserted

When SysStateVal* is negated, SysState[0] indicates if a processor coherency data
response is ready for issue. Table 6-25 presents the encoding of the SysState[2:0]
bus when SysStateVal* is negated.

Table 6-25 Encoding of SysState[2:0] When SysStateVal* Negated

SysState[2] Secondary cache block tag quality indication

 0 Tag is good

 1 Tag is bad

SysState[1:0] Secondary cache block former state

 0 Invalid

 1 Shared

 2 CleanExclusive

 3 DirtyExclusive

SysState[2:1] Reserved

SysState[0] Processor coherency data response indication

 0 Not ready for issue

 1 Ready for issue

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

System Interface Operations 105

SysResp[4:0] Encoding

An external agent issues an external completion response by driving the request
number associated with the corresponding request on SysResp[4:2], driving the
completion indication on SysResp[1:0], and asserting SysRespVal* for one
SysClk cycle. Table 6-26 presents the encoding of the SysResp[4:0] bus.

Table 6-26 Encoding of SysResp[4:0]

6.14 Interrupts
The processor supports five hardware, two software, one timer, and one
nonmaskable interrupt. The Interrupt exception is described in Chapter 17, the
section titled “Interrupt Exception.”

Hardware Interrupts

Five hardware interrupts are accessible to an external agent via external interrupt
requests.

An external interrupt request consists of a single address cycle on the System
interface. During the address cycle, SysAD[63:60] specify the target indication,
which allows an external agent to define the target processors of the external
interrupt request. If a processor determines it is an external interrupt request
target, SysAD[20:16] are the write enables for the five individual Interrupt register
bits and SysAD[4:0] are the values to be written into these bits, as shown in Figure
6-5. This allows any subset of the Interrupt register bits to be set or cleared with a
single external interrupt request.

The Interrupt register is an architecturally transparent, level-sensitive register that
is directly readable as bits 14:10 of the Cause register. Since it is level-sensitive, an
interrupt bit must remain asserted until the interrupt is taken, at which time the
interrupt handler must cause a second external interrupt request to clear the bit.

The processor clears the Interrupt register during any of the reset sequences.

SysResp[4:2] Request number

SysResp[1:0] Completion indication

 0 Acknowledge (ACK)

 1 Error (ERR)

 2 Negative acknowledge (NACK)

 3 Reserved

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 106 Chapter 6.

Figure 6-5 Hardware Interrupts

Software Interrupts

The two software interrupts are accessible as bits 9:8 of the Cause register, as shown
in Figure 6-5. An MTC0 instruction is used to write these bits.

Timer Interrupt

The timer interrupt is accessible as bit 15 of the Cause register, IP[7], as shown in
Figure 6-5. This bit is set when one of the following occurs:

• the Count register is equal to the Compare register

• either one of the two performance counters overflows

Nonmaskable Interrupt

A nonmaskable interrupt is accessible to an external agent as the SysNMI* signal.
To post a nonmaskable interrupt, an external agent asserts SysNMI* for at least
one SysClk cycle.

The processor recognizes the nonmaskable interrupt on the first SysClk cycle that
SysNMI* is asserted. After the nonmaskable interrupt is serviced, an external
agent may post another nonmaskable interrupt by first negating SysNMI* for at
least one SysClk cycle, and reasserting SysNMI* for at least one SysClk cycle.

3 2 014

19 18 161720

SysAD(4:0)
Interrupt Value

SysAD(20:16)
Write Enables

Interrupt register
Cause(15:08)

9

8

Hardware
Interrupts

Software
Interrupts

15
Timer

Interrupt

12

11

10

14

13

IP[1]

IP[0]

IP[7]

IP[4]

IP[3]

IP[2]

IP[6]

IP[5]

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

System Interface Operations 107

6.15 Protocol Abbreviations
The following abbreviations are used in the System interface protocols:

SysCmd[11:0] Abbreviations

Cmd Unspecified command

BlkRd Block read request command

RdShd Coherent block read shared request command

RdExc Coherent block read exclusive request command

DSPRd Double/single/partial-word read command

BlkWr Block write request command

DSPWr Double/single/partial-word write request command

Ugd Upgrade request command

Elm Eliminate request command

IvnShd Intervention shared request command

IvnExc Intervention exclusive request command

Alc Allocate request number command

Ivd Invalidate request command

Int Interrupt request command

ExtCoh External coherency request command

ReqDat Request data

RspDat Response data

ReqLst Request last

RspLst Response last

Empty Empty; SysCmd(11:0) and SysAD(63:0) are undefined

SysAD[63:0] Abbreviations

Adr Physical address

Dat Unspecified data

Dat<n> Doubleword n of a block

SysState[2:0] Abbreviations

State Unspecified state

Ivd Invalid

Shd Shared

ClnExc CleanExclusive

DrtExc DirtyExclusive

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 108 Chapter 6.

SysResp[4:0] Abbreviations

Rsp Unspecified completion response

ACK Acknowledge completion response

ERR Error completion response

NACK Negative acknowledge completion response

Master Abbreviations

EA External agent

Pn R10000 processor whose device number is n

- Dead cycle

6.16 System Interface Arbitration
The processor supports a simple System interface arbitration protocol, which relies
on an external arbiter. This protocol is used in uniprocessor systems,
multiprocessor systems using dedicated external agents, and multiprocessor
systems using the cluster bus. System interface arbitration is handled by the
SysReq*, SysGnt*, and SysRel* signals (request, grant, and release).

As described earlier in this chapter, the System interface resides in either master or
slave state; the processor enters slave state during all of the reset sequences.

When mastership of the System interface changes, there is always one dead
SysClk cycle during which the bidirectional signals are not driven; the processor
ignores all bidirectional signals during this dead SysClk cycle.

The protocol supports overlapped arbitration which allows arbitration to occur in
parallel with requests and responses. This results in fewer wasted cycles when
mastership of the System interface changes.

Grant parking is also supported, allowing a device to retain mastership of the
System interface as long as no other device requests the System interface.

In multiprocessor systems using the cluster bus, the external arbiter typically
implements a round-robin priority scheme.

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

System Interface Operations 109

System Interface Arbitration Rules

The rules for the System interface arbitration are listed below:

• If the System interface is in slave state, and a processor request or
coherency data response is ready for issue, and the required resources
are available (e.g. a free request number, SysRdRdy* asserted, etc.),
the processor asserts SysReq*. The processor will not assert SysReq*
unless all of the above conditions are met.

• The processor waits for the assertion of SysGnt*.

• When the processor observes the assertion of SysGnt* it negates
SysReq* two SysClk cycles later. Once the processor asserts SysReq*,
it does not negate SysReq* until the assertion of SysGnt*, even if the
need for the System interface bus is contravened by an external
coherency request.

• When the processor observes the assertion of SysRel*, it enters master
state two SysClk cycles later, and begins to drive the System interface
bus. SysRel* may be asserted coincidentally with or later than
SysGnt*.

• Once in master state, the processor does not relinquish mastership of
the System interface until it observes the negation of SysGnt*.

• The processor indicates it is relinquishing mastership of the System
interface bus by asserting SysRel* for one SysClk cycle, two or more
SysClk cycles after the negation of SysGnt*. The processor may issue
any type of processor request or coherency data response in the two
SysClk cycles following the negation of SysGnt*. This may delay the
assertion of SysRel*.

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 110 Chapter 6.

Uniprocessor System

Figure 6-6 shows how the System interface arbitration signals are used in a
uniprocessor system. Note that this same configuration would be used in a
multiprocessor system using dedicated external agents.

Figure 6-6 Arbitration Signals for Uniprocessor System

Figure 6-7 is an example of the operation of the System interface arbitration in a
uniprocessor system. The Master row in the following figures indicates which
device is driving the System interface bidirectional signals (P0 and EA in
Figure 6-7). When this row contains a dash (-), as shown in Cycle 12 of Figure 6-7,
mastership of the System interface is changing and no device is driving the System
interface bidirectional signals for this one dead SysClk cycle.

The external agent generally asserts the SysGnt* signal, which allows the
processor to issue requests at any time.

When the external agent needs to return an external data response, it negates
SysGnt* for a minimum of one cycle, waits for the processor to assert SysRel*, and
then begins driving the System interface bus after one dead SysClk cycle.

Figure 6-7 Arbitration Protocol for Uniprocessor System

SysReq*

SysGnt*

SysRel*

R10000 External
Agent

SysReq*

SysGnt*

SysRel*

Cycle

SysClk

SysReq*

SysGnt*

1 2 3 4 5 10 11 12 13 14 15 16

SysRel*

SysVal*

SysCmd(11:0)

Master

BlkRd BlkRd BlkRd

6 7 8 9 17

BlkRd RspDat BlkRdRspDat RspLstDSPWr ReqLst

P0 P0 P0 P0 P0 P0 P0 - EA EA EAP0 P0 P0 - P0P0

Minimum of 1 Cycle

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

System Interface Operations 111

Multiprocessor System Using Cluster Bus

Figure 6-8 shows how the System interface arbitration signals are used in a four-
processor system using the cluster bus.

Figure 6-8 Arbitration Signals for Multiprocessor System Using the Cluster Bus

Figure 6-9 is an example of the System interface arbitration in a four-processor
system using the cluster bus.

Figure 6-9 Arbitration Protocol for Multiprocessor System Using the Cluster Bus

SysReq*

SysGnt*

SysRel*

R100000

SysReq*

SysGnt*

SysRel*

R100001

SysReq*

SysGnt*

SysRel*

R100002

SysReq*

SysGnt*

SysRel*

R100003

External
Agent

SysReq0*

SysGnt0*

SysReq1*

SysGnt1*

SysReq2*

SysGn2*

SysReq3*

SysGnt3*

SysRel*

Cycle

SysClk

SysReq0*

SysGnt0*

1 2 3 4 5 10 11 12 13 14 15 16

SysRel*

SysVal*

SysCmd(11:0)

Master EA EA EA - P 0 P0 - P2 - EA EAEA

BlkRd

6 7 8 9 17

P1 - EA EAP2

BlkRd

SysReq1*

SysGnt1*

SysReq2*

SysGnt2*

SysReq3*

SysGnt3*

BlkRd RspDat RspDat RspDatRspDat

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 112 Chapter 6.

6.17 System Interface Request and Response Protocol
The following sections detail the System interface request and response protocol.
A 32-word secondary cache block size is assumed in the examples below.

Processor Request Protocol

A processor request is generated when the R10000 processor requires a system
resource.

The processor may only issue a processor request when the System interface is in
master state. If the System interface is in master state, the processor may issue a
processor request immediately. Processor requests may occur in adjacent SysClk
cycles. If the System interface is not in master state, the processor must first assert
SysReq*, and then wait for the external agent to relinquish mastership of the
System interface bus by asserting SysGnt* and SysRel*.

When multiple, nonconflicting processor requests and/or coherency data
responses are ready and meet all issue requirements, the processor uses the
following priority:

• block read and upgrade requests have the highest priority, followed by

• processor coherency data responses,

• processor eliminate and typical block write requests,

• processor double/single/partial-word read/write and uncached
accelerated block write requests, which have the lowest priority.

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

System Interface Operations 113

Processor Block Read Request Protocol

Errata

A processor block read request results from a cached instruction fetch, load, store,
or prefetch that misses in the secondary cache. Before issuing a processor block
read request, the processor changes the secondary cache state to Invalid.
Additionally, if the secondary cache block former state was DirtyExclusive, a write
back is scheduled. Note that if the processor block read request receives an
external NACK or ERR completion response, the secondary cache block state
remains Invalid.

The processor issues a processor block read request with a single address cycle.
The address cycle consists of the following:

• negating SysCmd[11]

• driving a free request number on SysCmd[10:8]

• driving the block read command on SysCmd[7:5]

• driving the read cause indication on SysCmd[4:3]

• driving the secondary cache block former state on SysCmd[2:1]

• asserting SysCmd[0]

• driving the target indication on SysAD[63:60]

• driving the secondary cache block way on SysAD[57]

• driving the physical address on SysAD[39:0]

• asserting SysVal*

The processor may only issue a processor block read request address cycle when
the following are true:

• the System interface is in master state

• SysRdRdy* was asserted two SysClk cycles earlier

• there is no conflicting entry in the outgoing buffer

• the maximum number of outstanding processor requests specified by
the PrcReqMax mode bits is not exceeded

• there is a free request number

• the processor is not the target of a conflicting outstanding external
coherency request

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 114 Chapter 6.

A single processor may have as many as four processor block read requests
outstanding on the System interface at any given time.

Figure 6-10 depicts four processor block read requests. Since the System interface
is initially in slave state, the processor must first assert SysReq* and then wait until
the external agent relinquishes mastership of the System interface by asserting
SysGnt* and SysRel*.

Figure 6-10 Processor Block Read Request Protocol

Cycle

SysClk

SysReq*

SysGnt*

SysVal*

SysRespPar

SysResp(4:0)

SysStateVal*

SysStatePar

SysState(2:0)

SysWrRdy*

SysRdRdy*

SysRel*

Master

SysCmdPar

SysCmd(11:0)

SysAD(63:0)

SysADChk(7:0)

1 2 3 4 5 10 11 12 13 14 15 166 7 8 9 17

BlkRd BlkRd BlkRd BlkRd

Adr Adr Adr Adr

EA EA EA EA - P 0 P0 P0 P0 P0 P0P0P0P0 P0 P0P0

SysRespVal*

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

System Interface Operations 115

Processor Double/Single/Partial-Word Read Request Protocol

A processor double/single/partial-word read request results from an uncached
instruction fetch or load.

The processor issues a processor double/single/partial-word read request with a
single address cycle. The address cycle consists of:

• negating SysCmd[11]

• driving a free request number on SysCmd[10:8]

• driving the double/single/partial-word read command on
SysCmd[7:5]

• driving the read cause indication on SysCmd[4:3]

• driving the data size indication on SysCmd[2:0]

• driving the target indication on SysAD[63:60]

• driving the uncached attribute on SysAD[59:58]

• driving the physical address on SysAD[39:0]

• asserting SysVal*

The processor may only issue a processor double/single/partial-word read
request address cycle when:

• the System interface is in master state

• SysRdRdy* was asserted two SysClk cycles previously

• the maximum number of outstanding processor requests specified by
the PrcReqMax mode bits is not exceeded

• there is a free request number

A single processor may have a maximum of one processor double/single/partial-
word read request outstanding on the System interface at any given time.

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 116 Chapter 6.

Figure 6-11 depicts a processor double/single/partial-word read request. Since
the System interface is initially in slave state, the processor must first assert
SysReq* and then wait until the external agent gives up mastership of the System
interface by asserting SysGnt* and SysRel*.

Figure 6-11 Processor Double/Single/Partial-Word Read Request Protocol

Cycle

SysClk

SysReq*

SysGnt*

SysVal*

SysRespPar

SysResp(4:0)

SysStateVal*

SysStatePar

SysState(2:0)

SysWrRdy*

SysRdRdy*

SysRel*

Master

SysCmdPar

SysCmd(11:0)

SysAD(63:0)

SysADChk(7:0)

1 2 3 4 5 10 11 12 13 14 15 166 7 8 9 17

DSPRd

Adr

EA EA EA EA - P 0 P0 P0 P0 P0 P0P0P0P0 P0 P0P0

SysRespVal*

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

System Interface Operations 117

Processor Block Write Request Protocol

A processor block write request results from the following:

• replacement of a DirtyExclusive secondary cache block due to a load,
store, or prefetch secondary cache miss

• a CACHE Index WriteBack Invalidate (S) or Hit WriteBack Invalidate
(S) instruction

• a completely gathered uncached accelerated block

As shown in Figure 6-12, the processor issues a processor block write request with
a single address cycle followed by 8 or 16 data cycles.

The address cycle consists of the following:

• negating SysCmd[11]

• driving the block write command on SysCmd[7:5]

• driving the write cause indication on SysCmd[4:3]

• driving the target indication on SysAD[63:60]

• driving the physical address on SysAD[39:0]

• asserting SysVal*

Errata

If the processor block write request results from the writeback of a secondary
cache block, the Dirty Exclusive secondary cache block former state is driven on
SysAD[2:1], the secondary cache block way is driven on SysAD[57] and
SysCmd[0] is asserted.

If the processor block write request results from a completely gathered uncached
accelerated block, the uncached attribute is driven on SysAD[59:58] and
SysCmd[0] is negated.

Each data cycle consists of the following:

• asserting SysCmd[11]

• driving the data quality indication on SysCmd[5]

• driving the data type indication on SysCmd[4:3]

• driving the data on SysAD[63:0]

• asserting SysVal*

The first 7 or 15 data cycles have a request data type indication, and the last data
cycle has a request last data type indication.

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 118 Chapter 6.

The processor may negate SysVal* between data cycles of a processor block write
request only if the SCClk frequency is less than half of the SysClk frequency.

The processor may only issue a processor block write request address cycle when
the following are true:

• the System interface is in master state

• SysWrRdy* was asserted two SysClk cycles previously

• the processor is not the target of a conflicting outstanding external
coherency request

Figure 6-12 depicts two adjacent processor block write requests. Since the System
interface is initially in slave state, the processor must first assert SysReq* and then
wait until the external agent relinquishes mastership of the System interface by
asserting SysGnt* and SysRel*.

Figure 6-12 Processor Block Write Request Protocol

Cycle

SysClk

SysReq*

SysGnt*

SysVal*

SysRespPar

SysResp(4:0)

SysStateVal*

SysStatePar

SysState(2:0)

SysWrRdy*

SysRdRdy*

SysRel*

Master

SysCmdPar

SysCmd(11:0)

SysAD(63:0)

SysADChk(7:0)

1 2 3 4 5 10 11 12 13 14 15 166 7 8 9 17

BlkWr ReqDat ReqDat ReqLst

Adr Dat0 Dat14 Dat15

EA EA EA EA - P 0 P0 P0 P0 P0 P0P0P0P0 P0 P0P0

BlkWr ReqDat ReqDat ReqLst

Adr Dat0 Dat14 Dat15

SysRespVal*

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

System Interface Operations 119

Processor Double/Single/Partial-Word Write Request Protocol

A processor double/single/partial-word write request results from an uncached
store or incompletely gathered uncached accelerated block.

As shown in Figure 6-13, the processor issues a processor double/single/partial-
word write request with a single address cycle immediately followed by a single
data cycle.

The address cycle consists of the following:

• negating SysCmd[11]

• driving the double/single/partial-word write command on
SysCmd[7:5]

• driving the write cause indication on SysCmd[4:3]

• driving the data size indication on SysCmd[2:0]

• driving the target indication on SysAD[63:60]

• driving the uncached attribute on SysAD[59:58]

• driving the physical address on SysAD[39:0]

• asserting SysVal*

The data cycle consists of the following:

• asserting SysCmd[11]

• driving the request last data type indication on SysCmd[4:3]

• driving the write data on SysAD[63:0]

• asserting SysVal*

The processor may only issue a processor double/single/partial-word write
request address cycle when the System interface is in master state and SysWrRdy*
was asserted two SysClk cycles previously.

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 120 Chapter 6.

Figure 6-13 depicts three processor double/single/partial write requests. Since
the System interface is initially in slave state, the processor must first assert
SysReq* and then wait until the external agent relinquishes mastership of the
System interface by asserting SysGnt* and SysRel*.

Figure 6-13 Processor Double/Single/Partial-Word Write Request Protocol

Cycle

SysClk

SysReq*

SysGnt*

SysVal*

SysRespPar

SysResp(4:0)

SysStateVal*

SysStatePar

SysState(2:0)

SysWrRdy*

SysRdRdy*

SysRel*

Master

SysCmdPar

SysCmd(11:0)

SysAD(63:0)

SysADChk(7:0)

1 2 3 4 5 10 11 12 13 14 15 166 7 8 9 17

DSPWr DSPWr ReqLst DSPWr ReqLst

Adr Adr Dat Adr Dat

EA EA EA EA - P 0 P0 P0 P0 P0 P0P0P0P0 P0 P0P0

ReqLst

Dat

SysRespVal*

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

System Interface Operations 121

Processor Upgrade Request Protocol

A processor upgrade request results from a store or prefetch exclusive that hits a
Shared block in the secondary cache.

As shown in Figure 6-14, the processor issues a processor upgrade request with a
single address cycle. This address cycle consists of the following:

• negating SysCmd[11]

• driving a free request number on SysCmd[10:8]

• driving the upgrade command on SysCmd[7:5]

• driving the upgrade cause indication on SysCmd[4:3]

• driving the secondary cache block former state on SysCmd[2:1]

• asserting SysCmd[0]

• driving the target indication on SysAD[63:60]

• driving the secondary cache block way on SysAD[57]

• driving the physical address on SysAD[39:0]

• asserting SysVal*

The processor may only issue a processor upgrade request address cycle when the
following are true:

• the System interface is in master state

• SysRdRdy* was asserted two SysClk cycles previously

• the maximum number of outstanding processor requests specified by
the PrcReqMax mode bits is not exceeded

• there is a free request number

• the processor is not the target of a conflicting outstanding external
coherency request

A single processor may have as many as four processor upgrade requests
outstanding on the System interface at any given time.

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 122 Chapter 6.

Figure 6-14 depicts four processor upgrade requests. Since the System interface is
initially in slave state, the processor must first assert SysReq* and then wait until
the external agent relinquishes mastership of the System interface by asserting
SysGnt* and SysRel*.

Figure 6-14 Processor Upgrade Request Protocol

Cycle

SysClk

SysReq*

SysGnt*

SysVal*

SysRespPar

SysResp(4:0)

SysStateVal*

SysStatePar

SysState(2:0)

SysWrRdy*

SysRdRdy*

SysRel*

Master

SysCmdPar

SysCmd(11:0)

SysAD(63:0)

SysADChk(7:0)

1 2 3 4 5 10 11 12 13 14 15 166 7 8 9 17

Ugd

Adr

EA EA EA EA - P 0 P0 P0 P0 P0 P0P0P0P0 P0 P0P0

SysRespVal*

Ugd

Adr

Ugd

Adr

Ugd

Adr

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

System Interface Operations 123

Processor Eliminate Request Protocol

A processor eliminate request results from the following:

• a cached instruction fetch, load, store, or prefetch that misses in the
secondary cache and forces the replacement of a Shared or
CleanExclusive secondary cache block

• a CACHE Index WriteBack Invalidate (S), Hit Invalidate (S), or Hit
WriteBack Invalidate (S) instruction that forces the invalidation of a
Shared or CleanExclusive secondary cache block

• a CACHE Hit Invalidate (S) instruction that forces the invalidation of
a DirtyExclusive secondary cache block.

A processor eliminate request notifies the external agent that a Shared,
CleanExclusive, or DirtyExclusive block has been eliminated from the secondary
cache. Such requests are useful for systems implementing a directory-based
coherency protocol, and are enabled by asserting the PrcElmReq mode bit.

The processor issues a processor eliminate request with a single address cycle.
This address cycle consists of the following:

• negating SysCmd[11]

• driving the special command on SysCmd[7:5]

• driving the eliminate special cause indication on SysCmd[4:3]

• driving the secondary cache block former state on SysCmd[2:1]

• asserting SysCmd[0]

• driving the target indication on SysAD[63:60]

• driving the secondary cache block way on SysAD[57]

• driving the physical address of the eliminated secondary cache block
on SysAD[39:0]

• asserting SysVal*

The processor may only issue a processor eliminate request address cycle when
the following are true:

• the System interface is in master state

• SysWrRdy* was asserted two SysClk cycles previously

• the PrcElmReq mode bit is asserted

• the processor is not the target of a conflicting outstanding external
coherency request

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 124 Chapter 6.

Figure 6-15 depicts three processor eliminate requests. Since the System interface
is initially in slave state, the processor must first assert SysReq* and then wait until
the external agent relinquishes mastership of the System interface by asserting
SysGnt* and SysRel*.

Figure 6-15 Processor Eliminate Request Protocol

Cycle

SysClk

SysReq*

SysGnt*

SysVal*

SysRespPar

SysResp(4:0)

SysStateVal*

SysStatePar

SysState(2:0)

SysWrRdy*

SysRdRdy*

SysRel*

Master

SysCmdPar

SysCmd(11:0)

SysAD(63:0)

SysADChk(7:0)

1 2 3 4 5 10 11 12 13 14 15 166 7 8 9 17

Elm

Adr

EA EA EA EA - P 0 P0 P0 P0 P0 P0P0P0P0 P0 P0P0

SysRespVal*

Elm

Adr

Elm

Adr

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

System Interface Operations 125

Processor Request Flow Control Protocol

The processor provides the signals SysRdRdy* and SysWrRdy* to allow an
external agent to control the flow of processor requests. SysRdRdy* controls the
flow of processor read and upgrade requests whereas SysWrRdy* controls the
flow of processor write and eliminate requests.

The processor can only issue a processor read or upgrade request address cycle to
the System interface if SysRdRdy* was asserted two SysClk cycles previously.
Similarly, the processor can only issue the address cycle of a processor write or
eliminate request to the System interface if SysWrRdy* was asserted two SysClk
cycles previously.

To determine the processor request buffering requirements for the external agent,
note that the processor can issue any combination of processor requests in
adjacent SysClk cycles. Also, since the System interface operates register-to-
register with the external agent, a round trip delay of four SysClk cycles occurs
between a processor request address cycle which prompts the external agent for
flow control, and the flow control actually preventing any additional processor
request address cycles from occurring. Consequently, if the maximum number of
outstanding processor requests specified by the PrcReqMax mode bits is four, the
external agent must be able to accept at least four processor read or upgrade
requests. Also, the external agent must be able to accept at least four processor
eliminate requests, two processor double/single/partial-word write requests, or
one processor block write request.

Figure 6-16 depicts three processor double/single/partial-word write requests
and four processor block read requests. After sensing the first processor double/
single/partial-word write request, the external agent negates SysWrRdy*. The
external agent must have buffering sufficient for one additional processor write
request before the flow control takes effect.

The external agent negates SysRdRdy* upon observing the first processor read
request. The external agent must have buffering sufficient for three additional
processor read requests before the flow control takes effect.

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 126 Chapter 6.

Figure 6-16 Processor Request Flow Control Protocol

Cycle

SysClk

SysReq*

SysGnt*

SysVal*

SysRespPar

SysResp(4:0)

SysStateVal*

SysStatePar

SysState(2:0)

SysWrRdy*

SysRdRdy*

SysRel*

Master

SysCmdPar

SysCmd(11:0)

SysAD(63:0)

SysADChk(7:0)

1 2 3 4 5 10 11 12 13 14 15 166 7 8 9 17

DSPWr DSPWr ReqLst DSPWr ReqLst

Adr Adr Dat Adr Dat

P0 P0 P0 P0 P0 P0 P0 P0 P0 P0 P0P0P0P0 P0 P0P0

ReqLst

Dat

BlkRd

Adr

BlkRd

Adr

BlkRd

Adr

BlkRd

Adr

SysRespVal*

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

System Interface Operations 127

External Response Protocol

The processor supports two classes of external responses:

• external data responses provide a double/single/partial-word of data
or provide a block of data using the SysAD[63:0] bus

• external completion responses provide an acknowledge, error, or
negative acknowledge indication using the SysResp[4:0] bus

An external agent may only issue an external data response to the processor when
the System interface is in slave state. If the System interface is not already in slave
state, the external agent must first negate SysGnt* and then wait for the processor
to assert SysRel*. If the System interface is already in slave state, the external
agent may issue an external data response immediately.

External data responses may be accepted by the processor in adjacent SysClk
cycles and in arbitrary order, relative to corresponding processor requests.

An external agent may issue an external completion response when the System
interface is in either master or slave state. External completion responses may be
accepted by the processor in adjacent SysClk cycles and in arbitrary order,
relative to the corresponding processor requests.

External Block Data Response Protocol

An external agent may issue an external block data response in response to a
processor block read or upgrade request.

An external agent issues an external block data response with 8 or 16 data cycles.
Each data cycle consists of the following:

• asserting SysCmd[11]

• driving the request number associated with the corresponding
processor request on SysCmd[10:8]

• driving the data quality indication on SysCmd[5]

• driving the data type indication on SysCmd[4:3]

• driving the cache block state on SysCmd[2:1]

• driving the ECC check indication on SysCmd[0]

• driving the data on SysAD[63:0]

• asserting SysVal*

The first 7 or 15 data cycles have a response data type indication, and the last data
cycle has a response last data type indication. The external agent may negate
SysVal* between data cycles of an external block data response.

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 128 Chapter 6.

External block data response data must be supplied in subblock order, beginning
with the quadword-aligned address specified by the corresponding processor
request.

External block data responses for processor coherent block read shared or
noncoherent block read requests may indicate a state of Shared, CleanExclusive, or
DirtyExclusive. External block data responses for processor coherent block read
exclusive or upgrade requests may indicate a state of CleanExclusive or
DirtyExclusive.

Figure 6-17 depicts two processor block read requests and the corresponding
external block data responses.

Figure 6-17 External Block Data Response Protocol

Cycle

SysClk

SysReq*

SysGnt*

SysVal*

SysRespPar

SysResp(4:0)

SysStateVal*

SysStatePar

SysState(2:0)

SysWrRdy*

SysRdRdy*

SysRel*

Master

SysCmdPar

SysCmd(11:0)

SysAD(63:0)

SysADChk(7:0)

1 2 3 4 5 10 11 12 13 14 15 166 7 8 9 17

BlkRd BlkRd RspDat RspDat RspLst

Adr Adr Dat0 Dat14 Dat15

P0 P0 P0 P0 P0 P0 P0 P0 - EA P0-EAEA EA EAEA

RspDat RspDat RspLst

Dat0 Dat14 Dat15

SysRespVal*

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

System Interface Operations 129

External Double/Single/Partial-Word Data Response Protocol

An external agent may issue an external double/single/partial-word data
response in response to a processor double/single/partial-word read request.

An external agent issues an external double/single/partial-word data response
with a single data cycle; the data cycle consists of:

• asserting SysCmd[11]

• driving the request number associated with the corresponding
processor request on SysCmd[10:8]

• driving the data quality indication on SysCmd[5]

• driving the response last data type indication on SysCmd[4:3]

• driving the ECC check indication on SysCmd[0]

• driving the data on SysAD[63:0]

• asserting SysVal*

Figure 6-18 depicts a processor double/single/partial-word read request and the
corresponding external double/single/partial-word data response.

Figure 6-18 External Double/Single/Partial-Word Data Response Protocol

Cycle

SysClk

SysReq*

SysGnt*

SysVal*

SysRespPar

SysResp(4:0)

SysStateVal*

SysStatePar

SysState(2:0)

SysWrRdy*

SysRdRdy*

SysRel*

Master

SysCmdPar

SysCmd(11:0)

SysAD(63:0)

SysADChk(7:0)

1 2 3 4 5 10 11 12 13 14 15 166 7 8 9 17

DSPRd RspLst

Adr Dat

P0 P0 P0 P0 P0 - EA -P0 P0 P0P0P0P0 P0 P0P0

SysRespVal*

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 130 Chapter 6.

External Completion Response Protocol

An external agent issues an external completion response to provide an
acknowledge, error, or negative acknowledge to an outstanding request, and to
free the associated request number.

An external agent issues an external completion response by driving the response
on SysResp[4:0] and asserting SysRespVal* for one SysClk cycle. SysResp[4:2]
contains the request number associated with the corresponding outstanding
request and SysResp[1:0] contains an acknowledge, error, or negative
acknowledge indication, as described below:

• The external agent issues an external ACK completion response for a
processor read or upgrade request to indicate that the request was
successful. An external ACK completion response may only be issued
for a processor read request if a corresponding external data response
is coincidentally or previously issued.

• The external agent issues an external ERR completion response for a
processor read or upgrade request to indicate that the request was
unsuccessful. Upon receiving an external ERR completion response, the
processor takes a Bus Error exception on the associated instruction. If
the processor read or upgrade request was caused by a PREFETCH
instruction, no exception is taken. Also, if the request was caused by a
speculative instruction, no exception is taken.

• The external agent issues an external NACK completion response for a
processor read or upgrade request to indicate that the request was not
accepted. Upon receiving an external NACK completion response, the
processor re-evaluates the associated instruction. Due to the
speculative nature of the R10000 processor, the re-evaluation may or
may not result in the reissue of a similar processor request.

An external ERR or NACK completion response issued in response to an external
intervention, allocate request number, or invalidate has no affect on the processor
except to free the request number.

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

System Interface Operations 131

Figure 6-19 depicts a processor upgrade request and a corresponding external
completion response.

Figure 6-19 External Completion Response Protocol

Cycle

SysClk

SysReq*

SysGnt*

SysVal*

SysRespPar

SysResp(4:0)

SysStateVal*

SysStatePar

SysState(2:0)

SysWrRdy*

SysRdRdy*

SysRel*

Master

SysCmdPar

SysCmd(11:0)

SysAD(63:0)

SysADChk(7:0)

1 2 3 4 5 10 11 12 13 14 15 166 7 8 9 17

Ugd

Adr

P0 P0 P0 P0 P0 P0 P0 P0 P0 P0 P0P0P0P0 P0 P0P0

SysRespVal*

Rsp

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 132 Chapter 6.

External Request Protocol

Errata

An external agent issues an external request when it requires a resource within the
processor. The external agent refers to any device attached to the processor system
interface. It may be memory interface or cluster coordinator ASIC, or another
processor residing on the cluster bus.

An external agent may only issue an external request to the processor when the
System interface is in slave state. If the System interface is not already in slave
state, the external agent must first negate SysGnt* and then wait for the processor
to assert SysRel*. If the System interface is already in slave state, the external
agent may issue an external request immediately. The total number of outstanding
external requests, including interventions, allocate request numbers, and
invalidates, cannot exceed eight.

External requests may be accepted by the processor in adjacent SysClk cycles.
External intervention and invalidate requests are considered external coherency
requests.

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

System Interface Operations 133

External Intervention Request Protocol

An external agent issues an external intervention request to obtain a Shared or
Exclusive copy of a secondary cache block.

An external agent issues an external intervention request with a single address
cycle; this address cycle consists of the following:

• negating SysCmd[11]

• driving a request number on SysCmd[10:8]

• driving the intervention command on SysCmd[7:5]

• driving the ECC check indication on SysCmd[0]

• driving the target indication on SysAD[63:60]

• driving the physical address on SysAD[39:0]

• asserting SysVal*

An external agent may only issue an external intervention request address cycle
when the System interface is in slave state; typically a free request number is
specified. An external agent may have as many as eight external intervention
requests outstanding on the System interface at any given time.

Figure 6-20 depicts three external intervention requests. Since the System
interface is initially in master state, the external agent must first negate SysGnt*
and then wait until the processor relinquishes mastership of the System interface
by asserting SysRel*.

Figure 6-20 External Intervention Request Protocol

Cycle

SysClk

SysReq*

SysGnt*

SysVal*

SysRespPar

SysResp(4:0)

SysStateVal*

SysStatePar

SysState(2:0)

SysWrRdy*

SysRdRdy*

SysRel*

Master

SysCmdPar

SysCmd(11:0)

SysAD(63:0)

SysADChk(7:0)

1 2 3 4 5 10 11 12 13 14 15 166 7 8 9 17

IvnShd

Adr

P0 P0 P0 P0 P0 - EA EA EA EA EAEAEAEA EA EAEA

SysRespVal*

IvnExc

Adr

IvnShd

Adr

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 134 Chapter 6.

External Allocate Request Number Request Protocol

An external agent issues an external allocate request number request to reserve a
request number for private use. Once allocated, the processor is prevented from
using the request number until an external completion response for the request
number is received.

An external agent issues an external allocate request number request with a single
address cycle; this address cycle consists of the following:

• negating SysCmd[11]

• driving a free request number on SysCmd[10:8]

• driving the allocate request number command on SysCmd[7:5]

• asserting SysVal*

An external agent may only issue an external allocate request number request
address cycle when the System interface is in slave state and there is a free request
number. The external agent may have as many as eight external allocate request
number requests outstanding on the System interface at any given time.

Figure 6-21 depicts three external allocate request number requests. Since the
System interface is initially in master state, the external agent must first negate
SysGnt* and then wait until the processor relinquishes mastership of the System
interface by asserting SysRel*.

Figure 6-21 External Allocate Request Number Request Protocol

Cycle

SysClk

SysReq*

SysGnt*

SysVal*

SysRespPar

SysResp(4:0)

SysStateVal*

SysStatePar

SysState(2:0)

SysWrRdy*

SysRdRdy*

SysRel*

Master

SysCmdPar

SysCmd(11:0)

SysAD(63:0)

SysADChk(7:0)

1 2 3 4 5 10 11 12 13 14 15 166 7 8 9 17

Alc

P0 P0 P0 P0 P0 - EA EA EA EA EAEAEAEA EA EAEA

SysRespVal*

Alc Alc

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

System Interface Operations 135

External Invalidate Request Protocol

An external agent issues an external invalidate request to invalidate a secondary
cache block.

An external agent issues an external invalidate request with a single address cycle.
This address cycle consists of the following:

• negating SysCmd[11]

• driving a request number on SysCmd[10:8]

• driving the invalidate command on SysCmd[7:5]

• driving the ECC check indication on SysCmd[0]

• driving the target indication on SysAD[63:60]

• driving the physical address on SysAD[39:0]

• asserting SysVal*

An external agent may only issue an external invalidate request address cycle
when the System interface is in slave state; typically a free request number is
specified. An external agent may have as many as eight external invalidate
requests outstanding on the System interface at any given time.

Figure 6-22 depicts three external invalidate requests. Since the System interface
is initially in master state, the external agent must first negate SysGnt* and then
wait until the processor relinquishes mastership of the System interface by
asserting SysRel*.

Figure 6-22 External Invalidate Request Protocol

Cycle

SysClk

SysReq*

SysGnt*

SysVal*

SysRespPar

SysResp(4:0)

SysStateVal*

SysStatePar

SysState(2:0)

SysWrRdy*

SysRdRdy*

SysRel*

Master

SysCmdPar

SysCmd(11:0)

SysAD(63:0)

SysADChk(7:0)

1 2 3 4 5 10 11 12 13 14 15 166 7 8 9 17

Ivd

Adr

P0 P0 P0 P0 P0 - EA EA EA EA EAEAEAEA EA EAEA

SysRespVal*

Ivd

Adr

Ivd

Adr

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 136 Chapter 6.

External Interrupt Request Protocol

An external agent issues an external interrupt request to interrupt the normal
instruction flow of the processor.

An external agent issues an external interrupt request with a single address cycle.
This address cycle consists of the following:

• negating SysCmd[11]

• driving the special command on SysCmd[7:5]

• driving the interrupt special cause indication on SysCmd[4:3]

• driving the ECC check indication on SysCmd[0]

• driving the target indication on SysAD[63:60]

• driving the Interrupt register write enables on SysAD[20:16]

• driving the Interrupt register values on SysAD[4:0]

• asserting SysVal*

An external agent may only issue an external interrupt request address cycle when
the System interface is in slave state.

Figure 6-23 depicts three external interrupt requests. Since the System interface is
initially in master state, the external agent must first negate SysGnt* and then wait
until the processor relinquishes mastership of the System interface by asserting
SysRel*.

Figure 6-23 External Interrupt Request Protocol

Cycle

SysClk

SysReq*

SysGnt*

SysVal*

SysRespPar

SysResp(4:0)

SysStateVal*

SysStatePar

SysState(2:0)

SysWrRdy*

SysRdRdy*

SysRel*

Master

SysCmdPar

SysCmd(11:0)

SysAD(63:0)

SysADChk(7:0)

1 2 3 4 5 10 11 12 13 14 15 166 7 8 9 17

Int

Adr

P0 P0 P0 P0 P0 - EA EA EA EA EAEAEAEA EA EAEA

SysRespVal*

Int

Adr

Int

Adr

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

System Interface Operations 137

Processor Response Protocol

Processor responses are supplied by the processor in response to external
coherency requests that target the processor. The R10000 processor issues a
processor coherency state response for each external coherency request that
targets the processor. The processor issues a processor coherency data response
for each external intervention request that targets the processor and hits a
DirtyExclusive secondary cache block.

Processor coherency state responses are issued by the processor in the same order
that the corresponding external coherency requests are received. Processor
coherency state and data responses may occur in adjacent SysClk cycles.

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 138 Chapter 6.

Processor Coherency State Response Protocol

A processor coherency state response results from an external coherency request
that targets the processor.

Errata

The processor issues a processor coherency state response by driving the
secondary cache block tag quality indication on SysState[2], driving the secondary
cache block former state on SysState[1:0], and asserting SysStateVal* for one
SysClk cycle. The processor coherency state responses are issued in an order
designated by the external coherency requests and will always be issued before an
associated processor coherency data response. Note that processor coherency
state responses can be pipelined ahead of the associated processor coherency data
responses, and processor coherency data responses can be returned out-of-order.
These cases typically arise from external coherency requests hitting outgoing
buffer entries.

Figure 6-24 depicts two external coherency requests and the resulting processor
coherency state responses.

Figure 6-24 Processor Coherency State Response Protocol

Cycle

SysClk

SysReq*

SysGnt*

SysVal*

SysRespPar

SysResp(4:0)

SysStateVal*

SysStatePar

SysState(2:0)

SysWrRdy*

SysRdRdy*

SysRel*

Master

SysCmdPar

SysCmd(11:0)

SysAD(63:0)

SysADChk(7:0)

1 2 3 4 5 10 11 12 13 14 15 166 7 8 9 17

IvnExc

Adr

P0 P0 P0 P0 P0 - EA EA EA EA EAEAEAEA EA EAEA

Ivd

SysRespVal*

Shd

IvnShd

Adr

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

System Interface Operations 139

Processor Coherency Data Response Protocol

A processor coherency data response results from an external intervention request
that targets the processor and hits a DirtyExclusive secondary cache block.

The processor issues a processor coherency data response with a single empty
cycle followed by either 8 or 16 data cycles. The empty cycle consists of negating
SysVal* for a single SysClk cycle. The data cycles consist of the following:

• asserting SysCmd[11]

• driving the request number associated with the corresponding
external coherency request on SysCmd[10:8]

• driving the data quality indication on SysCmd[5]

• driving the data type indication on SysCmd[4:3]

• driving the state of the cache block on SysCmd[2:1]

• asserting SysCmd[0]

• driving the data on SysAD[63:0],

• asserting SysVal*

The first 7 or 15 data cycles have a response data type indication, and the last data
cycle has a response last data indication. The processor may negate SysVal*
between data cycles of a processor coherency data response only if the SCClk
frequency is less than half of the SysClk frequency.

The processor may only issue a processor coherency data response when the
System interface is in master state and SysWrRdy* was asserted two SysClk
cycles previously. Note that the empty cycle is considered the issue cycle for a
processor coherency data response. If the System interface is not already in
master state, the processor must first assert SysReq*, and then wait for the
external agent to relinquish mastership of the System interface bus by asserting
SysGnt* and SysRel*. If the System interface is already in master state, the
processor may issue a processor coherency data response immediately.

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 140 Chapter 6.

Errata

When SysStateVal* is negated, SysState[0] provides the processor coherency data
response indication. The processor asserts the processor coherency data response
indication when there are one or more processor coherency data responses
pending issue in the outgoing buffer. Once asserted, the indication is negated
when the first doubleword of the last pending issue processor coherency data
response is issued to the system interface bus. The processor coherency data
response indication is not affected by SysWrRdy*. However, as previously noted
the processor may only issue a processor coherency data response when
SysWrRdy* was asserted two SysClk cycles previously.

Processor coherency data response data is supplied in subblock order, beginning
with the quadword-aligned address specified by the corresponding external
coherency request. Processor coherency data responses are not necessarily issued
in the same order as the external coherency requests; however each processor
coherency data response always follows the corresponding processor coherency
state response. Note that more than one processor coherency state response may
be pipelined ahead of the corresponding processor coherency data responses.

Figure 6-25 depicts one external coherency request and the resulting processor
coherency state and data responses.

Figure 6-25 Processor Coherency Data Response Protocol

Cycle

SysClk

SysReq*

SysGnt*

SysVal*

SysRespPar

SysResp(4:0)

SysStateVal*

SysStatePar

SysState(2:0)

SysWrRdy*

SysRdRdy*

SysRel*

Master

SysCmdPar

SysCmd(11:0)

SysAD(63:0)

SysADChk(7:0)

1 2 3 4 5 10 11 12 13 14 15 166 7 8 9 17

IvnExc

Adr

EA EA EA EA EA EA EA EA - P 0 P0P0P0P0 P0 P0P0

DrtExc

RspDat RspDat RspLst

Dat0 Dat14 Dat15

SysRespVal*

10 00

Empty

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

System Interface Operations 141

6.18 System Interface Coherency
The System interface supports external intervention shared, intervention
exclusive, and invalidate coherency requests. These requests are used by an
external agent or other R10000 processors on the cluster bus to maintain cache
coherency.

Each external coherency request that targets an R10000 results in a processor
coherency state response. Additionally, each external intervention request that
targets the R10000 and hits a DirtyExclusive secondary cache block results in a
processor coherency data response.

External coherency requests and the corresponding processor coherency state
responses are handled in FIFO order.

External Intervention Shared Request

An external intervention shared request is used by an external agent to obtain a
Shared copy of a cache block. If the desired block resides in the processor cache, it
is marked Shared.

If the secondary cache block’s former state was DirtyExclusive, the processor
issues a processor coherency data response.

External Intervention Exclusive Request

An external intervention exclusive request is used by an external agent to obtain
an Exclusive copy of a cache block. If the desired block resides in the processor
cache, it is marked Invalid.

If the secondary cache block’s former state was DirtyExclusive, the processor
issues a processor coherency data response.

External Invalidate Request

An external invalidate request is used by an external agent to invalidate a cache
block. If the desired block resides in the processor cache, it is marked Invalid.

Under normal circumstances, the secondary cache block former state should not
be CleanExclusive or DirtyExclusive.

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 142 Chapter 6.

External Coherency Request Action

Table 6-27 indicates the action taken for external coherency requests that target the
processor.

Table 6-27 Action Taken for External Coherency Requests that Target the R10000 Processor†

‡ This should not occur under normal circumstances.

* The processor coherency data response must be written back to memory.

† These actions are taken in cases where there are no internal coherency conflicts. For
exceptions due to internal coherency conflicts, please refer to Table 6-28.

Secondary Cache
Block

Former State

Type of
External Request

Secondary
Cache Block
New State

Processor
Coherency State

Response
SysState[1:0]

Processor
Coherency

Data
Response
Required?

Processor
Coherency Data
Response State

SysCmd[2:1]

Invalid
Intervention shared
Intervention exclusive
Invalidate

Invalid
Invalid
Invalid

0
0
0

No
No
No

N/A
N/A
N/A

Shared
Intervention shared
Intervention exclusive
Invalidate

Shared
Invalid
Invalid

1
1
1

No
No
No

N/A
N/A
N/A

CleanExclusive
Intervention shared
Intervention exclusive
Invalidate‡

Shared
Invalid
Invalid

2
2
2

No
No
No

N/A
N/A
N/A

DirtyExclusive
Intervention shared*

Intervention exclusive
Invalidate∗

Shared
Invalid
Invalid

3
3
3

Yes
Yes
No

Shared
DirtyExclusive

N/A

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

System Interface Operations 143

Coherency Conflicts

Coherency conflicts arise when a processor request and an external request target
the same secondary cache block. Coherency conflicts may be categorized as either
internal or external, and are described in this section.

Internal Coherency Conflicts

A processor request is considered to be pending issue when it is buffered in the
processor and has not yet been issued to the System interface bus. Internal
coherency conflicts occur when the processor has a processor request pending
issue and a conflicting external coherency request is received. Internal coherency
conflicts are unavoidable and cannot be anticipated by the external agent since it
cannot anticipate when the processor will have processor requests pending issue.

Table 6-28 describes the manner in which the processor resolves internal
coherency conflicts.

Table 6-28 Internal Coherency Conflict Resolution

‡ If the processor eliminate request that is pending issue has a DirtyExclusive state, a CleanExclusive processor coherency state
response is provided.

 Processor Request
Pending Issue

Conflicting External
Coherency Request

Resolution

Coherent block read

Intervention shared The processor allows the conflicting external
coherency request to proceed and provides an
Invalid processor coherency state response. The
processor stalls the processor coherent block
read request until the conflicting external
coherency request has received an external
completion response.

Intervention exclusive

Invalidate

Upgrade

Intervention shared The processor allows the conflicting external
coherency request to proceed and provides a
Shared processor coherency state response. Once
the conflicting external coherency request has
received an external completion response, the
processor internally NACKs the processor
upgrade request that is pending issue.

Intervention exclusive

Invalidate

Block write

Intervention shared The processor provides a DirtyExclusive
processor coherency state response and changes
the processor block write request that is pending
issue into a DirtyExclusive processor coherency
data response.

Intervention exclusive

Invalidate

The processor provides a DirtyExclusive
processor coherency state response and deletes
the processor block write request that is pending
issue.

Eliminate

Intervention shared The processor provides a Shared or
CleanExclusive processor coherency state
response and deletes the processor eliminate
request that is pending issue.‡

Intervention exclusive

Invalidate

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 144 Chapter 6.

External Coherency Conflicts

Errata

A processor request is considered to be pending response when it has been issued
to the System interface bus but has not yet received an external data or completion
response. External coherency conflicts occur when the processor has a processor
request that is pending response and a conflicting external coherency request is
received. The processor relies on the external agent to detect and resolve external
coherency conflicts. If the external agent chooses to issue an external coherency
request to the processor which causes an external coherency conflict, the external
coherency request must be completed before an external response is given to the
conflicting processor request.

External coherency conflicts may be avoided if the point of coherence is the
processor System interface bus and only one request is allowed to be outstanding
for any given secondary cache block. However, in some system designs external
coherency conflicts are unavoidable.

Processor block write and eliminate requests are never pending response, and
therefore cannot cause external coherency conflicts.

Table 6-29 describes the manner in which the external agent resolves external
coherency conflicts.

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

System Interface Operations 145

Table 6-29 External Coherency Conflict Resolution

Errata

Revised the two footnotes in Table 6-29 above.

‡ Although it is not required, the external agent may choose to issue the conflicting external coherency request to R10000 and the
processor will return an invalid processor coherency state response.

* Although it is not required, the external agent may choose to issue the conflicting external coherency request to R10000 and the
processor will return a shared processor coherency state response.

 Processor Requests that
are Pending Response

Conflicting External
Coherency Request

Resolution

Coherent block read

Intervention shared The external agent responds to the external
coherency requestor that the block is Invalid. At
some later time, the external agent supplies an
external response to the processor coherent
block read request that is pending response.‡

Intervention exclusive

Invalidate

Upgrade

Intervention shared

The external agent responds to the external
coherency requestor that the block is Shared. At
some later time, the external agent supplies an
external response to the processor upgrade
request that is pending response.*

Intervention exclusive The external agent issues the conflicting external
coherency request to the processor. The
processor allows the conflicting external
coherency request to proceed and supplies a
Shared processor coherency state response. After
observing the processor coherency state
response, the external agent provides an external
ACK completion response for the conflicting
external coherency request. At some later time,
the external agent supplies an external response
for the processor upgrade request that is
pending response. This external response may
not be an external ACK completion response
unless it is associated with an external block data
response.

Invalidate

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 146 Chapter 6.

External Coherency Request Latency

This section describes the R10000 external coherency request latency. Figure 6-26
depicts the following:

• an external coherency request which targets the processor

• the resulting processor coherency state response

• the potential processor coherency data response

Two external coherency request latency parameters are also defined:

• the processor coherency state response latency, tpcsr, specifies the time
from external coherency request to processor coherency state response

• the processor coherency data response latency, tpcdr, specifies the time
from the external coherency request to the processor coherency data
response if a master, or to the assertion of the processor coherency data
response indication on SysState[0] if a slave.

Figure 6-26 External Coherency Request Latency Parameters

Cycle

SysClk

SysReq*

SysGnt*

SysVal*

SysRespPar

SysResp(4:0)

SysStateVal*

SysStatePar

SysState(2:0)

SysWrRdy*

SysRdRdy*

SysRel*

Master

SysCmdPar

SysCmd(11:0)

SysAD(63:0)

SysADChk(7:0)

1 2 3 4 5 10 11 12 13 14 15 166 7 8 9 17

ExtCoh

Adr

EA EA EA EA EA EA EA EA EA EA P 0P0P0P0 P0 P0-

DrtExc

RspDat RspDat RspLst

Dat0 Dat14 Dat15

SysRespVal*

10 00

Empty

tpcdr

tpcsr

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

System Interface Operations 147

The external coherency request latency is presented in Table 6-30.

Table 6-30 External Coherency Request Latency

‡ This latency assumes no other previously issued external coherency requests are
outstanding. 1 to 3 additional PClk cycles may be required for synchronization with
SysClk depending on the SysClkDiv mode bits.

* This value assumes a 32-word secondary cache block size.

† This value assumes the external coherency request hits a cached or outgoing buffer
entry.

‡‡ This value assumes the external coherency request does not hit a cached or outgoing
buffer entry, the secondary cache is not busy, and the external coherency request hits in
the MRU way of the secondary cache. If the external coherency request misses in the
most-recently used (MRU) way of the secondary cache, 1 to 3 additional PClk cycles are
required to query the LRU way of the secondary cache, depending on the SCClkDiv
mode bits.

** This value assumes the external coherency request does not hit a cached or outgoing
buffer entry, the secondary cache just commenced an index-conflicting CACHE Hit
WriteBack Invalidate (S), and the external coherency request misses in the secondary
cache MRU way.

†† This value assumes the external coherency request hits an outgoing buffer entry.

‡‡‡ This value assumes the external coherency request does not hit a cached or outgoing
buffer entry, the secondary cache is not busy, the external coherency request hits in the
MRU way of the secondary cache, no subset primary data cache blocks are inconsistent,
and the external coherency request is secondary cache block-aligned. If the external
coherency request misses in the MRU way of the secondary cache, 1 to 3 additional PClk
cycles are required to query the LRU way of the secondary cache, depending on the
SCClkDiv mode bits.

*** This value assumes the external coherency request does not hit a cached or outgoing
buffer entry, the secondary cache just commenced an index-conflicting CACHE Hit
WriteBack Invalidate (S), the external coherency request hits in the LRU way of the
secondary cache, all subset primary data cache blocks are inconsistent, and the external
coherency request is not secondary cache block-aligned.

Latency‡ (PClk cycles)

Processor Coherency State
Response (tpcsr)

Processor Coherency Data
Response* (tpcdr)

SCClkDiv Min† Typ‡‡ Max** Min†† Typ‡‡‡ Max***

1 5 10 39 8 28 70

1.5 5 13 48 8 33 88

2 5 14 59 8 38 105

2.5 5 16 71 8 43 128

3 5 17 79 8 43 141

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 148 Chapter 6.

SysGblPerf* Signal

The SysGblPerf* signal is provided for systems implementing a relaxed
consistency memory model. The external agent asserts this signal when all
processor requests are globally performed, thereby allowing the processor to
graduate SYNC instructions. The external agent negates this signal when some
processor requests are not yet globally performed, thereby preventing the
processor from graduating SYNC instructions.

To prevent a SYNC instruction from graduating, the external agent must negate
the SysGblPerf* signal no later than the same SysClk cycle in which it issued the
external completion response for a processor read or upgrade request which is not
yet globally performed. Also, the external agent must negate the SysGblPerf*
signal no later than two SysClk cycles after the address cycle of a processor
double/single/partial-word write request which has not yet been globally
performed.

The SysGblPerf* signal may be permanently asserted in systems implementing a
sequential consistency memory model.

6.19 Cluster Bus Operation
A R10000 multiprocessor cluster may be created by directly attaching the System
interfaces of 2 to 4 R10000 processors, and providing an external cluster
coordinator to handle arbitration and coherency management.

The cluster coordinator arbitrates the multiprocessors using the SysReq*,
SysGnt*, and SysRel* signals.

A processor request issued by an R10000 processor in master state is observed as
an external request by any R10000 processors in the slave state on the cluster bus.
This is described Table 6-31.

Table 6-31 Relationship Between Processor and External Requests for the Cluster Bus

Processor Request External Request

Coherent block read shared Intervention shared

Coherent block read exclusive Intervention exclusive

Noncoherent block read Allocate request number

Double/single/partial-word read Allocate request number

Block write NOP

Double/single/partial-word write NOP

Upgrade Invalidate

Eliminate NOP

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

System Interface Operations 149

In the same manner, a processor coherency data response issued by a processor in
the master state is observed as an external block data response by any processors
in the slave state.

External coherency requests that target a processor are handled in FIFO order and
result in processor coherency state responses. If an external coherency request
that targets a processor hits a DirtyExclusive secondary cache block, the processor
also provides a processor coherency data response.

Figure 6-27 presents an example of a processor read request with four R10000
processors residing on the cluster bus. The CohPrcReqTar mode bit is asserted
for a snoopy-based coherency protocol. R100000 issues a processor coherent read
exclusive request. This is observed as an external intervention exclusive request
by R100001, R100002, and R100003. R100001 and R100003 respond with Invalid
processor coherency state responses. R100002 responds with a DirtyExclusive
processor coherency state response. Based on these processor coherency state
responses, the cluster coordinator allows R100002 to become master of the System
interface so that it may provide a processor coherency data response, which will
be observed as an external block data response by R100000. Finally, the cluster
coordinator issues an external ACK completion response to forward the external
block data response and to free the request number.

Figure 6-28 presents an example of a processor upgrade request with four R10000
processors residing on the cluster bus. The CohPrcReqTar mode bit is asserted
for a snoopy-based coherency protocol. R100000 issues a processor upgrade
request, observed as an external invalidate request by R100001, R100002, and
R100003. R100002 and R100003 provide Shared processor coherency state
responses. R100001 provides an Invalid processor coherency state response. Based
on these processor coherency state responses, the cluster coordinator issues an
external ACK completion response for the processor upgrade request to indicate
that the request was successful and to free the request number.

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 150 Chapter 6.

Figure 6-27 R10000 Multiprocessor Cluster Processor Read Request Example

Cycle

SysClk

SysReq0*

SysGnt0*

SysVal*

SysStateVal0*

SysStatePar0

SysState0(2:0)

SysWrRdy*

SysRdRdy*

SysRel*

Master

SysCmdPar

SysCmd(11:0)

SysAD(63:0)

SysADChk(7:0)

1 2 3 4 5 10 11 12 13 14 15 166 7 8 9 17

RdExc RspDat RspDat RspLst

Adr Dat0 Dat14 Dat15

P0 P0 P0 P0 P0 P0 P0 P0 P0 P2P2P2P2 P2 P2

SysReq1*

SysGnt1*

SysReq2*

SysGnt2*

SysReq3*

SysGnt3*

SysStateVal1*

SysStatePar1

SysState1(2:0)

SysStateVal2*

SysStatePar2

SysState2(2:0)

SysStateVal3*

SysStatePar3

SysState3(2:0)

Ivd

Ivd

DrtExc

SysResp(4:0)

SysRespPar

SysRespVal*

ACK

-P0

0

0

0

0

10 0

0

0

Empty

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

System Interface Operations 151

Figure 6-28 R10000 Multiprocessor Cluster Processor Upgrade Request Example

Cycle

SysClk

SysReq0*

SysGnt0*

SysVal*

SysStateVal0*

SysStatePar0

SysState0(2:0)

SysWrRdy*

SysRdRdy*

SysRel*

Master

SysCmdPar

SysCmd(11:0)

SysAD(63:0)

SysADChk(7:0)

1 2 3 4 5 10 11 12 13 14 15 166 7 8 9 17

Ugd

Adr

P0 P0 P0 P0 P0 P0 P0 P0 P0 P0 P0P0P0P0 P0 P0P0

SysReq1*

SysGnt1*

SysReq2*

SysGnt2*

SysReq3*

SysGnt3*

SysStateVal1*

SysStatePar1

SysState1(2:0)

SysStateVal2*

SysStatePar2

SysState2(2:0)

SysStateVal3*

SysStatePar3

SysState3(2:0)

Ivd

Shd

Shd

SysResp(4:0)

SysRespPar

SysRespVal*

ACK

0

0

0

0

0

0

0

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 152 Chapter 6.

6.20 Support for I/O
The processor assumes a memory-mapped I/O model. Consequentially, no
special System interface encodings are provided, or required to designate I/O
accesses. It is left to the programmer to ensure that I/O addresses have the
appropriate TLB mappings.

The processor supports system designs utilizing hardware or software for
coherent I/O. The external coherency requests are useful for creating systems with
hardware I/O coherency, and the CACHE instruction is sufficient for creating a
system with software I/O coherency.

6.21 Support for External Duplicate Tags
Some system designs implement an external duplicate copy of the secondary cache
tags to reduce the coherency request latency and also filter out unnecessary
external coherency requests made to the R10000 processor.

For such systems, it must be remembered that blocks may reside in either the
secondary cache or in the outgoing buffer. During the address cycle of processor
block read requests, the secondary cache block former state is provided. The
external agent may use this information to maintain the external duplicate tags.

Typically, in a multiprocessor system using the cluster bus, the cluster coordinator
specifies a free request number for an external coherency request. However, in a
system using a duplicate-tag or directory-based coherency protocol, where the
CohPrcReqTar mode bit is negated, the cluster coordinator may specify a busy
request number for an external coherency request, providing each targeted R10000
processor has the request number busy due to an outstanding processor coherency
request from another processor.

For example, suppose the processor in master state issues a processor coherent
block read or upgrade request. The processors in slave state observe the processor
request as an external coherency request that targets the external agent only,
causing the associated request number to become busy. The cluster coordinator
checks the duplicate tag or directory structure to determine if the block resides in
the cache of one of the processors that was in slave state. If necessary, the cluster
coordinator issues an external coherency request targeted at one or more of the
processors that were in slave state. By using the same request number as the
original processor request, this external coherency request does not consume a free
request number, and allows a potential processor coherency data response to be
supplied as an external block data response to the original processor request.

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

System Interface Operations 153

6.22 Support for a Directory-Based Coherency Protocol
Some system designs implement a directory-based coherency protocol.

For such systems, the processor provides the processor eliminate request cycle. If
the PrcElmReq mode bit is asserted, the processor issues a processor eliminate
request whenever it intends to eliminate a Shared, CleanExclusive, or DirtyExclusive
block from the secondary cache. During the address cycle of the processor
eliminate request, the physical address and the secondary cache block former
state are provided. The external agent may then use this information to maintain
an external directory structure.

6.23 Support for Uncached Attribute
The processor supports a 2-bit user-defined Uncached Attribute, which is driven on
SysAD[59:58] during the address cycle of the following:

• processor double/single/partial-word read requests

• double/single/partial-word write requests

• block write requests resulting from completely gathered uncached
accelerated blocks

For unmapped accesses, the uncached attribute is sourced from VA[58:57].

For mapped accesses, the uncached attribute is sourced from the TLB Uncached
Attribute field. The TLB Uncached Attribute field may be initialized in 64-bit mode
using bits 63:62 of the CP0 EntryLo0 and EntryLo1 registers.

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 154 Chapter 6.

6.24 Support for Hardware Emulation
When using the R10000 processor in hardware emulation, it is desirable to operate
the System interface at a relative low frequency (typically 1 MHz or below). Since
the R10000 processor contains dynamic circuitry, an external agent cannot simply
provide low frequency SysClk, so a SysCyc* input to the processor allows an
external agent to define a virtual system clock, and yet supply a SysClk within the
acceptable operating range. The assertion of SysCyc* in a particular SysClk cycle
creates a virtual system clock pulse four SysClk cycles later. SysCyc* may be
asserted aperiodically.

In a normal system environment, the SysCyc* input should be permanently
asserted.

Figure 6-29 depicts the use of SysCyc* to create a virtual SysClk of one-third the
normal SysClk frequency.

Figure 6-29 Hardware Emulation Protocol

Cycle

SysClk

SysReq*

SysGnt*

SysVal*

SysRespPar

SysResp(4:0)

SysStateVal*

SysStatePar

SysState(2:0)

SysWrRdy*

SysRdRdy*

SysRel*

Master

SysCmdPar

SysCmd(11:0)

SysAD(63:0)

SysADChk(7:0)

1 2 3 4 5 10 11 12 13 14 15 166 7 8 9 17

P0 P0 P0 P0 P0 P0 P0 P0 P0 P0 EAEAEA- - -P0

SysRespVal*

SysCyc*

DSPWr ReqLst DSPRd RspLst

Virtual SysClk

Adr Dat Adr Dat

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996155

7. Clock Signals

The R10000 processor has differential PECL clock inputs, SysClk and SysClk*,
from which all processor internal clock signals and secondary cache clock signals
are derived.

Three major clock domains are in the processor:

• the System interface clock domain, which operates at the system clock
frequency and controls the System interface signals

• the internal processor clock domain, which controls the processor core
logic

• the secondary cache clock domain, which controls signals
communicating with the external secondary cache synchronous SRAM

These domains are described in this chapter.

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 156 Chapter 7.

7.1 System Interface Clock and Internal Processor Clock Domains
In high performance systems, PECL-level differential clocks are routinely used to
minimize system clock skews. The R10000 processor receives differential system
clock signals at the SysClk and SysClk* pins; two additional pins, SysClkRet and
SysClkRet*, are the return paths for termination of these signals.

SysClk and SysClk* are used to drive an on-chip phase-locked loop (PLL), which
multiplies the system clock to create an internal processor clock, PClk.

The R10000 processor always communicates with the system at the SysClk
frequency, and PClk always runs at a frequency-multiple of SysClk, according to
the following formula:

PClk = SysClk*(SysClkDiv+1)/2

For example, in a 50 MHz system with SysClkDiv = 7 and SCClkDiv=2,
PClk= 50*8/2 = 200 MHz.

NOTE: It is preferred that the R10000 processor uses a differential PECL clock
input. However, in a less-aggressive system, a CMOS/TTL single-ended clock
can be used to drive the processor, provided its complementary clock input,
SysClk*, is tied to an appropriate reference voltage (1.4V for TTL, Vcc/2 for
CMOS). In any case, the reference voltage applied to SysClk* should not be
less than 1.2V.

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

Clock Signals 157

7.2 Secondary Cache Clock
The processor uses registered synchronous SRAMs for its secondary cache, to
allow pipelined accesses.

Errata

The processor provides 6 pairs of differential clock outputs, SCClk(5:0) and
SCClk*(5:0), to be used by the secondary cache synchronous SRAMs. These
outputs swing between VccQSC and Vss. The SCClkTap mode bits (Mode bits
are described in Chapter 8, the section titled “Mode Bits.”) specify the alignment
of SCClk(5:0) and SCClk*(5:0) relative to the internal secondary cache clock.
Note that the output buffer delay is not included.

The secondary cache interface clock is generated by dividing down the internal
processor clock, PClk.

SCClk is related to SysClk according to the following formula:

SCClk = SysClk*(SysClkDiv+1)/(SCClkDiv+1)

For example, in a 50 MHz system with SysClkDiv=7 and SCClkDiv=2,
SCClk = 50*8/3 = 133 MHz.

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 158 Chapter 7.

7.3 Phase-Locked-Loop
The processor uses the internal PLL for clock generation and multiplication as
shown in Figure 7-1.

Values of the termination resistors for the SysClkRet/SysClkRet* signals are
system-dependent. The system designer must select a value based upon the
characteristic impedance of the board, therefore it is beyond the scope of this
manual to specify values for these termination resistors.

Figure 7-1 R10000 System and Secondary Cache Clock Interface

SRAM

SysClk

SysClk*

SysClkRet*

SysClkRet

Termination resistors

R10000 PECL differential

SCClk(5:0)

SCClk(5:0)*

PLL
clock
generators

input system clock

HSTL differential
output clocks

Replicated

PClk

SRAM

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996159

8. Initialization

This section describes initialization of the R10000 processor, including
initialization of logical registers.

Initialization of the processor occurs during a reset sequence. The processor
supports three separate reset sequences:

• Power-on reset

• Cold reset

• Soft reset

These sequences are described in this chapter.

Also described are the mode bits.

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 160 Chapter 8.

8.1 Initialization of Logical Registers
After a power-on or cold reset sequence, all logical registers (both in the integer
and the floating-point register files) must be written before they can be read.
Failure to write any of these registers before reading from them will have an
unpredictable result.

8.2 Power-On Reset Sequence
The Power-on Reset sequence is used to reset the processor after the initial power-
on, or whenever power or SysClk are interrupted.

The Power-on Reset sequence is as follows:

• The external agent negates DCOk.

• The external agent asserts SysReset*.

• The external agent negates SysGnt*.

• The external agent negates SysRespVal*.

• Once Vcc, VccQ[SC,Sys], Vref[SC,Sys], Vcc[Pa,Pd], and SysClk
stabilize, the external agent waits at least 1ms and then asserts DCOk.

• At this time, the System interface resides in slave state and all internal
state is initialized.

• The SysClkDiv mode bits default to divide-by-1.

• The SCClkDiv mode bits default to divide-by-3.

• After waiting at least 100 ms for the internal clocks to stabilize, the
external agent loads the mode bits into the processor by driving the
mode bits on SysAD[63:0], waiting at least two SysClk cycles, and
then asserting SysGnt* for at least one SysClk cycle.

• After waiting at least another 100 ms for the internal clocks to
restabilize, the external agent synchronizes all clocks internal to the
processor. This is performed by asserting SysRespVal* for one SysClk
cycle.

• After waiting at least 100 ms for the internal clocks to again restabilize,
(a third 100 ms restabilization period) the external agent negates
SysReset*.

• The external agent must retain mastership of the System interface,
refrain from issuing external requests or nonmaskable interrupts, and
ignore the system state bus until the processor asserts SysReq*. The
assertion of SysReq* indicates the processor is ready for operation. In
a cluster arrangement, all processors must assert SysReq*, indicating
they are ready for operation.

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

Initialization 161

Errata

If the virtual SysClk is used during the reset sequence, the mode bits, SysGnt*,
SysRespVal*, and SysReset* should all be referenced to the virtual SysClk that
is created with SysCyc*. This approach will cause the R10000 to come out of reset
synchronously with the virtual SysClk, which will allow repeatable and lock-step
operation (see Chapter 6, the section titled “Support for Hardware Emulation,”
for description of virtual SysClk operation).

During a Power-on Reset sequence, all internal state is initialized. A Power-on
Reset sequence causes the processor to start with the Reset exception.

Figure 8-1 shows the Power-on Reset sequence.

Figure 8-1 Power-On Reset Sequence

DCOk

SysGnt*

SysAD(63:0)

SysReset*

≥100ms

SysReq*

Master - - - - EA EA EA EA EA EA EA EA EA EA EA - P n

SysRel*

Vcc

VccQ[SC,Sys]

Vref[SC,Sys]

SysClk

≥1ms

Modes

Vcc[Pa,Pd]

≥100ms

SysRespVal*

≥100ms

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 162 Chapter 8.

8.3 Cold Reset Sequence
The Cold Reset sequence is used to reset the entire processor, and possibly alter the
mode bits while power and SysClk are stable.

The Cold Reset sequence is as follows:

• The external agent negates SysGnt* and SysRespVal*.

• After waiting at least one SysClk cycle, the external agent asserts
SysReset*.

• After waiting at least 100 ms, the external agent loads the mode bits
into R10000. This is performed by driving the mode bits on
SysAD[63:0], waiting at least two SysClk cycles, and then asserting
SysGnt* for at least one SysClk cycle.

• After waiting at least another 100 ms for the internal clocks to
restabilize, the external agent synchronizes all processor internal clocks
by asserting SysRespVal* for one SysClk cycle.

• After waiting at least 100 ms for the internal clocks to again restabilize,
(a third 100 ms restabilization period) the external agent negates
SysReset*.

• The external agent must retain mastership of the System interface,
refrain from issuing external requests or nonmaskable interrupts, and
ignore the system state bus until the processor asserts SysReq*. The
assertion of SysReq* indicates the processor is ready for operation. In
a cluster arrangement, all processors must assert SysReq*, indicating
they are ready for operation.

During a Cold Reset sequence all processor internal state is initialized. A Cold
Reset sequence causes the processor to start with a Reset exception.

Figure 8-2 shows the cold reset sequence.

Figure 8-2 Cold Reset Sequence

DCOk

SysGnt*

SysAD(63:0)

SysReset*

≥100ms

SysReq*

Master X X X - EA EA EA EA EA EA EA EA EA EA EA - P n

SysRel*

Vcc

VccQ[SC,Sys]

Vref[SC,Sys]

SysClk

Modes

Vcc[Pa,Pd]

≥100ms

SysRespVal*

≥100ms

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

Initialization 163

8.4 Soft Reset Sequence
A Soft Reset sequence is used to reset the external interface of the processor
without altering the mode bits while power and SysClk are stable.

The Soft Reset sequence is as follows:

• The external agent negates SysGnt* and SysRespVal*.

• After waiting at least one SysClk cycle, the external agent asserts
SysReset* for at least 16 SysClk cycles.

• The external agent must retain mastership of the System interface,
refrain from issuing external requests or nonmaskable interrupts, and
ignore system state bus until the processor asserts SysReq*. The
assertion of SysReq* indicates the processor is ready for operation. In
a cluster arrangement, all processors must assert SysReq*, indicating
they are ready for operation.

During a Soft Reset sequence, all external interface state is initialized. The internal
and secondary cache clocks are not affected by a Soft Reset sequence. The general
purpose, CP0, and CP1 registers are preserved, as well as the primary and
secondary caches.

A Soft Reset sequence causes a Soft Reset exception, in which the Soft Reset
exception handler executes instructions from uncached space and uses CACHE
instructions to analyze and dump the contents of the primary and secondary
caches. To resume normal operation, a Cold Reset sequence must be initiated.

Figure 8-3 presents the Soft Reset sequence.

Figure 8-3 Soft Reset Sequence

DCOk

SysGnt*

SysAD(63:0)

SysReset*

SysReq*

Master X X X X X X X X X X - EA EA EA EA - P n

SysRel*

Vcc

VccQ[SC,Sys]

Vref[SC,Sys]

SysClk

Vcc[Pa,Pd]

SysRespVal*

≥ 16 SysClk
 cycles

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 164 Chapter 8.

8.5 Mode Bits
The R10000 processor uses mode bits to configure the operation of the
microprocessor. These mode bits are loaded into the processor from the
SysAD[63:0] bus during a power-on or cold reset sequence while SysGnt* is
asserted. The SysADChk[7:0] bus does not have to contain correct ECC during
mode bit initialization. During the reset sequence, the mode bits obtained from
SysAD[24:0] are written into bits 24:0 of the CP0 Config register.

The mode bits are described in Table 8-1.

Table 8-1 Mode Bits

SysAD Bit Name and Function Value Mode Setting

2:0
Kseg0CA
Specifies the kseg0 cache
algorithm.

0
1
2
3
4
5
6
7

Reserved
Reserved
Uncached
Cacheable noncoherent
Cacheable coherent exclusive
Cacheable coherent exclusive on write
Reserved
Uncached accelerated

4:3
DevNum
Specifies the processor device
number.

0-3

5

CohPrcReqTar
Specifies the target of processor
coherent requests issued on the
System interface by the processor.

0
1

External agent only
Broadcast

6

PrcElmReq
Specifies whether to enable
processor eliminate requests onto
the System interface by the
processor.

0
1

Disable
Enable

8:7

PrcReqMax
Specifies the maximum number
of outstanding processor requests
allowed on the System interface
by the processor.

0
1
2
3

1 outstanding processor request
2 outstanding processor requests
3 outstanding processor requests
4 outstanding processor requests

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

Initialization 165

Table 8-1 (cont.) Mode Bits

SysAD Bit Name and Function Value Mode Setting

12:9

SysClkDiv
Sets PClk to SysClk ratio;
determines the System interface
clock frequency; see Chapter 7,
the section titled “System
Interface Clock and Internal
Processor Clock Domains

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

Reserved
Result of division by 1
Result of division by 1.5
Result of division by 2
Result of division by 2.5
Result of division by 3
Result of division by 3.5
Result of division by 4
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved

13
SCBlkSize
Specifies the secondary cache
block size.

0
1

16-word
32-word

14

SCCorEn
Specifies the method of correcting
secondary cache data array ECC
errors.

0
1

Retry access through corrector
Always access through corrector

15
MemEnd
Specifies the memory system
endianness.

0
1

Little endian
Big endian

18:16
SCSize
Specifies the size of the secondary
cache.

0
1
2
3
4
5
6
7

512 Kbyte
1 Mbyte
2 Mbyte
4 Mbyte
8 Mbyte
16 Mbyte
Reserved
Reserved

21:19

SCClkDiv
Sets PClk to SCClk ratio;
determines the secondary cache
clock frequency; see Chapter 7,
the section titled “System
Interface Clock and Internal
Processor Clock Domains

0
1
2
3
4
5
6
7

Reserved
Result of division by 1
Result of division by 1.5
Result of division by 2
Result of division by 2.5
Result of division by 3
Reserved
Reserved

24:22 Reserved 0

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 166 Chapter 8.

Table 8-1 (cont.) Mode Bits

Errata

The description of bits 28:25 of Table 8-1 has been revised.

‡ Does not include the output buffer delay.

* SysReq*, SysRel*, SysCmd[11:0], SysCmdPar, SysAD[63:0], SysADChk[7:0], SysVal*, SysState[2:0], SysStatePar, SysStateVal*,
SysCorErr*, SysUncErr*

SysAD Bit Name and Function Value Mode Setting

28:25

SCClkTap
Specifies the alignment‡ of
SCClk[5:0] and SCClk*[5:0]
relative to the internal secondary
cache clock.

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

SCClk same phase as internal clock
SCClk 1/12 PClk period earlier than internal clock
SCClk 2/12 PClk period earlier than internal clock
SCClk 3/12 PClk period earlier than internal clock
SCClk 4/12 PClk period earlier than internal clock
SCClk 5/12 PClk period earlier than internal clock
undefined
undefined
SCClk 6/12 PClk period earlier than internal clock
SCClk 7/12 PClk period earlier than internal clock
SCClk 8/12 PClk period earlier than internal clock
SCClk 9/12 PClk period earlier than internal clock
SCClk 10/12 PClk period earlier than internal clock
SCClk 11/12 PClk period earlier than internal clock
undefined
undefined

29 Reserved 0

30

ODrainSys
Specifies whether or not to
configure select* System interface
bidirectional and output signals
as open drain.

0
1

Push-pull
Open drain

31
CTM
Specifies whether or not to enable
cache test mode.

0
1

Disable
Enable

63:32 Reserved 0

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996167

9. Error Protection and Handling

This chapter presents the error protection and handling features provided by the
R10000 processor.

Two types of errors can occur in an R10000 system:

• correctable

• uncorrectable

The following two sections describe them.

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 168 Chapter 9.

9.1 Correctable Errors
Correctable errors consist of:

• secondary cache tag array correctable ECC errors

• secondary cache data array correctable ECC errors

• System interface address/data bus correctable ECC errors

When the processor detects a correctable error, the error is automatically corrected,
and normal operation continues. Secondary cache array scrubbing is not
performed.

The processor informs the external agent that a correctable error was detected and
then corrected by asserting the SysCorErr* signal for one SysClk cycle.

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

Error Protection and Handling 169

9.2 Uncorrectable Errors
Uncorrectable errors consist of:

• Primary instruction cache array parity errors

• Primary data cache array parity errors

• Secondary cache tag array uncorrectable ECC errors

• Secondary cache data array uncorrectable ECC errors

• System interface command bus parity errors

• System interface address/data bus uncorrectable ECC errors

• System interface response bus parity errors

Errata

When the processor detects an uncorrectable error, a Cache Error exception is
posted. In general, the detection of an uncorrectable error does not disrupt any
ongoing operations. However, the instruction fetch and load/store units never
use data which contains an uncorrectable error.

To inform the external agent, the processor asserts SysUncErr* for one SysClk
cycle whenever any of the following uncorrectable errors are detected:

• Primary instruction cache tag array parity errors

• Primary data cache tag array parity errors

• Secondary cache tag array uncorrectable ECC errors

• System interface command bus parity errors

• System interface address/data bus external address cycle uncorrectable
ECC errors

• System interface response bus parity errors.

The processor informs the external agent that an uncorrectable tag error has been
detected by asserting SysUncErr* for one SysClk cycle.

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 170 Chapter 9.

9.3 Propagation of Uncorrectable Errors
The processor assists the external agent in limiting the propagation of
uncorrectable errors in the following manner:

• During external block data response cycles, if the data quality
indication on SysCmd(5) is asserted, or if an uncorrectable ECC error
is encountered on the system address/data bus while the ECC check
indication on SysCmd(0) is asserted, the processor intentionally
corrupts the ECC of the corresponding secondary cache quadword
after receiving an external ACK completion response.

• During processor data cycles, the processor asserts the data quality
indication on SysCmd(5) if the data is known to contain uncorrectable
errors. The System interface ECC is never intentionally corrupted; the
SysCmd(5) bit is used to indicate corrupted data.

• If an uncorrectable cache tag error is detected, the processor asserts
SysUncErr* for one SysClk cycle.

• An external coherency request that detects a secondary cache tag array
uncorrectable error asserts the secondary cache block tag quality
indication on SysState(2) during the corresponding processor
coherency state response.

• If an external coherency request requires a processor coherency data
response, and a primary data cache tag parity error is encountered
during the primary cache interrogation, or a secondary cache tag array
uncorrectable error is encountered during the secondary cache
interrogation, the processor asserts the data quality indication on
SysCmd(5) for all doublewords of the corresponding processor
coherency data response.

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

Error Protection and Handling 171

9.4 Cache Error Exception
The processor indicates an uncorrectable error has occurred by asserting a Cache
Error exception.

The following four internal units detect and report uncorrectable errors:

• instruction cache

• data cache

• secondary cache

• System interface

Each of these four units maintains a unique local CacheErr register.

A Cache Error exception is imprecise; that is, it is not associated with a particular
instruction. When any of the four units post a Cache Error exception, completed
instructions are graduated before the Cache Error exception is taken. If there are
Cache Error exceptions posted from more than one of the units, the exceptions are
prioritized in the following order:

1. instruction cache

2. data cache

3. secondary cache

4. System interface.

The corresponding local CacheErr register is transferred to the CP0 CacheErr
register and the CP0 Status register ERL bit is asserted. Instruction fetching begins
from 0xa0000100 or 0xbfc00300, depending on the CP0 Status register BEV bit. The
CP0 ErrorEPC register is loaded with the virtual address of the next instruction
that has not been graduated, so that execution can resume after the Cache Error
exception handler completes.

When ERL=1, the user address region becomes a 2-Gbyte uncached space mapped
directly to the physical addresses. This allows the Cache Error handler to save
registers directly to memory without having to use a register to construct the
address.

The processor does not support nested Cache Error exception handling. While the
CP0 Status register ERL bit is asserted, any subsequent Cache Error exceptions are
ignored. However, the detection of additional uncorrectable errors is not
inhibited, and additional Cache Error exceptions may be posted.†

† The hardware does not handle the case of multiple Cache Error exceptions in any
special manner; caches are refilled as normal, and data forwarded to the appropriate
functional units.

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 172 Chapter 9.

9.5 CP0 CacheErr Register EW Bit
When a unit detects an uncorrectable error, it records information about the error
in its local CacheErr register and posts a Cache Error exception. If a subsequent
uncorrectable error occurs while waiting for the Cache Error exception to be taken
and transfer of the local CacheErr register to the CP0 CacheErr register to complete,
the EW bit is set in its local CacheErr register. Once the Cache Error exception is
taken, the EW bit in the CP0 CacheErr register is set and the Cache Error exception
handler now determines that a second error has occurred.

Once the CP0 CacheErr register EW bit is set, it can only be cleared by a reset
sequence.

9.6 CP0 Status Register DE Bit
Asserting the CP0 Status register DE bit suppresses the posting of future Cache
Error exceptions. All local CacheErr registers are also prevented from being
updated. Unlike the R4400 processor architecture, when the DE bit is asserted,
cache hits are not inhibited when an uncorrectable error is detected. Correctable
errors are handled normally when the DE bit is set.

NOTE: Be careful when setting this bit, since it may cause erroneous data
and/or instructions to be propagated.

9.7 CACHE Instruction
Uncorrectable error protection is suppressed for the Index Load Tag, Index Store
Tag, Index Load Data, and Index Store Data CACHE instruction variations. These
four variations may be used within a Cache Error exception handler to examine the
cache tags and data without the occurrence of further uncorrectable errors.

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

Error Protection and Handling 173

9.8 Error Protection Schemes Used by R10000
Error protection schemes used in the R10000 processor are:

• parity

• sparse encoding

• ECC

These schemes are described in this section, and listed in Table 9-1.

Table 9-1 Error Protection Schemes Used in the R10000 Processor

Parity

Parity is used to protect the primary caches and various System interface buses.
The processor uses both odd and even parity schemes:

• in an odd parity scheme, the total number of ones on the protected
data and the corresponding parity bit should be odd

• in an even parity scheme, the total number of ones on the protected
data and the corresponding parity bit should be even.

Sparse Encoding

A sparse encoding is used to protect the primary data cache state mod array. In
such a scheme, valid encodings are chosen so that altering a single bit creates an
invalid encoding.

ECC

An error correcting code (ECC) is used to protect the secondary cache tag, the
secondary cache data, and the System interface address/data bus. A distinct
single-bit error correction and double-bit error detection (SECDED) code is used
for each of these three applications.

Error Detection Used What is Protected

Parity
Primary caches
Secondary cache data
System interface buses

Sparse encoding Primary data cache state mod array

ECC (SECDED)
Secondary cache tag
Secondary cache data
System interface address/data bus

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 174 Chapter 9.

9.9 Primary Instruction Cache Error Protection and Handling
This section describes error protection and error handling schemes for the primary
instruction cache.

Error Protection

The primary instruction cache arrays have the following error protection schemes,
as listed in Table 9-2.

Table 9-2 Primary Instruction Cache Array Error Protection

Error Handling

All primary instruction cache errors are uncorrectable. If an error is detected, the
instruction cache unit posts a Cache Error exception and initializes the D, TA, TS,
and PIdx fields in the local CacheErr register (see Chapter 14, CacheErr Register (27),
for more information). If an error is detected on the tag address or state array, the
processor informs the external agent that an uncorrectable tag error was detected
by asserting SysUncErr* for one SysClk cycle.

Array Width Error Protection

Tag Address 27-bit Even parity

Tag State 1-bit Even parity

Data 36-bit Even parity

LRU 1-bit None

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

Error Protection and Handling 175

9.10 Primary Data Cache Error Protection and Handling
This section describes error protection and error handling schemes for the
primary data cache.

Error Protection

The primary data cache arrays have the following error protection schemes, as
listed in Table 9-3.

Table 9-3 Primary Data Cache Array Error Protection

Error Handling

All primary data cache errors are uncorrectable. If an error is detected, the data
cache unit posts a Cache Error exception and initializes the EE, D, TA, TS, TM, and
PIdx fields in the local CacheErr register (see Chapter 14, CacheErr Register (27), for
more information). If an error is detected on the tag address, state, or mod array,
the processor informs the external agent that an uncorrectable tag error was
detected by asserting SysUncErr* for one SysClk cycle.

Array Width Error Protection

Tag Address 28-bit Even parity

Tag State 3-bit Even parity

Tag Mod 3-bit Sparse encoding

Data 8-bit Even parity

LRU 1-bit None

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 176 Chapter 9.

9.11 Secondary Cache Error Protection and Handling
This section describes error protection and error handling schemes for the
secondary cache.

Error Protection

The secondary cache arrays have the following error protection schemes, as listed
in Table 9-4.

Table 9-4 Secondary Cache Array Error Protection

Error Handling

This section describes error handling for the data array and the tag array. As
shown in Table 9-4, errors are not detected for the way prediction table.

Data Array

Errata

The 128-bit wide secondary cache data array is protected by a 9-bit wide ECC. An
even parity bit for the 128 bits of data is used for rapid detection of correctable
(single-bit) errors; when a correctable parity error is detected, the data is sent
through the data corrector. The parity bit does not have any logical effect on the
processor’s ability to either detect or correct errors.

Whenever the processor writes the secondary cache data array, it drives the proper
ECC on SCDataChk(8:0) and even parity on SCDataChk(9).

Array Width Error Protection

Data 128-bit 9-bit ECC + even parity

Tag 26-bit 7-bit ECC

MRU (Way prediction table) 1-bit None

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

Error Protection and Handling 177

Data Array in Correction Mode

The secondary cache operates in correction mode when the SCCorEn mode bit is
asserted. Whenever the processor reads the secondary cache data array in
correction mode, the data is sent through a data corrector.

If a correctable error is detected, in-line correction is automatically made without
affecting latency. The processor informs the external agent that a correctable error
was detected and corrected by asserting SysCorErr* for one SysClk cycle.

If an uncorrectable error is detected, the secondary cache unit posts a Cache Error
exception and initializes the D and SIdx fields in the local CacheErr register (see
Chapter 14, CacheErr Register (27), for more information).

In correction mode, secondary-to-primary cache refill latency is increased by two
PClk cycles. Multiple processors, operating in a lock-step fashion, remain
synchronized in the presence of secondary cache data array correctable errors.

Table 9-5 presents the ECC matrix for the secondary cache data array.

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 178 Chapter 9.

Table 9-5 ECC Matrix for Secondary Cache Data Array

C
he

ck
 B

it
8

76
54

32
10

D
at

a
Bi

t
11

11
22

22
76

54

11
11

22
22

32
10

11
11

11
11

98
76

11
11

11
11

54
32

11
11

11
00

10
98

11
11

00
00

76
54

11
11

00
00

32
10

99
99

98
76

99
99

54
32

99
88

10
98

88
88

76
54

88
88

32
10

77
77

98
76

77
77

54
32

77
66

10
98

66
66

76
54

66
66

32
10

55
55

98
76

55
55

54
32

55
44

10
98

44
44

76
54

44
44

32
10

33
33

98
76

33
33

54
32

33
22

10
98

22
22

76
54

22
22

32
10

11
11

98
76

11
11

54
32

11 10
98

76
54

32
10

N
um

be
r o

f o
ne

s
pe

r r
ow

54 53 54

1 0 0

00
00

10
00

01
00

00
00

00
00

00
00

11
11

11
11

10
00

11
11

11
11

00
11

00
00

11
11

11
11

00
11

11
11

11
11

11
11

00
00

11
11

11
11

00
11

11
11

11
10

00
00

00
00

00
11

11
11

00
11

00
00

11
11

00
00

01
10

11
11

01
01

11
11

00
00

00
00

11
11

01
11

00
11

00
00

00
00

11
11

01
11

00
11

11
11

00
10

10
11

01
01

00
01

00
10

11
00

01
10

00
01

10
00

00
10

00
00

00
00

11
01

00
00

10
00

00
00

10
00

01
00

10
11

01
00

00
00

00
00

10
00

01
00

11
01

11
00

11
00

00
00

10
00

01
00

00
00

00
00

00
11

00
00

00
10

10
00

00
10

10
01

01
00

00
00

00
00

10
00

00
10

10
01

01
00

00
00

00
00

10
00

10
00

00
10

01
01

00
00

00
00

00
00

53 53 53

0 0 0

00
10

00
01

00
00

00
00

00
00

10
00

01
00

00
10

00
01

00
10

00
01

00
00

10
00

01
00

00
10

00
00

00
00

00
11

10
00

01
00

00
10

00
00

00
11

00
00

00
01

11
11

10
00

00
10

11
11

00
01

11
11

10
00

01
00

11
00

00
00

01
00

11
11

10
00

01
00

10
11

00
00

00
00

11
11

10
00

01
00

11
00

01
00

01
10

00
11

11
11

10
11

11
11

11
11

11
11

11
11

11
11

11
11

11
01

11
11

11
00

01
10

00
10

00
11

00
10

00
01

11
11

00
00

00
00

11
01

00
10

00
01

11
11

00
10

00
00

00
11

00
10

00
01

11
11

10
00

11
11

01
00

01
01

11
11

11
00

00
00

11
00

00
00

01
00

00
10

00
01

11
00

00
00

00
00

01
00

00
10

00
01

00
00

10
00

01
00

10
00

01
00

00
10

54 53 54

0 0 0

00
00

00
00

00
00

01
00

00
10

00
01

00
00

00
00

00
00

10
10

01
00

00
01

00
01

00
00

00
00

00
10

10
01

01
00

00
01

00
00

00
00

00
10

10
01

01
00

00
01

01
00

00
10

10
00

01
00

00
00

00
10

00
01

00
00

00
11

00
11

10
11

00
10

00
01

00
00

00
00

00
10

11
01

00
10

00
01

00
00

00
01

00
00

10
11

00
00

00
00

01
00

00
00

10
00

01
11

10
11

01
00

00
00

10
10

11
01

01
00

11
11

11
00

11
10

11
11

00
00

00
00

11
00

11
10

11
11

00
00

00
00

11
11

10
10

11
11

01
10

00
00

11
11

00
00

11
01

11
10

11
00

00
00

00
00

00
11

11
11

11
00

11
11

11
11

00
00

11
11

11
11

11
11

11
00

11
11

11
11

00
00

11
00

11
11

11
11

00
01

11
11

11
11

N
um

be
r o

f o
ne

s
pe

r c
ol

um
n

1
11

11
11

11
33

33
33

55
33

33
33

55
33

33
33

55
33

33
33

55
33

33
35

55
33

33
33

55
33

33
35

55
33

55
55

55
55

55
55

33
55

53
33

33
55

33
33

33
55

53
33

33
55

33
33

33
55

33
33

33
55

33
33

33
55

33
33

33

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

Error Protection and Handling 179

Data Array in Noncorrection Mode

When the SCCorEn mode bit is negated, the secondary cache operates in
noncorrection mode. Whenever the processor reads the secondary cache data
array in noncorrection mode, it checks for even parity on SCDataChk(9). If a
parity error is detected, it is assumed that a correctable error has occurred, and the
secondary cache block is again read through a data corrector. During this re-read,
the processor checks the SCDataChk(8:0) bus for the proper ECC.

If a correctable error is detected, correction is automatically performed in-line. To
inform the external agent that a correctable error had been detected and corrected,
the processor asserts SysCorErr* for one SysClk cycle.

If an uncorrectable error is detected, the secondary cache unit posts a Cache Error
exception and initializes the D and SIdx fields in the local CacheErr register.

Secondary cache data array correctable errors are monitored with Performance
Counter 0.

Tag Array

The 26-bit-wide secondary cache tag array is protected by a 7-bit-wide ECC.
Table 9-6 presents the ECC matrix for the secondary cache tag array.

Table 9-6 ECC Matrix for Secondary Cache Tag Array

Whenever the processor reads the secondary cache tag array, it checks the
SCTagChk(6:0) bus for the proper ECC. If a correctable error is detected,
correction is automatically performed in-line, without affecting latency. The
processor asserts SysCorErr* for one SysClk cycle to inform the external agent
that a correctable error has been detected and corrected. If an uncorrectable error
is detected, the secondary cache unit posts a Cache Error exception and initializes
the TA and SIdx fields in the local CacheErr register. The processor asserts
SysUncErr* for one SysClk cycle to inform the external agent that an
uncorrectable tag error has been detected.

Whenever the processor writes the secondary cache tag array, it drives the proper
ECC on the SCTagChk(6:0) bus.

Check Bit 0 12 34 56

Data Bit 2
5

222
432

22
10

11
98

11
76

1111
5432

11
1098 7654 3210

Number of ones
per row

11
13
11

0
0
1

0100
1000
0010

1000
0100
1000

1000
0100
0001

0001
0010
1000

1111
1111
0000

1000
1111
1111

1000
0000
0100

1000
0100
0010

11
13
12
14

1
0
1
0

0100
1000
0010
1111

0100
0001
0010
1100

0010
1000
0100
1100

0100
1000
0100
1100

1000
0100
0010
0001

0100
0000
0010
0001

1111
1111
0010
0001

0000
1111
1111
0001

Number of ones per
column

3 3331 3311 3311 3311 3333 3333 3333 3333

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 180 Chapter 9.

9.12 System Interface Error Protection and Handling
This section describes error protection and error handling schemes for the System
interface.

Error Protection

The System interface buses have the following error protection schemes, as listed
in Table 9-7.

Table 9-7 System Interface Bus Error Protection

Bus Width Error Protection

SysCmd 12-bit Odd parity

SysAD 64-bit 8-bit ECC

SysState 3-bit Odd parity

SysResp 5-bit Odd parity

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

Error Protection and Handling 181

Error Handling

This section describes error handling on the system command bus, system
address/data bus, system state bus, and system response bus.

SysCmd(11:0) Bus

The 12-bit wide system command bus, SysCmd(11:0), is protected by odd parity.

Whenever the processor is in master state and it asserts SysVal* to indicate that it
is driving valid information on the SysCmd(11:0) bus, it also drives odd parity on
the SysCmdPar signal.

Errata

Whenever the processor is in slave state and an external agent asserts SysVal* to
indicate that it is driving valid information on the SysCmd(11:0) bus, the
processor checks the SysCmdPar signal for odd parity. If a parity error is
detected, the processor ignores the SysCmd(11:0) and SysAD(63:0) buses for one
SysClk cycle. The System interface unit posts a Cache Error exception and sets the
SC bit in the local CacheErr register. Additionally, the processor informs the
external agent by asserting SysUncErr* for one SysClk cycle.

Caution: By ignoring the SysCmd(11:0) and SysAD(63:0) buses, the
processor to become unsynchronized with other processors or the external
agent on the cluster bus.

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 182 Chapter 9.

SysAD(63:0) Bus

The 64-bit wide system address/data bus, SysAD(63:0), is protected by an 8-bit-
wide ECC.

Processor in Master State

Whenever the processor is in master state and it asserts SysVal* to indicate it is
driving valid information on the SysAD(63:0) bus, it also drives the proper ECC
on the SysADChk(7:0) bus.

Processor in Slave State

Whenever the processor is in slave state, error checking is enabled with the
assertion of SysCmd(0), and an external agent asserts SysVal* to indicate it is
driving valid information on the SysAD(63:0) bus, the processor checks the
SysADChk(7:0) bus for the proper ECC.

Correctable Error Detected

If a correctable error is detected during an external address cycle, or during an
external data cycle for a processor read or upgrade request originated by the
R10000 processor, correction is automatically performed in-line without affecting
latency. The processor asserts SysCorErr* for one SysClk cycle to inform the
external agent that a correctable error has been detected and corrected.

Uncorrectable Error Detected

Errata

If an uncorrectable error is detected during an external address cycle, the processor
ignores the SysCmd(11:0) and SysAD(63:0) buses for one SysClk cycle, and the
System interface unit posts a Cache Error exception and sets the SA bit in the local
CacheErr register. Additionally, the processor informs the external agent by
asserting SysUncErr* for one SysClk cycle.

Caution: By ignoring the SysCmd(11:0) and SysAD(63:0) buses, this
processor may become unsynchronized with other processors or the
external agent on the cluster bus.

If an uncorrectable error is detected or the data quality indication on SysCmd(5) is
asserted during an external data cycle for a processor read or upgrade request
originated by the processor, the R10000 asserts the corresponding incoming buffer
uncorrectable error flag.

When the processor forwards block data from an incoming buffer entry after
receiving an external ACK completion response, the associated incoming buffer
uncorrectable error flags are checked, and if any are asserted, the System interface
unit posts a single Cache Error exception and initializes the EE, D, and SIdx fields
in the local CacheErr register.

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

Error Protection and Handling 183

When the processor forwards double/single/partial-word data from an incoming
buffer entry after receiving an external ACK completion response, the associated
incoming buffer uncorrectable error flag is checked and, if asserted, the System
interface unit posts a Bus Error exception.

Table 9-8 presents the ECC matrix for the System interface address/data bus.
This ECC matrix is identical to that used by the R4X00 System interface.

Table 9-8 ECC Matrix for System Interface Address/Data Bus

Check Bit 43 52 70 61

Data Bit 6666
3210

55
98

5555
7654

55
32

5544
1098

4444
7654

4444
3210

3333
9876

3333
5432

3322
1098

2222
7654

2222
3210

1111
9876

1111
5432

11
10 9876 54 3210

Number of ones
per row

27
27
27
27

1111
1111
0000
0000

1100
1000
1000
1010

1100
1000
1100
0100

1000
1000
1010
1100

1000
0100
0010
0001

0000
0000
1111
1111

1111
0000
1111
0000

1111
0000
0000
1111

0000
1111
0000
1111

1000
0100
0010
0001

1000
0100
0010
0001

1000
0100
0010
0001

1000
0100
0010
0001

0000
1111
1111
0000

1010
1100
1000
1000

0100
1100
1000
1100

1000
1010
1100
1000

1000
0100
0010
0001

27
27
27
27

1000
0100
0010
0001

0101
1100
0100
0100

0011
0010
0011
0001

0100
0101
1100
0100

0000
1111
1111
0000

1000
0100
0010
0001

1000
0100
0010
0001

1000
0100
0010
0001

1000
0100
0010
0001

1111
0000
1111
0000

1111
0000
0000
1111

0000
1111
0000
1111

1111
1111
0000
0000

1000
0100
0010
0001

1100
0100
0100
0101

0001
0011
0010
0011

0100
0100
0101
1100

0000
0000
1111
1111

Number of ones per
column

3333 5511 3333 5511 3333 3333 3333 3333 3333 3333 3333 3333 3333 3333 5511 3333 5511 3333

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 184 Chapter 9.

SysState(2:0) Bus

The 3-bit wide system state bus, SysState(2:0), is protected by odd parity. The
processor drives odd parity on the SysStatePar signal.

SysResp(4:0) Bus

The 5-bit wide system response bus, SysResp(4:0), is protected by odd parity.

Errata

Whenever an external agent asserts SysRespVal* to indicate it is driving valid
information on the SysResp(4:0) bus, the processor checks the SysRespPar signal
for odd parity. If a parity error is detected, the processor ignores the SysResp(4:0)
bus for one SysClk cycle. The System interface unit posts a Cache Error exception
and sets the SR bit in the local CacheErr register. Additionally, the processor
informs the external agent by asserting SysUncErr* for one SysClk cycle.

Caution: If the processor ignores the SysResp(4:0) bus, it may become
unsynchronized with other processors or the external agent on the cluster
bus. Also, the processor will “hang” if a parity error is detected on the
SysResp[4:0] bus during an external completion response cycle for a
processor double/single/partial-word read request originated by the
processor. The external agent may initiate a Soft Reset sequence to obtain the
contents of the CacheErr register, and the CacheErr register will indicate a
System interface uncorrectable system response bus error.

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

Error Protection and Handling 185

Protocol Observation

The processor continuously observes the protocol on the System interface.
Table 9-9 presents the supported protocol observations and the associated error
handling sequence.

Table 9-9 Protocol Observation

Protocol Observation Error Handling

External response data cycle with an unexpected request
number during an external block data response for a
processor block read or upgrade request originated by the
processor.

Ignore the external response data cycle

External block data response specifying a Reserved cache
block state for a processor block read or upgrade request
originated by the processor.

Override the cache block state to CleanExclusive

External block data response specifying a Shared cache
block state for a processor coherent block read exclusive or
upgrade request originated by the processor.

Override the cache block state to CleanExclusive

External completion response specifying a Reserved
completion indication. Ignore the external completion response

External ACK completion response for a processor read
request originated by the processor that has not received an
external data response.

Override the external ACK completion response
to a NACK

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 186 Chapter 9.

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996187

10. CACHE Instructions

This chapter describes the CacheOps (CACHE†) used in the R10000 processor.

The format of the CACHE instruction is:

CACHE op, offset(base)

In a CACHE instruction, the 16-bit offset is sign-extended and added to the
contents of the general register base to form a Virtual Address (VA). The VA is
translated to a Physical Address (PA) using the TLB. The 5-bit sub-opcode
specifies a cache instruction variation for that address.

† CacheOp and CACHE instruction are used interchangeably in this text.

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 188 Chapter 10.

10.1 Notes on CACHE Instruction Operations
This section describes the operations of the CACHE instructions in the R10000
processor.

NOTE: The operation of any operation/cache combination not listed below is
undefined, and the operation of this instruction on uncached addresses is also
undefined.

Virtual Address

The CACHE instruction uses the following portions of the VA to specify a primary
cache block and way:

• VA[13:5] defines a 32-byte block in the primary data cache array.

• VA[13:6] defines a 64-byte block in the primary instruction cache array.

• In both cases, VA[0] defines the way needed by Index operations.

Since VA[0] is used to indicate the way, it does not cause alignment errors.

When accessing data in the primary caches, VA[Blocksize-1] is also used to read
or write a specific word.

Physical Address

The CACHE instruction uses the following portions of the PA to specify a
secondary cache block and way:

• PA[Size of secondary cache - 2:Blocksize of secondary cache] is used
to access the secondary cache.

• PA[0] is used to specify the way needed by Index operations.

Since PA[0] is used to indicate the way during CACHE Index operations,
alignment errors are suppressed.

When accessing data in the secondary cache, PA[Blocksize-1:3] is also used to read
or write a specific doubleword.

CP0 Not Usable

If the CP0 is not usable (if not in Kernel mode, CU0 must be set in the Status register
for CP0 to be usable), a Coprocessor Unusable exception is taken.

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

CACHE Instructions 189

TLB Refill and TLB Invalid Exceptions on CacheOps

TLB Refill and TLB Invalid exceptions can occur on any operation. For Index
operations, where the address (virtual address for the primary caches, physical
address for the secondary cache) is used to index the cache but need not match the
cache tag, unmapped addresses may be used to avoid TLB exceptions. The
operation never causes TLB Modified exceptions.

Hit Operation Accesses

A Hit operation accesses the specified cache as a normal data reference, and
performs the specified operation if the cache block contains valid data at the
specified physical address (a hit).

The operation is undefined if a CacheOp hit occurs in both ways of the cache.

Watch Exception

There is no Watch exception for CacheOps.

Address Error Exception

During an Index CacheOp, bit 0 is not checked for an Address Error exception
since this bit is used as the Way indicator bit, and may be non-zero. Bit 1 of an
Index CacheOp can still generate an Address Error exception if it is not set to zero.

For all remaining CacheOps, the low-order two bits of the instruction must be set
to zero, or else they will generate an Address Error exception.

A CacheOp is never checked for alignment Address Error exceptions, only for
privilege-type Address Error exceptions.

Write Back

Write back from the primary data cache goes to the secondary cache. Write back
from a secondary cache always goes to the System interface unit.

A secondary write back always writes the most recent data; the primary data
cache must be interrogated, and any dirty inconsistent data written back to the
secondary cache before the secondary block is written back to the system interface
unit. The address to be written is specified by the cache tag and not the translated
PA.

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 190 Chapter 10.

Invalidation

When a block is invalidated in the secondary cache, all subset blocks in the primary
cache are also invalidated. The StateMod bits on invalidated block in the primary
data cache are set to “001” (Normal) during any invalidation.

CE Bit

The R10000 processor does not support the CE bit. The functionality of the CE bit
has been replaced by the Index Load Data and Index Store Data instructions.

CH Bit

The CH bit is supported in the R10000 processor. It is modified by a Hit Invalidate
(S) or Hit WriteBack Invalidate (S) CACHE instruction. CH is set if there is a hit in
the secondary cache, and cleared if there is a miss. The CH bit can also be modified
by a MTC0 instruction.

Serial Operation of CACHE Instructions

All CACHE instruction variations are performed serially. From the aspect of the
primary cache, this means CACHE instructions can impede the instruction stream.
For this reason, load/store speculation is not allowed beyond a CACHE
instruction until the CACHE instruction has graduated. All load/store accesses,
including writebacks to the external agent, must be complete before the CACHE
instruction can graduate, and any load/store following a CACHE instruction
cannot be issued speculatively until the CACHE instruction graduates. Uncached
operations and instruction fetches are not affected.

Instructions Not Supported

The processor does not support the following CACHE instructions:

• Create DirtyExclusive

• Hit WriteBack

• Fill (I)

• Hit Set Virtual variations

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

CACHE Instructions 191

Op Field Encoding

Table 10-1 presents the Op field encoding for the CACHE instruction. Encodings
not listed in this table are undefined.

Table 10-1 CACHE Instruction Op Field Encoding

Op Field CACHE Instruction Variation Target Cache

00000 Index Invalidate (I)
00100 Index Load Tag (I)
01000 Index Store Tag (I)
10000 Hit Invalidate (I)
10100 Cache Barrier
11000 Index Load Data (I)
11100 Index Store Data (I)
00001 Index WriteBack Invalidate (D)
00101 Index Load Tag (D)
01001 Index Store Tag (D)
10001 Hit Invalidate (D)
10101 Hit WriteBack Invalidate (D)
11001 Index Load Data (D)
11101 Index Store Data (D)
00011 Index WriteBack Invalidate (S)
00111 Index Load Tag (S)
01011 Index Store Tag (S)
10011 Hit Invalidate (S)
10111 Hit WriteBack Invalidate (S)
11011 Index Load Data (S)
11111 Index Store Data (S)

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 192 Chapter 10.

10.2 Index Invalidate (I)
Index Invalidate (I) sets a block in the primary instruction cache to Invalid.
VA[13:6] defines the address and VA[0] defines the way to be invalidated.

The invalidation takes place by writing the primary instruction cache state bit to 0
(Invalid). This also sets the instruction cache state parity bit to 0.

The LRU bit does not change.

Parity check is suppressed.

10.3 Index WriteBack Invalidate (D)
Index WriteBack Invalidate (D) sets a block in the primary data cache to Invalid.
VA[13:5] defines the address and VA[0] defines the way to be invalidated.

The invalidation takes place by writing the following bits:

• primary data cache state bits are set to 00 (Invalid)

• the SCWay bit is set to 0

• the StateMod bits = 001 (Normal)

• the state parity is set to 0.

The LRU bit does not change.

If the StateMod of the block to be invalidated = 0102 (Inconsistent), the block in the
primary data cache must be written back to the secondary cache.

The address and way in the secondary cache to be written back to are read out of
the primary data cache tag address and secondary way fields and all 32 bytes are
written back.

Only the data field of the secondary cache is modified by this instruction since the
processor follows state and data subset rules.

Since the CE bit is not defined in the R10000 processor, this instruction no longer
has a CP0 ECC register mode.

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

CACHE Instructions 193

10.4 Index WriteBack Invalidate (S)
The Index WriteBack Invalidate (S) instruction sets a block in the secondary cache
to Invalid and writes back any dirty data to the System interface unit. This
operation extends to any blocks in the primary data or instruction caches which
are subsets of the secondary cache block.

The CACHE instruction physical address, PA[Cachesize-2..Blocksize], defines
the address and PA[0] defines the way to be invalidated.

The invalidation occurs in the following sequence:

1. The processor reads the STag, PIdx, and State bits from the secondary cache
tag array. If State = 00 (Invalid) no further activity takes place. If there is a
valid entry, then the STag is used to interrogate the primary instruction and
data caches.

2. The processor reads each subset block from the primary instruction cache. If
ITag = STag and IState = 1 (Valid) then the block is invalidated by writing the
IState bit to 0 (Invalid) and the IState parity bit to 0.

3. Read each subset block from the primary data cache. If DTag = STag and
DState is not equal to 00 (Invalid), then write the DState bits = 00 (Invalid), the
StateMod bits = 001 (Normal), the SCWay bit = 0, and the DState parity bit =
0. If the original block is DState = 112 (Dirty) and StateMod = 0102
(Inconsistent), also write this block back to the secondary cache using the DTag
and the SCWay bit from the primary data tag array.

4. Set the state of the secondary cache block to 00 (Invalid). Since the secondary
cache is designed so all tag bits must be written at once, the Tag, VA, and ECC
bits are also written. The tag is written with the PA and VA[13:12] (virtual
index) of the original CACHE instruction address. The ECC is generated.

5. If the secondary cache block’s original State bits were 112 (Dirty), the block is
written back to the system interface unit. If the block’s State was Shared or
CleanExclusive the system interface unit is notified with a Tag Invalidation
request that the block has been deleted.

The MRU bit is set to point away from the block invalidated unless the line was
already invalid.

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 194 Chapter 10.

10.5 Index Load Tag (I)
Index Load Tag (I) reads the primary instruction cache tag fields into the CP0
TagLo and TagHi registers. VA[13:6] defines the address and VA[0] defines the
way of the tag to be read.

All parity errors caused by Index Load Tag (I) are ignored.

The following mapping defines the operation:

TagLo[0] = Tag parity bit

TagLo[2] = State parity bit

TagLo[3] = LRU bit

TagLo[6] = State bit

TagLo[31:8] = Tag[35:12]

TagHi[3:0] = Tag[39:36]

All other CP0 TagLo and TagHi bits are set to 0.

10.6 Index Load Tag (D)
Index Load Tag (D) reads the primary data cache tag fields into the CP0 TagLo and
TagHi registers. VA[13:5] defines the address and VA[0] defines the way of the tag
to be read.

All parity errors caused by Index Load Tag (D) are ignored. The following
mapping defines the operation:

TagLo[0] = Tag parity bit

TagLo[1] = SCWay

TagLo[2] = State parity bit

TagLo[3] = LRU bit

TagLo[7:6] = State bits

TagLo[31:8] = Tag[35:12]

TagHi[3:0] = Tag[39:36]

TagHi[31:29] = StateMod bits

All other CP0 TagLo and TagHi bits are set to 0.

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

CACHE Instructions 195

10.7 Index Load Tag (S)
Index Load Tag (S) reads the secondary cache tag fields into the CP0 TagLo and
TagHi registers. The PA[Cachesize-2..Blocksize] defines the address and PA[0]
defines the way to be read.

All parity and ECC errors caused by Index Load Tag (D) are ignored.

The following mapping defines the operation:

TagLo[6:0] = Tag ECC bits

TagLo[8:7] = Virtual index bits

TagLo[11:10] = State bits

TagLo[31:14] = Tag[35:18]

TagHi[3:0] = Tag[39:36]

TagHi[31] = MRU Bit

All other CP0 TagLo and TagHi register bits are set to 0.

10.8 Index Store Tag (I)
Index Store Tag (I) stores the CP0 TagLo and TagHi registers into the primary
instruction cache tag array. VA[13:6] defines the address and VA[0] defines the
way of the tag to be written.

The following mapping defines the operation:

Tag parity bit = TagLo[0]

State parity bit = TagLo[2]

LRU bit = TagLo[3]

State bit = TagLo[6]

Tag[35:12] = TagLo[31:8]

Tag[39:36] = TagHi[3:0]

All the Tag fields, including parity, are directly written.

Parity check is suppressed for all Index Store Tags.

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 196 Chapter 10.

10.9 Index Store Tag (D)
Index Store Tag (D) stores the CP0 TagLo and TagHi registers into the primary data
cache tag array. VA[13:5] defines the address and VA[0] defines the way of the tag
to be written.

The following mapping defines the operation:

Tag parity bit = TagLo[0]

SCWay = TagLo[1]

State parity bit = TagLo[2]

LRU bit = TagLo[3]

State bits = TagLo[7:6]

Tag[35:12] = TagLo[31:8]

Tag[39:36] = TagHi[3:0]

StateMod bits = TagHi[31:29]

All Tag fields, including parity, are directly written.

Parity check is suppressed for all Index Store Tags.

10.10 Index Store Tag (S)
Index Store Tag (S) stores fields from the CP0 TagLo and TagHi registers into the
secondary cache tag and MRU array fields. The PA[Cachesize-2..Blocksize]
defines the address and PA[0] defines the way to be read.

The following mapping defines the operation:

Tag ECC bits = TagLo[6:0]

Virtual index bits = TagLo[8:7]

State bits = TagLo[11:10]

Tag[35:18] = TagLo[31:14]

Tag[39:36] = TagHi[3:0]

MRU bit = TagHi[31]

All Tag fields, including ECC, are directly written.

Parity check is suppressed for all Index Store Tags.

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

CACHE Instructions 197

10.11 Hit Invalidate (I)
Hit Invalidate (I) invalidates an entry in the instruction cache which matches the
PA of the CACHE instruction. Both way tags at VA[13:6] are read from the
instruction cache.

If the IState is 1 (Valid), and the PA of the CACHE instruction matches the Tag
from the instruction cache tag array, the IState bit of the entry is written to 0
(Invalid) and the IState parity bit is written to 0.

The LRU bit does not change.

Parity error is checked.

Hit CacheOps can cause cache error exceptions if they check ECC or parity bits.

10.12 Hit Invalidate (D)
Hit Invalidate (D) invalidates an entry in the data cache which matches the PA of
the CACHE instruction. Both ways tags at VA[13:5] are read from the data cache.

If the DState is not equal to 00 (Invalid) and the PA of the CACHE instruction
matches the DTag from the data cache tag array, then the State bits are written to
00 (Invalid), the SCWay bit = 0, the StateMod bits = 0012 (Normal), and the DState
parity = 0.

The LRU bit is left unchanged.

Parity check is enabled.

Hit CacheOps can cause cache error exceptions if they check ECC or parity bits.

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 198 Chapter 10.

10.13 Hit Invalidate (S)
Hit Invalidate (S) invalidates all entries in the secondary, primary instruction, and
primary data caches which match the PA of the CACHE instruction. The following
sequence takes place:

1. The processor reads the Tags from both ways of the secondary cache at the
address pointed to by the PA of the CACHE instruction. If the tag entry’s STag
matches the CACHE instruction PA, and the State of the entry is not equal to
00 (Invalid), then a Hit has occurred in that entry. If there is no Hit, the CACHE
instruction completes.

2. The processor checks each entry in the primary caches to determine which
corresponds to the CACHE instruction PA and the PIdx read from the
secondary cache tag array. Any entry which matches is invalidated. No write
back is required by Hit Invalidate (S).

3. The processor sets the tag array entry of the secondary cache block which was
hit to State = 00 (Invalid), Tag = PA of CACHE instruction, and PIdx =
VA[13:12] of CACHE instruction.

4. ECC is generated.

5. The MRU bit is written to point to the way opposite to that being invalidated.

6. If the processor Eliminate Request mode bit, PrcElmReq, is set, a processor
eliminate request is sent to notify the external agent that a block in the
secondary cache has been invalidated.

7. Hit Invalidate (S) sets the CH bit if it hits in the secondary cache.

8. Once the CH bit is set it stays set until cleared by a MTC0 instruction, or the
next CacheOp that can change the CH bit.

Hit CacheOps can cause cache error exceptions if they check ECC or parity bits.

10.14 Cache Barrier
Cache Barrier does not change any cache fields. It is used when serialization of a
CACHE instruction is needed without unwanted side effects. For more
information, see the section titled the section titled “Serial Operation of CACHE
Instructions,” in this chapter.

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

CACHE Instructions 199

10.15 Hit Writeback Invalidate (D)
Hit Writeback Invalidate (D) invalidates an entry in the primary data cache which
matches the PA of the CACHE instruction. In addition, it writes back to the
secondary cache any DirtyExclusive or Inconsistent data found in the primary data
cache. Both way DTags at VA[13:5] are read from the data cache.

If the DState is not equal to 00 (Invalid) and PA of the CACHE instruction matches
the DTag, then the DState bits of the entry are set to 00 (Invalid), the SCWay is set
to 0, the DState parity is set to 0, and the StateMod bits are set to 0012 (Normal).

The LRU bit is left unchanged.

If the state of the block to be invalidated was found to be StateMod = 0102
(Inconsistent), the block in the primary data cache must be written back to the
secondary cache. The address and way in the secondary cache to be written back
to are read out of the primary data cache Tag Address and secondary way fields,
and all 32 bytes are written back.

Only the data field of the secondary cache is modified by this instruction since the
processor obeys State and data subset rules.

Since the CE bit is not defined in the R10000 processor, this instruction no longer
has an ECC register mode.

Hit CacheOps can cause cache error exceptions if they check ECC or parity bits.

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 200 Chapter 10.

10.16 Hit WriteBack Invalidate (S)
Hit Writeback Invalidate (S) checks for a block which matches the CACHE
instruction PA in the secondary cache, invalidates it, and writes back any dirty
data to the System interface unit. This operation extends to any blocks in the
primary data or instruction caches which are subsets of the secondary cache block.
The operation takes place in the following sequence:

1. The processor reads the STag, PIdx, and State bits from both ways of the
secondary tag array.

2. If the PA of the CACHE instruction matches the STag, and the State does not
equal 00 (Invalid), a hit has occurred. If there is a hit, the STag is used to
interrogate the primary caches. If there is not a hit, the instruction ends.

3. The processor reads each subset block from the primary instruction cache. If
there is a match then invalidate the block by writing the IState bit to 0 (Invalid)
and the IState parity bit to 0.

4. Read each subset block from the primary data cache. If there is a match then
write the DState bits = 00 (Invalid), the StateMod bits = 001 (Normal), the
SCWay bit = 0, and the DState parity bit = 0. If the original State of any subset
block is StateMod = 0102 (Inconsistent), also write it back to the secondary
cache using the DTag and the secondary way bit from the primary data tag
array.

5. Write the State of the secondary cache block = 00 (Invalid). Since the secondary
cache is designed so all tag bits must be written at once, the STag, PIdx, and
ECC bits are also written. The STag is written with whatever the PA and
VA[13:12] of the original CACHE instruction were. The Tag ECC is generated.

6. If the secondary block’s original State bits were 112 (Dirty) then the block is
written back to the system interface unit. If the block’s State was Shared or
CleanExclusive the system interface unit is simply notified that the block has
been deleted with a “Tag Invalidation” request.

7. The MRU bit is set to point away from the block invalidated.

Hit WriteBack Invalidate (S) set the CH bit if it hits in the secondary cache. Once
the CH bit is set it stays set until cleared by a MTC0 Instruction.

Hit CacheOps can cause cache error exceptions if they check ECC or parity bits.

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

CACHE Instructions 201

10.17 Index Load Data (I)
Index Load Data (I) loads a single instruction from the primary instruction cache
into the CP0 TagHi, TagLo, and ECC registers. A predecoded instruction in R10000
is 36 bits of data and one bit of parity. The address of the target instruction is
VA[13:2] of the CACHE instruction. The way of the target instruction is VA[0] of
the CACHE instruction. The instruction itself is loaded into CP0 TagHi[3:0] and
TagLo[31:0]. The parity bit is loaded into CP0 ECC[0]. The tag field is not read.

Parity checking is suppressed during operation of Index Load Data (I).

10.18 Index Load Data (D)
Index Load Data (D) loads a singleword of data and the corresponding four bits
of byte parity into CP0 TagLo and ECC. The address of the target singleword is
VA[13:2] of the CACHE instruction. The way of the target singleword is VA[0] of
the CACHE instruction. The singleword of data will be loaded into the CP0 TagLo
register. The byte parity will be loaded into CP0 ECC[3:0] register. The tag field is
not read.

Parity checking is suppressed during operation of Index Load Data (D).

10.19 Index Load Data (S)
Index Load Data (S) loads a doubleword of data and all 10 check bits into the CP0
TagHi, TagLo, and ECC registers. The address of the target doublewords comes
from the PA of the CACHE instruction. The way comes from PA[0] of the CACHE
instruction. The high word will be loaded into CP0 TagHi and the low word of
data will be loaded into CP0 TagLo. The check bits will be loaded into CP0
ECC[9:0]. The MRU field is unmodified.

ECC correction and checking is suppressed during Index Load Data (S).

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 202 Chapter 10.

10.20 Index Store Data (I)
Index Store Data (I) stores a single instruction into the primary instruction cache.
The address where this instruction will be written comes from VA[13:2] of the
CACHE instruction. The way where the data will be written comes from VA[0] of
the CACHE instruction. The instruction itself comes from CP0 TagHi[3:0] and
TagLo[31:0]. The parity bit is also stored. This comes from CP0 ECC[0]. The data to
be stored bypasses the predecode and is written directly into the instruction cache.
The tag field is unmodified.

10.21 Index Store Data (D)
Index Store Data (D) stores a word of data and its byte parity into the data cache
from the CP0 TagLo and ECC registers. The address where this word will be
written is defined by VA[13:2] of the CACHE instruction. The way is defined by
VA[0]. The data word comes from CP0 TagLo. The parity bits come from CP0
ECC[3:0]. The data cache tag array including the LRU bit is left unchanged.

10.22 Index Store Data (S)
Index Store Data (S) stores a quadword of data and 10 check bits into the secondary
cache data array. It stores a doubleword of data from CP0 TagHi and TagLo and
pads the remaining doubleword with zeroes. This allows the ECC and parity,
which are based on the quadword, to be valid for the doubleword of data stored.
The address of the quadword stored is defined by the PA of the CACHE
instruction, and the way is defined by PA[0]. The data stored in the non-padded
doubleword comes from CP0 TagHi and TagLo. The check bits are stored from
ECC[9:0]. The tag array including the MRU bit is left unchanged.

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996203

11. JTAG Interface Operation

The JTAG interface is implemented according to the standard IEEE 1149.1 test
access port protocol specifications.

Errata

The JTAG interface accesses the JTAG controller and instruction register as well as
a boundary scan register. The JTAG operation does not require DCOk to be
asserted or SysClk to be running; however, if DCOk is asserted the SysClk must
run at the specified minimum frequency or the core logic may be damaged.

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 204 Chapter 11.

11.1 Test Access Port (TAP)
The test access port (TAP) consists of four interface signals. These signals are used
to control the serial loading and unloading of instructions and test data, as well as
to execute tests.

The TAP consists of the following signals:

JTDI: Serial data input (Input signal)

JTDO: Serial data output (Output signal)

JTMS: Mode select (Input signal)

JTCK: Clock (Input signal)

The timing and the relationship of the TAP signals follows the IEEE 1149.1
standard protocol.

TAP Controller (Input)

The R10000 processor implements the 16-state TAP controller specified by the
IEEE 1149.1 standard in the following manner:

• The JTMS signal operates the state machine synchronized by the JTCK
signal.

• The TAP controller is reset by keeping the JTMS signal asserted
through five consecutive edges of JTCK. This reset condition sets the
reset state of the controller. The TAP controller is also reset by
asserting SysReset*. This pin must not be asserted while using the
boundary scan register.

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

JTAG Interface Operation 205

11.2 Instruction Register
The JTAG instruction register is four bits wide, permitting a total of 16 instructions
to control the selection of the bypass register, the boundary scan register, and
other data registers.

The encoding of the instruction register is given in Table 11-1:

Table 11-1 JTAG Instruction Register Encoding

The 0001 value is provided to represent sample-preload, but also selects the
boundary scan register.

During a reset of the TAP controller, the value 1111 is loaded into the parallel
output of the instruction register, thus selecting the bypass register as the default.

During the Shift-IR state of the TAP controller, data is shifted serially into the
instruction register from JTDI, and the LSB of the instruction register is shifted
out onto JTDO.

During the Update-IR state, the current state of the instruction register is shifted
to its parallel output for decoding.

11.3 Bypass Register
The bypass register is 1 bit wide.

When the bypass register is selected and the TAP controller is in the Shift-DR
state, data on JTDI is shifted into the bypass register and the output of the bypass
register is shifted out onto JTDO.

MSB...LSB Selected Data Register

 0000
 0001

Boundary Scan Register
Sample - Preload

 0010
 to

 1110
Data Register (not used)

 1111 Bypass Register

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 206 Chapter 11.

11.4 Boundary Scan Register
The bypass register is 1 bit wide.

The boundary scan data register is selected by loading 0000 into the instruction
register. The Shift-DR, Update-DR, and Capture-DR states of the TAP controller
are used to operate the boundary scan register according to the IEEE 1149.1
standard specifications.

The boundary scan register provides serial access to each of the processor interface
pins, as shown in Figure 11-1. Hence, the boundary scan register can be used to
load and observe specific logic values on the processor pins.

Figure 11-1 JTAG Boundary Scan Cells

The main application of the boundary scan register is board-level interconnect
testing.

The use of the boundary scan register for applying data to and capturing data from
the internal microprocessor circuitry is not supported.

The boundary scan register list for rev 1.2 of the fab is given in Table 11-2. The
TriState signal will be eliminated from the BSR in rev 2.0 of the fab, and beyond.

An additional bit is provided in the boundary scan register to control the direction
of bidirectional pins. As it is loaded through JTDI, this bit is the first bit in the
boundary scan chain. The logic value of this bit is latched during the Update-DR
state, and sets the direction of all bidirectional pins as follows:

The value is set to 0 during reset, setting all bidirectional pins to input prior to any
boundary scan operations.

Value Direction

0 Input

1 Output

Boundary scan cells

IC package pin

Integrated
Circuit

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

JTAG Interface Operation 207

Table 11-2 Boundary Scan Register Pinlist, rev 1.2

‡ Will be eliminated after rev. 1.2.

Signal Signal Signal Signal Signal Signal
1. SCDataChk[1] 2. SCData[63] 3. SCData[62] 4. SCData[61] 5. SCData[60] 6. SCData[59]

7. SCData[58] 8. SCData[57] 9. SCData[56] 10. SCData[55] 11. SCData[54] 12. SCData[53]

13. SCData[52] 14. SCData[51] 15. SCData[50] 16. SCData[49] 17. SCData[48] 18. SCData[47]

19. SCData[46] 20. SCData[45] 21. SCData[44] 22. SCData[43] 23. SCData[42] 24. SCData[41]

25. SCData[40] 26. SCData[39] 27. SCData[38] 28. SCData[37] 29. SCData[36] 30. SCData[35]

31. SCData[34] 32. SCData[33] 33. SCData[32] 34. SysAD[0] 35. SysAD[1] 36. SysAD[2]

37. SysAD[3] 38. SysAD[4] 39. SysAD[5] 40. SysAD[6] 41. SysAD[7] 42. SysAD[8]

43. SysAD[9] 44. SysAD[10] 45. SysAD[11] 46. SysAD[12] 47. SysAD[13] 48. SysAD[14]

49. SysAD[15] 50. SCData[0] 51. SCData[1] 52. SCData[2] 53. SCData[3] 54. SCData[4]

55. SCData[5] 56. SCData[6] 57. SCData[7] 58. SCData[8] 59. SCData[9] 60. SCData[10]

61. SCData[11] 62. SCData[12] 63. SCData[13] 64. SCData[14] 65. SCData[15] 66. SCData[16]

67. SCData[17] 68. SCData[18] 69. SCData[19] 70. SCData[20] 71. SCData[21] 72. SCData[22]

73. SCData[23] 74. SCData[24] 75. SCData[25] 76. SCData[26] 77. SCData[27] 78. SCData[28]

79. SCData[29] 80. SCData[30] 81. SCData[31] 82. SCDataChk[0] 83. SCAAddr[18] 84. SCAAddr[17]

85. SCAAddr[16] 86. SCAAddr[15] 87. SCAAddr[14] 88. SCAAddr[13] 89. SCAAddr[12] 90. SCAAddr[11]

91. SCAAddr[10] 92. SCAAddr[9] 93. SCDataChk[2] 94. SCDataChk[4] 95. SCData[64] 96. SCData[65]

97. SCData[66] 98. SCData[67] 99. SCData[68] 100. SCData[69] 101. SCData[70] 102. SCData[71]

103. SCDataChk[9] 104. SysCyc* 105. SysAD[32] 106. SysAD[33] 107. SysAD[34] 108. SysAD[35]

109. SysAD[36] 110. SysAD[37] 111. SysAD[38] 112. SysAD[39] 113. SysAD[40] 114. SysAD[41]

115. SysAD[42] 116. SysAD[43] 117. SysAD[44] 118. SysAD[45] 119. SysAD[46] 120. SysAD[47]

121. SCData[72] 122. SCData[73] 123. SCData[74] 124. SCData[75] 125. SCData[76] 126. SCData[77]

127. SCData[78] 128. SCData[79] 129. SCAAddr[0] 130. SCAAddr[1] 131. SCAAddr[2] 132. SCAAddr[3]

133. SCAAddr[4] 134. SCAAddr[5] 135. SCAAddr[6] 136. SCAAddr[7] 137. SCAAddr[8] 138. SCADWay

139. SCADCS* 140. SCADOE* 141. SCADWr* 142. SCData[80] 143. SCData[81] 144. SCData[82]

145. SCData[83] 146. SCData[84] 147. SCData[85] 148. SCData[86] 149. SCData[87] 150. SCData[88]

151. SCData[89] 152. SCData[90] 153. SCData[91] 154. SCData[92] 155. SCData[93] 156. SCData[94]

157. SCData[95] 158. SCDataChk[6] 159. SCDataChk[8] 160. Spare1 161. SCTCS* 162. SCTOE*

163. SCTWr* 164. SCTag[25] 165. SCTag[24] 166. SCTag[23] 167. SCTag[22] 168. SCTag[21]

169. SCTag[20] 170. SCTag[19] 171. SCTag[18] 172. SCTag[17] 173. SCTag[16] 174. SCTag[15]

175. SCTag[14] 176. SCTag[13] 177. SCTag[12] 178. SCTag[11] 179. SCTag[10] 180. SCTag[9]

181. SCTag[8] 182. SCTag[7] 183. SCTag[6] 184. SCTag[5] 185. SCTag[4] 186. SCTag[3]

187. SCTag[2] 188. SCTag[1] 189. SCTag[0] 190. SCTagLSBAddr 191. TriState‡ 192. SCTWay

193. SCTagChk[6] 194. SCTagChk[5] 195. SCTagChk[4] 196. SCTagChk[3] 197. SCTagChk[2] 198. SCTagChk[1]

199. SCTagChk[0] 200. SysCmd[0] 201. SysCmd[1] 202. SysCmd[2] 203. SysCmd[3] 204. SysCmd[4]

205. SysCmd[5] 206. SysCmd[6] 207. SysCmd[7] 208. SysCmd[8] 209. SysCmd[9] 210. SysCmd[10]

211. SysCmd[11] 212. SysCmdPar 213. SysVal* 214. SysReq* 215. SysRel* 216. SysGnt*

217. SysReset* 218. SysRespVal* 219. SysRespPar 220. SysResp[4] 221. SysResp[3] 222. SysResp[2]

223. SysResp[1] 224. SysResp[0] 225. SysGblPerf* 226. SysRdRdy* 227. SysWrRdy* 228. SysStateVal*

229. SysStatePar 230. SysState[2] 231. SysState[1] 232. SysState[0] 233. SysCorErr* 234. SysUncErr*

235. SysNMI* 236. SCDataChk[7] 237. SCDataChk[5] 238. SCData[127] 239. SCData[126] 240. SCData[125]

241. SCData[124] 242. SCData[123] 243. SCData[122] 244. SCData[121] 245. SCData[120] 246. SCData[119]

247. SCData[118] 248. SCData[117] 249. SCData[116] 250. SCData[115] 251. SCData[114] 252. SCData[113]

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 208 Chapter 11.

Table 11-2 (cont.) Boundary Scan Register Pinlist, rev 1.2

‡ Will be eliminated after rev. 1.2.

Signal Signal Signal Signal Signal Signal
253. SCData[112] 254. SCBDWr* 255. SCBDOE* 256. SCBDCS* 257. SCBDWay 258. SCBAddr[8]

259. SCBAddr[7] 260. SCBAddr[6] 261. SCBAddr[5] 262. SCBAddr[4] 263. SCBAddr[3] 264. SCBAddr[2]

265. SCBAddr[1] 266. SCBAddr[0] 267. SCData[111] 268. SCData[110] 269. SCData[109] 270. SCData[108]

271. SCTag[8] 272. SCTag[7] 273. SCTag[6] 274. SCTag[5] 275. SCTag[4] 276. SCTag[3]

277. SCTag[2] 278. SCTag[1] 279. SCTag[0] 280. SCTagLSBAddr 281. TriState‡ 282. SCTWay

283. SCTagChk[6] 284. SCTagChk[5] 285. SCTagChk[4] 286. SCTagChk[3] 287. SCTagChk[2] 288. SCTagChk[1]

289. SCTagChk[0] 290. SysCmd[0] 291. SysCmd[1] 292. SysCmd[2] 293. SysCmd[3] 294. SysCmd[4]

295. SysCmd[5] 296. SysCmd[6] 297. SysCmd[7] 298. SysCmd[8] 299. SysCmd[9] 300. SysCmd[10]

301. SysCmd[11] 302. SysCmdPar 303. SysVal* 304. SysReq* 305. SysRel* 306. SysGnt*

307. SysReset* 308. SysRespVal* 309. SysRespPar 310. SysResp[4] 311. SysResp[3] 312. SysResp[2]

313. SysResp[1] 314. SysResp[0] 315. SysGblPerf* 316. SysRdRdy* 317. SysWrRdy* 318. SysStateVal*

319. SysStatePar 320. SysState[2] 321. SysState[1] 322. SysState[0] 323. SysCorErr* 324. SysUncErr*

325. SysNMI* 326. SCDataChk[7] 327. SCDataChk[5] 328. SCData[127] 329. SCData[126] 330. SCData[125]

331. SCData[124] 332. SCData[123] 333. SCData[122] 334. SCData[121] 335. SCData[120] 336. SCData[119]

337. SCData[118] 338. SCData[117] 339. SCData[116] 340. SCData[115] 341. SCData[114] 342. SCData[113]

343. SCData[112] 344. SCBDWr* 345. SCBDOE* 346. SCBDCS* 347. SCBDWay 348. SCBAddr[8]

349. SCBAddr[7] 350. SCBAddr[6] 351. SCBAddr[5] 352. SCBAddr[4] 353. SCBAddr[3] 354. SCBAddr[2]

355. SCBAddr[1] 356. SCBAddr[0] 357. SCData[111] 358. SCData[110] 359. SCData[109] 360. SCData[108]

361. SCData[107] 362. SCData[106] 363. SCData[105] 364. SCData[104] 365. SysAD[63] 366. SysAD[62]

367. SysAD[61] 368. SysAD[60] 369. SysAD[59] 370. SysAD[58] 371. SysAD[57] 372. SysAD[56]

373. SysAD[55] 374. SysAD[54] 375. SysAD[53] 376. SysAD[52] 377. SysAD[51] 378. SysAD[50]

379. SysAD[49] 380. SysAD[48] 381. SysADChk[7] 382. SysADChk[6] 383. SysADChk[5] 384. SysADChk[4]

385. SysADChk[3] 386. SysADChk[2] 387. SysADChk[1] 388. SysADChk[0] 389. SysAD[31] 390. SysAD[30]

391. SysAD[29] 392. SysAD[28] 393. SysAD[27] 394. SysAD[26] 395. SysAD[25] 396. SysAD[24]

397. SysAD[23] 398. SysAD[22] 399. SysAD[21] 400. SysAD[20] 401. SysAD[19] 402. SysAD[18]

403. SysAD[17] 404. SysAD[16] 405. SCData[103] 406. SCData[102] 407. SCData[101] 408. SCData[100]

409. SCData[99] 410. SCData[98] 411. SCData[97] 412. SCData[96] 413. SCDataChk[3] 414. SCBAddr[9]

415. SCBAddr[10] 416. SCBAddr[11] 417. SCBAddr[12] 418. SCBAddr[13] 419. SCBAddr[14] 420. SCBAddr[15]

421. SCBAddr[16] 422. SCBAddr[17] 423. SCBAddr[18]

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996209

12. Electrical Specifications

This chapter contains the following electrical and signal information about the
R10000 processor:

• DC electrical specification

• AC electrical specification

• signal integrity issues

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 210 Chapter 12.

12.1 DC Electrical Specification
This section describes the following DC electrical characteristics of the R10000
processor:

• DC power supply levels

• DCOk and power supply sequencing

• maximum operating conditions

• input signal level sensing

• mode definitions

• Vref[SC,Sys]

• unused inputs

• DC input/output specifications

DC Power Supply Levels

The processor core is powered by a +3.3V (+/- 5%) supply. The processor output
drivers are powered from a separate supply, dependent on the output logic family
used in the application system:

• For JEDEC-compatible HSTL operation, the nominal value for VccQSC
and VccQSys are in the 1.5V (+/- 100 millivolt) range.

• For CMOS/TTL compatible systems, VccQSC and VccQSys can be
externally tied to the same Vcc as the core power supply.

NOTE: The I/O pins of the R10000 processor may not be driven higher than
4.0V by any device in the system until the Vcc and VccQ inputs are stable.

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

Electrical Specifications 211

DCOk and Power Supply Sequencing

The following guidelines are designed to protect the processor from damage or
latch-up:

• With respect to the Vcc (3.3V) (supply to the core), VccQ[SC,Sys]
(either 1.5V or 3.3V) must not be driven more than a diode threshold
voltage.

• Vref should not go higher than VccQ[SC,Sys]. Generally, Vref is
derived from VccQ through a resistor divider, and therefore cannot
rise above VccQ.

• The power to termination resistors must not arrive before Vcc and
VccQ[SC,Sys] arrive at the processor.

• None of the supplies can float or be driven negative.

One method of protecting the processor from excessive input voltage is to
sequence the power supplies for the entire system, ensuring that the power to the
processor is stable before any components drive signals to the processor. Another
method to tristate all external drivers to the processor with the DCOk pin, until
the processor has stabilized.

NOTE: The input voltage required for the DCOk is 3.3V in either the CMOS/
TTL or the HSTL configuration. Both DCOk pins must be tied together
externally.

Maximum Operating Conditions

Table 12-1 shows the maximum conditions under which the processor operates.

Table 12-1 Maximum Operating Conditions

Errata

Revised “Case Temperature” in Table 12-1, above.

Parameter Symbol Value

Core Supply Voltage Vcc 3.6 volts

Output Supply
Voltage

VccQ (HTSL)
VccQ (CMOS/TTL)

1.6 volts
3.6 volts

Case Temperature Tc 20˚ to 85˚ C

Applied Input Voltage: Vin -0.5 to Vcc+0.5 volts

Maximum Power PR10000 30 watts

PClk Frequency f 200 MHz

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 212 Chapter 12.

Input Signal Level Sensing

The processor input signals are all received by CMOS receivers that are compatible
with either HSTL or CMOS/TTL logic levels. The I/O levels are defined by
VrefSC and VrefSys, according to the appropriate logic family (HSTL or CMOS/
TTL).

Mode Definitions

The mode bit, ODrainSys, is provided to select the characteristics of the pad ring.

When asserted, this mode bit tristates the PMOS pullup devices to select system
interface output drivers. This mode is included to allow for multiprocessor
systems to use a GTL-like open drain configuration with external load/
termination resistors providing logic high levels.

Vref[SC,Sys]

The Vref[SC,Sys] pins must be connected to a stable reference voltage source. This
reference point is used in the input sense amp current mirror to provide the switch
point for the logic levels.

Inside the processor, the Vref[SC,Sys] signals have a large capacitance, and a low-
pass filter at each receiver. The DCOk pins must not be asserted until there has
been sufficient time for Vref[SC,Sys] to stabilize at each of the receivers inside the
processor.

A typical Vref[SC,Sys] generator is two resistors which provide the Vref[SC,Sys]
level associated with the chosen logic family, and a 10µF tantalum capacitor
connected to the processor’s Vref[SC,Sys] pin to provide stability.

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

Electrical Specifications 213

Unused Inputs

Several input pins are unused during normal system operation, and should be
tied to Vcc through resistors:

• JTDI

• JTCK

• JTMS

Several input pins are unused during normal system operation, and should be
tied to Vss through 100 ohm resistors:

• TCA, TCB

• PLLDis

• Spare1, Spare3

Several input pins are unused during normal system operation, and should be
tied to Vss:

• PLLSpare1, PLLSpare2, PLLSpare3, PLLSpare4

• SelDVCO

Errata

 The following input pins may be unused in certain system configurations, and
each of them should be tied to VccQSys, preferably, through a resistor of 100
ohms or greater value:

• SysNMI*

 The following input pins may be unused in certain system configurations, and
each of them should be tied to Vss, preferably, through a resistor of 100 ohms or
greater value:

• SysRdRdy*

• SysWrRdy*

• SysGblPerf*

• SysCyc*

 The following input pins may be unused in certain system configurations, and
each of them should be tied (preferably) to Vss, or VccQSys, through a resistor of
100 ohms or greater value:

• SysADChk(7:0)

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 214 Chapter 12.

DC Input/Output Specifications

All processor output drivers are CMOS push-pull, and the signals swing between
VccQ and Vss. In open drain mode, the gates of the PMOS pullup devices are
disabled. Input-only pins include a disabled output buffer for implicit ESD
protection.

Tables 12-2 and 12-3 describe the DC characteristics of the I/O signals for the HSTL
and CMOS/TLL configurations.

NOTE: As the JEDEC Standard 8-x evolves, the HSTL specifications will also
change, and the processor will remain compliant with these standards.

Table 12-2 DC Characteristics for HSTL Configuration

Table 12-3 DC Characteristics for CMOS/TTL Configuration

Errata

All the JTAG output drivers are push-pull CMOS/TTL compatible, with Vcc (core)
as the supply (independent of VccQ[SC, Sys]). All the JTAG inputs require full
CMOS swings, as given by the DC specifications in the Table 12-3.

Symbol Parameter Minimum Maximum Units Conditions

VOH Output high voltage VccQ /2 + 0.3V N/A V N/A

VOL Output low voltage VccQ /2 - 0.3V V N/A

VIH Input high voltage Vref + 100mV Vcc + 300mV V N/A

VIL Input low voltage -300mV Vref - 100mV V N/A

ILeak I/O leakage current -TBD TBD µA N/A

Symbol Parameter Minimum Maximum Units Conditions

VOH Output high voltage 2.4 N/A V Vcc = VccQ = min

VOL Output low voltage N/A 0.4 V Vcc = VccQ = min

VIH Input high voltage 2.0 N/A V N/A

VIL Input low voltage N/A 0.8 V N/A

ILeak I/O leakage current -TBD TBD µA N/A

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

Electrical Specifications 215

12.2 AC Electrical Specification
This section describes the following AC electrical characteristics of the R10000
processor:

• maximum operating conditions

• test specification

• secondary cache and system interface timing

• enable/output delay, setup, hold time

• asynchronous inputs

Maximum Operating Conditions

The R10000 chip clamps signals that overshoot the DC limits established for input
logic levels. These limits are published as part of the fabrication process
characterization.

The R10000 chip provides silicon diode clamps on all signal pins.

Test Specification

HSTL test conditions are based on the JEDEC Standard conditions.

Secondary Cache and System Interface Timing

Timing measurements are referenced from the mid-swing point of the input
signal to the crossing point of the SysClk and SysClk* input clocks. All input
signals maintain a 1 V/ns edge rate in the 20% to 80% range of the input signal
swing.

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 216 Chapter 12.

Enable/Output Delay, Setup, Hold Time

Table 12-4 lists the delay, setup, and hold times for the HTSL version of the
processor.

Table 12-4 AC Characteristics for HSTL Configuration

Table 12-5 lists the delay, setup, and hold times for the CMOS/TTL version of the
processor.

Table 12-5 AC Characteristics for CMOS/TTL Configuration

Asynchronous Inputs

The SysReset* input can be asserted asynchronously to SysClk, but must be
negated synchronously with SysClk, adhering to the AC electrical specifications
listed above.

HSTL Minimum Maximum

Output delay 0.5 ns 1.5 ns

Setup 1.0 ns

Hold 1.0 ns

LVCMOS Minimum Maximum

Output delay 0.5 ns 2.0 ns

Setup 1.0 ns

Hold 1.0 ns

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

Electrical Specifications 217

12.3 Signal Integrity Issues
In this section, the following signal integrity considerations are described for a
R10000-based system:

• Power Supply Regulation

• Decoupling Capacitance

• Reference Voltage

• Maximum Input Voltage Levels

• Output I-V Curves

• Switching and Slew Rate Characteristics

Reference Voltage

Most input pins on the processor use a current-mirror sense amp with
Vref[SC,Sys] supplied to the negative input to provide a single rail input receiver.
The following input pins are exceptions to this rule:

• SysClk and SysClk*

• DCOk

All other inputs require a stable Vref[SC,Sys] supply for proper operation.

The Vref[SC,Sys] source can be a simple voltage divider; the actual impedance of
this source is not critical, since the Vref[SC,Sys] signals are sampled through a
low-pass filter on the processor.

Power Supply Regulation

The system must provide connections to all of the Vcc, VccQ[SC,Sys], and Vss
pins on the processor package. The power supply voltages must be held to 5%
tolerance at the processor pin connection.

Maximum Input Voltage Levels

Maximum excursion of the input signal due to ringing may reach Vcc+0.5V or
Vss-0.5V for periods of less than 10% of the total driven waveform period. The
R10000 processor includes overshoot clamps by silicon diode protection which
limit the overshoot to approximately 500 mV beyond each supply rail.

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 218 Chapter 12.

Decoupling Capacitance

Errata

In order to regulate the transient current requirements of a R10000-based system,
it is suggested that explicit decoupling capacitors be used. The R10000 package
allows for the following capacitors:

• eight Vcc-Vss

• five VccQSC-Vss

• four VccQSys-Vss

The package also provides six connections for the PLL power supplies and loop
capacitors.

VccPa (VccPd) is connected to VssPa (VssPd) through three decoupling
capacitors, as shown in Figures 12-1 and 12-2. The 0.1µF and 1 nF low-inductance
capacitors are placed in parallel with the 10 µF capacitor, as close to the R10000
package as possible.†

Figure 12-1 Decoupling VccPa and VssPa

Figure 12-2 Decoupling VccPd and VssPd

† Decoupling between VccPa and VssPa is far more important than decoupling
between VccPd and VssPd, if both are not possible.

Vcc 10 ohm VccPa

10 µF 0.1 µF 1 nF

Vss 10 ohm

VssPa

Vcc 2 ohm VccPd

10 µF 0.1 µF 1 nF

Vss 2 ohm

VssPd

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996219

13. Packaging

The R10000 microprocessor is presently supplied in one standard package
configuration:

• a single-chip 599 ceramic LGA (Land Grid Array)

MIPS Licensees are encouraged to develop package solutions with MIPS
Semiconductor Partners to meet specific requirements.

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 220 Chapter 13.

13.1 R10000 Single-Chip Package, 599CLGA
The standard single-chip R10000 package is a 599CLGA (ceramic land grid array),
as shown in Figure 13-1.

The 599CLGA package minimizes output switching noise by reducing the
inductance of the power and ground paths leading into the package. Much of the
decrease in power/ground inductance is accomplished by shortening the wire
bonds running from the die pads to the package inner leads. The 599CLGA is
designed with its cavity-side down, and the die is connected directly to a thermal
slug.

Mechanical Characteristics

The 599CLGA has lands on a straight 1.27mm (.050inch) grid. It is a cavity-down,
multi-layer ceramic package with an integral copper-tungsten slug, and is
designed for use with a socket. Preliminary information suggests that the
599CLGA can withstand a force of 100 kilograms applied to the CuW slug, without
damage, and a PWB assembly should insure that this force is not exceeded.
Drawings for a reference LGA-PWB assembly are included in this chapter.

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

Packaging 221

Electrical Characteristics

The 599CLGA uses multilayer construction, incorporating stripline configuration
for signals. Multiple planes distribute power and ground throughout the package
and provide built-in distributed bypass/coupling capacitance between the
primary power supplies: Vcc, VccQSC, VccQSys, and Vss.

Pads are present on the package body for attaching chip-capacitors to provide
additional bypass capacitance between the primary power supplies and the PLL
power supply (VccPa and VssPa), and to provide an additional PLL loop filter
capacitor (PLLRC). Chip-capacitors on the R10000 are assembled by the chip
manufacturer.

Detailed electrical package characteristics will be provided by the MIPS
Semiconductor Partners as they become available. The data in Table 13-1 is
provided as an estimate of the package parasitics. These estimates include the
effects of bondwires, package traces and vias, but not the sockets.

Table 13-1 R10000 599CLGA Electrical Characteristics

The copper-tungsten slug (provided for thermal performance) is hard-connected
to Vss to minimize EMI radiation from the package.

Parameter Description Minimum Typical Maximum

Lsig Effective signal inductance 4.0nH 8.4nH

Msig Signal-to-signal mutual inductance 1.3nH

Csig Signal loading capacitance 3.0pF 5.6pF

Cm Signal-to-signal mutual capacitance 0.5pF

Rsig Signal resistance 400mΩ 1300mΩ
Z0 Characteristic impedance 40Ω
Tpd Propagation delay 200ps

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 222 Chapter 13.

Thermal Characteristics

The 599CLGA incorporates a copper-tungsten slug to provide an efficient thermal
path from the processor to the heatsink.

The thermal analysis listed in Table 13-2 gives a preliminary indication of heatsink
requirements for the 599CLGA.

Table 13-2 R10000 599CLGA Thermal Characteristics - Preliminary

Errata

Revised Table 13-2.

System designers must take care, especially in desktop applications, to ensure
sufficient airflow and heat-dissipation surface area to meet the required case-to-
ambient thermal resistance, Θca.

The thermal interface between the package and heatsink is very important.
Typically, grease or compliant material is inserted between the package and
heatsink to increase the contact area between their surfaces.

Assembly Drawings and Pinout List

The following pages contain a pinout list (Table 13-3), and drawings of an example
R10000 LGA-PWB assembly, including details of the PWB, heatsink, and bolster
plate. Actual hardware specifications are dependent on the user.

An assembly drawing of the 599LGA is also shown in Figure 13-2. Note that
hardware specifications given in this drawing will require modifications to
accommodate the actual dimensions of the socket, PWB, heatsink, bolster, etc.

‡ Θca is used as an example to calculate the ambient temperature, Tc, needed.

Parameter Description Value

Tc Maximum case temperature 85˚ C

Ta
‡ Maximum ambient temperature 40˚ C

PR10000 Maximum power dissipation 30 watts

Tja Minimum temperature differential 45˚ C

Θca
‡ Required case to ambient thermal resistance 1.5˚ C/W

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

Packaging 223

Figure 13-1 R10000 599CLGA Package Outline

T
O

P
 V

IE
W

B
O

T
T

O
M

 V
IE

W

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 224 Chapter 13.

599CLGA Pinout

Table 13-3 599CLGA Pinout

Signal Location Signal Location Signal Location
DCOk AF2 DCOk B............. 22 JTCK W........... 33
JTDI W35 JTDO Y 31 JTMS AA 34
PLLDis E.............24 PLLRC A............ 25 PLLSpare1 C............ 21
PLLSpare2 A21 PLLSpare3 D............ 21 PLLSpare4 B 21
SCAAddr<0> E.............13 SCAAddr<1> A............ 11 SCAAddr<2> D............ 12
SCAAddr<3> C.............11 SCAAddr<4> E............. 12 SCAAddr<5> B 10
SCAAddr<6> D11 SCAAddr<7> C 10 SCAAddr<8> A............ 9
SCAAddr<9> B.............30 SCAAddr<10> E............. 29 SCAAddr<11> A............ 31
SCAAddr<12> D30 SCAAddr<13> C 31 SCAAddr<14> E 30
SCAAddr<15> B.............32 SCAAddr<16> D............ 31 SCAAddr<17> B 33
SCAAddr<18> C.............32 SCADCS* B............. 9 SCADOE* D............ 9
SCADWay E.............10 SCADWr* A............ 8 SCBAddr<0> AL 13
SCBAddr<1> AP..........12 SCBAddr<2> AM 12 SCBAddr<3> AR......... 11
SCBAddr<4> AL..........12 SCBAddr<5> AN......... 11 SCBAddr<6> AM........ 11
SCBAddr<7> AP..........10 SCBAddr<8> AL 11 SCBAddr<9> AL 29
SCBAddr<10> AP..........30 SCBAddr<11> AM 30 SCBAddr<12> AR......... 31
SCBAddr<13> AL..........30 SCBAddr<14> AN......... 31 SCBAddr<15> AM........ 31
SCBAddr<16> AP..........32 SCBAddr<17> AP.......... 33 SCBAddr<18> AN 32
SCBDCS* AN.........10 SCBDOE* AL 10 SCBDWay AR......... 9
SCBDWr* AP..........9 SCClk<0> B............. 13 SCClk<1> A............ 26
SCClk<2> AA31 SCClk<3> AM 15 SCClk<4> W........... 1
SCClk<5> E.............1 SCClk<0>* E............. 15 SCClk<1>* B 26
SCClk<2>* AB..........33 SCClk<3>* AR 14 SCClk<4>* W........... 4
SCClk<5>* F4 SCData<0> R 31 SCData<1> N 34
SCData<2> P.............33 SCData<3> M 35 SCData<4> P 32
SCData<5> M............34 SCData<6> N............ 33 SCData<7> L 35
SCData<8> N31 SCData<9> L............. 33 SCData<10> M........... 32
SCData<11> K34 SCData<12> M 31 SCData<13> J 35
SCData<14> L.............32 SCData<15> J.............. 34 SCData<16> K............ 33
SCData<17> H35 SCData<18> K 31 SCData<19> G............ 34
SCData<20> J32 SCData<21> G............ 33 SCData<22> J 31
SCData<23> F35 SCData<24> H............ 32 SCData<25> F 34
SCData<26> G31 SCData<27> E............. 35 SCData<28> F 32
SCData<29> D34 SCData<30> F............. 31 SCData<31> E 32
SCData<32> AA32 SCData<33> AB 35 SCData<34> AC......... 34
SCData<35> AB..........32 SCData<36> AD......... 35 SCData<37> AC......... 33
SCData<38> AD34 SCData<39> AC 31 SCData<40> AE 35

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

Packaging 225

Table 13-3 (cont.)

Signal Location Signal Location Signal Location
SCData<41> AD......... 32 SCData<42> AE..........33 SCData<43> AD.........31
SCData<44> AF 34 SCData<45> AE..........32 SCData<46> AG.........35
SCData<47> AF 33 SCData<48> AG34 SCData<49> AF..........31
SCData<50> AH 35 SCData<51> AG32 SCData<52> AJ...........34
SCData<53> AG......... 31 SCData<54> AJ33 SCData<55> AH.........32
SCData<56> AK......... 35 SCData<57> AJ31 SCData<58> AK34
SCData<59> AK......... 32 SCData<60> AL..........35 SCData<61> AK31
SCData<62> AM........ 34 SCData<63> AM.........33 SCData<64> D............28
SCData<65> B 29 SCData<66> E.............27 SCData<67> C28
SCData<68> D............ 27 SCData<69> E.............26 SCData<70> A............28
SCData<71> C............ 26 SCData<72> B.............15 SCData<73> D............15
SCData<74> A............ 14 SCData<75> C.............14 SCData<76> A............12
SCData<77> D............ 14 SCData<78> B.............12 SCData<79> C13
SCData<80> E 9 SCData<81> C.............8 SCData<82> D............8
SCData<83> B 7 SCData<84> C.............7 SCData<85> A............6
SCData<86> E 7 SCData<87> B.............6 SCData<88> D............6
SCData<89> A............ 5 SCData<90> E.............6 SCData<91> C5
SCData<92> D............ 5 SCData<93> B.............4 SCData<94> C4
SCData<95> B 3 SCData<96> AN.........29 SCData<97> AP..........29
SCData<98> AM........ 28 SCData<99> AN.........28 SCData<100> AL..........27
SCData<101> AR......... 28 SCData<102> AM.........27 SCData<103> AP..........27
SCData<104> AL 16 SCData<105> AP..........15 SCData<106> AL..........15
SCData<107> AP 13 SCData<108> AN.........14 SCData<109> AN.........13
SCData<110> AM........ 14 SCData<111> AR..........12 SCData<112> AM9
SCData<113> AR......... 8 SCData<114> AL..........9 SCData<115> AN.........8
SCData<116> AM........ 8 SCData<117> AP..........7 SCData<118> AN.........7
SCData<119> AR......... 6 SCData<120> AL..........7 SCData<121> AP..........6
SCData<122> AM........ 6 SCData<123> AR..........5 SCData<124> AL..........6
SCData<125> AN 5 SCData<126> AM.........5 SCData<127> AP..........4
SCDataChk<0> D............ 33 SCDataChk<1> AL..........32 SCDataChk<2> C29
SCDataChk<3> AR......... 30 SCDataChk<4> A30 SCDataChk<5> AP..........3
SCDataChk<6> E 4 SCDataChk<7> AN.........4 SCDataChk<8> D............3
SCDataChk<9> B 27 SCTCS* D2 SCTag<0> R1
SCTag<1> R 4 SCTag<2> P1 SCTag<3> R5
SCTag<4> P 3 SCTag<5> N2 SCTag<6> P.............4
SCTag<7> M........... 1 SCTag<8> N3 SCTag<9> M2
SCTag<10> N 5 SCTag<11> M............4 SCTag<12> L.............1
SCTag<13> M........... 5 SCTag<14> K.............2 SCTag<15> L.............4

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 226 Chapter 13.

Table 13-3 (cont.)

Signal Location Signal Location Signal Location
SCTag<16> J1 SCTag<17> K 3 SCTag<18> J 2
SCTag<19> K5 SCTag<20> H............ 1 SCTag<21> J 4
SCTag<22> G2 SCTag<23> J.............. 5 SCTag<24> G............ 3
SCTag<25> H4 SCTagChk<0> V 4 SCTagChk<1> W........... 3
SCTagChk<2> V2 SCTagChk<3> V 5 SCTagChk<4> V............ 1
SCTagChk<5> U3 SCTagChk<6> U............ 1 SCTOE* G............ 5
SCTWay T.............3 SCTWr* F............. 2 SCTagLSBAddr T 5
SelDVCO E.............21 Spare1 F............. 5 Spare3 U............ 4
SysAD<0> Y.............34 SysAD<1> W 32 SysAD<2> V............ 35
SysAD<3> V31 SysAD<4> V 34 SysAD<5> U............ 33
SysAD<6> V32 SysAD<7> U............ 32 SysAD<8> U............ 35
SysAD<9> T.............33 SysAD<10> T............. 34 SysAD<11> T 31
SysAD<12> R.............35 SysAD<13> R 32 SysAD<14> R 34
SysAD<15> P.............35 SysAD<16> AL 26 SysAD<17> AR......... 27
SysAD<18> AN.........26 SysAD<19> AP.......... 26 SysAD<20> AL 25
SysAD<21> AN.........25 SysAD<22> AM 25 SysAD<23> AR......... 25
SysAD<24> AL..........24 SysAD<25> AP.......... 24 SysAD<26> AM........ 24
SysAD<27> AR..........24 SysAD<28> AL 23 SysAD<29> AN 23
SysAD<30> AM22 SysAD<31> AP.......... 23 SysAD<32> C............ 20
SysAD<33> B.............20 SysAD<34> D............ 19 SysAD<35> A............ 19
SysAD<36> C.............19 SysAD<37> A............ 18 SysAD<38> D............ 18
SysAD<39> E.............18 SysAD<40> B............. 18 SysAD<41> C............ 17
SysAD<42> A17 SysAD<43> D............ 17 SysAD<44> B 16
SysAD<45> C.............16 SysAD<46> A............ 15 SysAD<47> E 16
SysAD<48> AN.........20 SysAD<49> AR 19 SysAD<50> AL 19
SysAD<51> AN.........19 SysAD<52> AM 19 SysAD<53> AP 18
SysAD<54> AM18 SysAD<55> AR 18 SysAD<56> AL 18
SysAD<57> AR..........17 SysAD<58> AM 17 SysAD<59> AN 17
SysAD<60> AL..........17 SysAD<61> AP.......... 16 SysAD<62> AN 16
SysAD<63> AR..........15 SysADChk<0> AN......... 22 SysADChk<1> AR......... 22
SysADChk<2> AL..........21 SysADChk<3> AP.......... 21 SysADChk<4> AM........ 21
SysADChk<5> AR..........21 SysADChk<6> AL 20 SysADChk<7> AP 20
SysClk A22 SysClk* A............ 23 SysClkRet* C............ 23
SysClkRet B.............23 SysCmd<0> Y 2 SysCmd<1> Y 3
SysCmd<2> AA1 SysCmd<3> Y 5 SysCmd<4> AA 2
SysCmd<5> AA4 SysCmd<6> AB 1 SysCmd<7> AA 5
SysCmd<8> AB..........3 SysCmd<9> AC 2 SysCmd<10> AB 4

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

Packaging 227

Table 13-3 (cont.)

Signal Location Signal Location Signal Location
SysCmd<11> AD......... 1 SysCmdPar AC3 SysCorErr* AK4
SysCyc* E 20 SysGblPerf* AG4 SysGnt* AD.........4
SysNMI* AK......... 5 SysRdRdy* AJ3 SysRel* AE..........1
SysReq* AC......... 5 SysReset* AD5 SysResp<0> AJ...........2
SysResp<1> AF 5 SysResp<2> AH.........1 SysResp<3> AF..........3
SysResp<4> AG......... 2 SysRespPar AE..........4 SysRespVal* AG.........1
SysState<0> AL 1 SysState<1> AJ5 SysState<2> AK2
SysStatePar AH 4 SysStateVal AK1 SysUncErr* AM2
SysVal* AD......... 2 SysWrRdy* AG5 TCA AM3
TCB AL 4 TriState T2 VccPa B.............25
VccPa C............ 25 VccPd E.............22 VrefByp C22
VssPa A............ 24 VssPa B.............24 VssPd D............22
Vcc A............ 2 Vcc A34 Vcc AB..........2
Vcc AB 34 Vcc AE..........3 Vcc AF..........32
Vcc AF 4 Vcc AH.........2 Vcc AH.........34
Vcc AL 3 Vcc AL..........31 Vcc AL..........33
Vcc AL 5 Vcc AM.........10 Vcc AM16
Vcc AM........ 20 Vcc AM.........26 Vcc AN.........18
Vcc AN 2 Vcc AN.........34 Vcc AP..........1
Vcc AP 14 Vcc AP..........22 Vcc AP..........28
Vcc AP 35 Vcc AP..........8 Vcc AR2
Vcc AR......... 34 Vcc B1 Vcc B.............14
Vcc B 28 Vcc B35 Vcc B.............8
Vcc C............ 18 Vcc C.............2 Vcc C34
Vcc D............ 10 Vcc D16 Vcc D............20
Vcc D............ 26 Vcc E3 Vcc E.............31
Vcc E 33 Vcc E5 Vcc F.............1
Vcc H 2 Vcc H34 Vcc K32
Vcc K............ 4 Vcc L3 Vcc P.............2
Vcc P 34 Vcc T.............32 Vcc T.............4
Vcc V............ 3 Vcc V.............33 Vcc Y32
Vcc Y 4 VccQSC A10 VccQSC A............32
VccQSC A............ 4 VccQSC AB..........31 VccQSC AD.........33
VccQSC AF 35 VccQSC AH.........31 VccQSC AH.........33
VccQSC AK......... 33 VccQSC AL..........14 VccQSC AL..........28
VccQSC AL 8 VccQSC AM.........35 VccQSC AN.........12
VccQSC AN 3 VccQSC AN.........30 VccQSC AN.........33

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 228 Chapter 13.

Table 13-3 (cont.)

Signal Location Signal Location Signal Location
VccQSC AN.........6 VccQSC AR 10 VccQSC AR......... 32
VccQSC AR..........4 VccQSC C 12 VccQSC C............ 3
VccQSC C.............30 VccQSC C 33 VccQSC C............ 6
VccQSC D1 VccQSC D............ 35 VccQSC E 14
VccQSC E.............28 VccQSC E............. 8 VccQSC F 3
VccQSC F33 VccQSC H............ 3 VccQSC H 31
VccQSC H33 VccQSC H............ 5 VccQSC K............ 1
VccQSC K35 VccQSC M 3 VccQSC M........... 33
VccQSC P.............31 VccQSC P............. 5 VccQSC R 2
VccQSC T.............1 VccQSys A............ 16 VccQSys A............ 20
VccQSys AB..........5 VccQSys AD......... 3 VccQSys AF 1
VccQSys AH.........3 VccQSys AH......... 5 VccQSys AK......... 3
VccQSys AL..........22 VccQSys AM 1 VccQSys AN 24
VccQSys AR..........16 VccQSys AR 20 VccQSys AR......... 26
VccQSys T.............35 VccQSys Y 1 VccQSys Y 35
VrefSC AA35 VrefSys Y 33 Vss A............ 13
Vss A27 Vss A............ 29 Vss A............ 3
Vss A33 Vss A............ 35 Vss A............ 7
Vss AA3 Vss AA......... 33 Vss AC......... 1
Vss AC32 Vss AC 35 Vss AC......... 4
Vss AE..........2 Vss AE 31 Vss AE 34
Vss AE..........5 Vss AG......... 3 Vss AG......... 33
Vss AJ...........1 Vss AJ........... 32 Vss AJ 35
Vss AJ...........4 Vss AL 2 Vss AL 34
Vss AM13 Vss AM 23 Vss AM........ 29
Vss AM32 Vss AM 4 Vss AM........ 7
Vss AN.........1 Vss AN......... 15 Vss AN 21
Vss AN.........27 Vss AN......... 35 Vss AN 9
Vss AP..........11 Vss AP.......... 17 Vss AP 19
Vss AP..........2 Vss AP.......... 25 Vss AP 31
Vss AP..........34 Vss AP.......... 5 Vss AR......... 1
Vss AR..........13 Vss AR 23 Vss AR......... 29
Vss AR..........3 Vss AR 33 Vss AR......... 35
Vss AR..........7 Vss B............. 11 Vss B 17
Vss B.............19 Vss B............. 2 Vss B 31
Vss B.............34 Vss B............. 5 Vss C............ 1
Vss C.............15 Vss C 24 Vss C............ 27
Vss C.............35 Vss C 9 Vss D............ 13

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

Packaging 229

Table 13-3 (cont.)

Signal Location Signal Location Signal Location
Vss D............ 23 Vss D24 Vss D............25
Vss D............ 29 Vss D32 Vss D............4
Vss D............ 7 Vss E11 Vss E.............17
Vss E 19 Vss E2 Vss E.............23
Vss E 25 Vss E34 Vss G1
Vss G............ 32 Vss G35 Vss G4
Vss J 3 Vss J33 Vss L.............2
Vss L 31 Vss L34 Vss L.............5
Vss N 1 Vss N32 Vss N............35
Vss N 4 Vss R.............3 Vss R33
Vss U............ 2 Vss U31 Vss U............34
Vss U............ 5 Vss W2 Vss W31
Vss W........... 34 Vss W5

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 230 Chapter 13.

Figure 13-2 599LGA Assembly Drawing

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

Packaging 231

Figure 13-3 599LGA PWB Footprint

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 232 Chapter 13.

Figure 13-4 599LGA Heatsink

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

Packaging 233

Figure 13-5 599LGA Bolster Plate

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 234 Chapter 13.

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996235

14. Coprocessor 0

This chapter describes the Coprocessor 0 operation, concentrating on the CP0
register definitions and the R10000 processor implementation of CP0 instructions.

The Coprocessor 0 (CP0) registers control the processor state and report its status.
These registers can be read using MFC0 instructions and written using MTC0
instructions. CP0 registers are listed in Table 14-1.

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 236 Chapter 14.

Table 14-1 Coprocessor 0 Registers

Coprocessor 0 instructions are enabled if the processor is in Kernel mode, or if bit
28 (CU0) is set in the Status register. Otherwise, executing one of these instructions
generates a Coprocessor 0 Unusable exception.

Register No. Register Name Description

0 Index Programmable register to select TLB entry for reading or writing
1 Random Pseudo-random counter for TLB replacement
2 EntryLo0 Low half of TLB entry for even VPN (Physical page number)
3 EntryLo1 Low half of TLB entry for odd VPN (Physical page number)
4 Context Pointer to kernel virtual PTE table in 32-bit addressing mode
5 Page Mask Mask that sets the TLB page size

6 Wired Number of wired TLB entries (lowest TLB entries not used for random
replacement)

7 Undefined Undefined
8 BadVAddr Bad virtual address
9 Count Timer count
10 EntryHi High half of TLB entry (Virtual page number and ASID)
11 Compare Timer compare
12 Status Processor Status Register
13 Cause Cause of the last exception taken
14 EPC Exception Program Counter
15 PRId Processor Revision Identifier
16 Config Configuration Register (secondary cache size, etc.)
17 LLAddr Load Linked memory address
18 WatchLo Memory reference trap address (low bits Adr[39:32])
19 WatchHi Memory reference trap address (high bits Adr[31:3])
20 XContext Pointer to kernel virtual PTE table in 64-bit addressing mode
21 FrameMask Mask the physical addresses of entries which are written into the TLB
22 BrDiag Branch Diagnostic register
23 Undefined Undefined
24 Undefined Undefined
25 PC Performance Counters
26 ECC Secondary cache ECC and primary cache parity
27 CacheErr Cache Error and Status register
28 TagLo Cache Tag register - low bits
29 TagHi Cache Tag register - high bits
30 ErrorEPC Error Exception Program Counter

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

Coprocessor 0 237

14.1 Index Register (0)
The Index register is a 32-bit, read/write register containing six bits to index an
entry in the TLB. The high-order bit of the register shows the success or failure of
a TLB Probe (TLBP) instruction.

The Index register also specifies the TLB entry affected by TLB Read (TLBR) or TLB
Write Index (TLBWI) instructions.

Figure 14-1 shows the format of the Index register; Table 14-2 describes the Index
register fields.

Figure 14-1 Index Register

Table 14-2 Index Register Field Descriptions

Field Description

P Probe failure. Set to 1 when the previous TLBProbe
(TLBP) instruction was unsuccessful.

Index Index to the TLB entry affected by the TLBRead and
TLBWrite instructions

0 Reserved. Must be written as zeroes, and returns zeroes
when read.

Index Register

31

1

30 6 5 0

25 6

 IndexP 0

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 238 Chapter 14.

14.2 Random Register (1)
The Random register is a read-only register of which six bits index an entry in the
TLB. This register decrements when any instruction graduates at that particular
cycle, and its values range between an upper and a lower bound, as follows:

• The lower bound is set by the number of TLB entries reserved for
exclusive use by the operating system (the contents of the Wired
register).

• The upper bound is set by the total number of TLB entries minus 1
(64 – 1 maximum).

The Random register specifies the entry in the TLB that is affected by the TLB Write
Random instruction. The register does not need to be read for this purpose;
however, the register is readable to verify proper operation of the processor.

To simplify testing, the Random register is set to the value of the upper bound upon
system reset. This register is also set to the upper bound when the Wired register
is written.

Figure 14-2 shows the format of the Random register; Table 14-3 describes the
Random register fields.

Figure 14-2 Random Register

Table 14-3 Random Register Field Descriptions

Field Description

Random TLB Random index

0 Reserved. Must be written as zeroes, and returns zeroes
when read.

Random Register
31 6 5 0

26 6

 Random0

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

Coprocessor 0 239

14.3 EntryLo0 (2), and EntryLo1 (3) Registers
The EntryLo register consists of two registers with identical formats:

• EntryLo0 is used for even virtual pages.

• EntryLo1 is used for odd virtual pages.

The EntryLo0 and EntryLo1 registers are read/write registers. They hold the
physical page frame number (PFN) of the TLB entry for even and odd pages,
respectively, when performing TLB read and write operations. Figure 14-3 shows
the format of these registers.

Figure 14-3 Fields of the EntryLo0 and EntryLo1 Registers

Table 14-4 Description of EntryLo Registers’ Fields

Field Description

UC Uncached attribute

PFN Page frame number; the upper bits of the physical address.

C Specifies the TLB page coherency attribute.

D Valid. If this bit is set, it indicates that the TLB entry is valid;
otherwise, a TLBL or TLBS invalid exception occurs.

V Valid. If this bit is set, it indicates that the TLB entry is valid;
otherwise, a TLBL or TLBS invalid exception occurs.

G Global. If this bit is set in both Lo0 and Lo1, then the processor
ignores the ASID during TLB lookup.

0 Reserved. Must be written as zeroes, and returns zeroes when
read.

G
 28

63

PFN C VD

3 1 1 1

0

EntryLo0 and EntryLo1 Registers

34 33 01235662

UC

61

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 240 Chapter 14.

The PFN fields of the EntryLo0 and EntryLo1 registers span bits 33:6 of the 40-bit
physical address.

Two additional bits for the mapped space’s uncached attribute can be loaded into
bits 63:62 of the EntryLo register, which are then written into the TLB with a TLB
Write. During the address cycle of processor double/single/partial-word read
and write requests, and during the address cycle of processor uncached accelerated
block write requests, the processor drives the uncached attribute on SysAD[59:58].
The same EntryLo registers are used for the 64-bit and 32-bit addressing modes. In
both modes the registers are 64 bits wide, however when the MIPS III ISA is not
enabled (32-bit User and Supervisor modes) only the lower 32 bits of the EntryLo
registers are accessible.

MIPS III is disabled when the processor is in 32-bit Supervisor or User mode.
Loading of the integer registers is limited to bits 31:0, sign-extended through bits
63:32. EntryLo[33:31] or PFN[39:38] can only be set to all zeroes or all ones. In 32-
and 64-bit modes, the UC and PFN bits of both EntryLo registers are written into
the TLB. The PFN bits can be masked by setting bits in the FrameMask register
(described in this chapter) but the UC bits cannot be masked or initialized in 32-bit
User or Supervisor modes. In 32-bit Kernel mode, MIPS III is enabled and 64-bit
operations are always available to program the UC bits.

There is only one G bit per TLB entry, and it is written with EntryLo0[0] and
EntryLo1[0] on a TLB write.

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

Coprocessor 0 241

14.4 Context (4)
The Context register is a read/write register containing the pointer to an entry in
the page table entry (PTE) array; this array is an operating system data structure
that stores virtual-to-physical address translations.

When there is a TLB miss, the CPU loads the TLB with the missing translation
from the PTE array. Normally, the operating system uses the Context register to
address the current page map which resides in the kernel-mapped segment, kseg3.
The Context register duplicates some of the information provided in the BadVAddr
register, but the information is arranged in a form that is more useful for a
software TLB exception handler.

Figure 14-4 shows the format of the Context register; Table 14-5 describes the
Context register fields.

Figure 14-4 Context Register Format

Errata

The 0 field in Table 14-5 is revised.

Table 14-5 Context Register Fields

The 19-bit BadVPN2 field contains bits 31:13 of the virtual address that caused the
TLB miss; bit 12 is excluded because a single TLB entry maps to an even-odd page
pair. For a 4-Kbyte page size, this format can directly address the pair-table of 8-
byte PTEs. For other page and PTE sizes, shifting and masking this value
produces the appropriate address.

Field Description

BadVPN2
This field is written by hardware on a miss. It contains
the virtual page number (VPN) of the most recent
virtual address that did not have a valid translation.

0 Reserved. Must be written as zeroes, and returns zeroes
when read.

PTEBase

This field is a read/write field for use by the operating
system. It is normally written with a value that allows
the operating system to use the Context register as a
pointer into the current PTE array in memory.

Context Register

23 22 4 363 0

41

PTEBase BadVPN2

19 4

0

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 242 Chapter 14.

14.5 PageMask Register (5)
The PageMask register is a read/write register used for reading from or writing to
the TLB; it holds a comparison mask that sets the variable page size for each TLB
entry, as shown in Table 14-6. Format of the register is shown in Figure 14-5.

TLB read and write operations use this register as either a source or a destination;
when virtual addresses are presented for translation into physical address, the
corresponding bits in the TLB identify which virtual address bits among bits 24:13
are used in the comparison. When the Mask field is not one of the values shown in
Table 14-6, the operation of the TLB is undefined. The 0 field is reserved; it must
be written as zeroes, and returns zeroes when read.

Figure 14-5 PageMask Register

Table 14-6 Mask Field Values for Page Sizes

Page Size
(Mask)

Bit

24 23 22 21 20 19 18 17 16 15 14 13

4 Kbytes 0 0 0 0 0 0 0 0 0 0 0 0

16 Kbytes 0 0 0 0 0 0 0 0 0 0 1 1

64 Kbytes 0 0 0 0 0 0 0 0 1 1 1 1

256 Kbytes 0 0 0 0 0 0 1 1 1 1 1 1

1 Mbyte 0 0 0 0 1 1 1 1 1 1 1 1

4 Mbytes 0 0 1 1 1 1 1 1 1 1 1 1

16 Mbytes 1 1 1 1 1 1 1 1 1 1 1 1

 12

31

13

0

MASK
7

25 24 13 12
PageMask Register

0 0

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

Coprocessor 0 243

14.6 Wired Register (6)
The Wired register is a read/write register that specifies the boundary between the
wired and random entries of the TLB as shown in Figure 14-6. Wired entries are
fixed, nonreplaceable entries, which cannot be overwritten by a TLB write
operation. Random entries can be overwritten.

Figure 14-6 Wired Register Boundary

The Wired register is set to 0 upon system reset. Writing this register also sets the
Random register to the value of its upper bound (see Random register, above).
Figure 14-7 shows the format of the Wired register; Table 14-7 describes the
register fields.

Figure 14-7 Wired Register

Table 14-7 Wired Register Field Descriptions

Field Description

Wired TLB Wired boundary

0 Reserved. Must be written as zeroes, and returns
zeroes when read.

63

Wired

Range of Random entries

0

TLB

Register
Range of Wired entries

This entry is Random, not Wired

Wired Register
31 6 5 0

26 6

 Wired0

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 244 Chapter 14.

14.7 BadVAddr Register (8)
The Bad Virtual Address register (BadVAddr) is a read-only register that displays
the most recent virtual address that caused either a TLB or Address Error
exception. The BadVAddr register remains unchanged during Soft Reset, NMI, or
Cache Error exceptions. Otherwise, the architecture leaves this register undefined.

Figure 14-8 shows the format of the BadVAddr register.

Figure 14-8 BadVAddr Register Format

14.8 Count and Compare Registers (9 and 11)
The Count and Compare registers are 32-bit read/write registers whose formats are
shown in Figure 14-9.

The Count register acts as a real-time timer. Like the R4400 implementation, the
R10000 Count register is incremented every other PClk cycle. However, unlike the
R4400, the R10000 processor has no Timer Interrupt Enable boot-mode bit, so the
only way to disable the timer interrupt is to negate the interrupt mask bit, IM[7],
in the Status register. This means the timer interrupt cannot be disabled without
also disabling the Performance Counter interrupt, since they share IM[7].

The Compare register can be programmed to generate an interrupt at a particular
time, and is continually compared to the Count register. Whenever their values
equal, the interrupt bit IP[7] in the Cause register is set. This interrupt bit is reset
whenever the Compare register is written.

.

Figure 14-9 Count and Compare Registers

BadVAddr Register

63 0

64

Bad Virtual Address

32-bit Counter (incremented every processor cycle)

32-bit Compare Value

32-bit Equal-to Comparator

31 0

Count (9)

Compare (11)

32-bit Counter (incremented every processor cycle)

31 0

32-bit Compare Value

32-bit Equal-to Comparator

Set IP7 in Cause Register

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

Coprocessor 0 245

14.9 EntryHi Register (10)
The EntryHi register holds the high-order bits of a TLB entry for TLB read and
write operations.

The EntryHi register is accessed by the TLB Probe, TLB Write Random, TLB Write
Indexed, and TLB Read Indexed instructions.

Figure 14-10 shows the format of this register and Table 14-8 describes the
register’s fields..

Figure 14-10 EntryHi Register

Table 14-8 EntryHi Register Fields

In 64-bit addressing mode, the VPN2 field contains bits 43:13 of the 44-bit virtual
address.

In 32-bit addressing mode only the lower 32 bits of the EntryHi register are used,
so the format remains the same as in the R4400 processor’s 32-bit addressing
mode. The FILL field is ignored on write and read as zeroes, as it was in the R4400
implementation.

When either a TLB refill, TLB invalid, or TLB modified exception occurs, the
EntryHi register is loaded with the virtual page number (VPN2) and the ASID of
the virtual address that did not have a matching TLB entry.

Field Description

VPN2 Virtual page number divided by two (maps to two pages); upper
bits of the virtual address

ASID
Address space ID field. An 8-bit field that lets multiple processes
share the TLB; each process has a distinct mapping of otherwise
identical virtual page numbers.

R Region. (00 → user, 01 → supervisor, 11 → kernel) used to match
vAddr63...62

Fill Reserved. 0 on read; ignored on write.

0 Reserved. Must be written as zeroes, and returns zeroes when
read.

EntryHi Register
63

VPN2
 31

0

5 8

ASID
1213 8 7

0
2

62 61 44 43

18

FILLR

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 246 Chapter 14.

14.10 Status Register (12)
The Status register (SR) is a read/write register that contains the operating mode,
interrupt enabling, and the diagnostic states of the processor. The following list
describes the more important Status register fields; Figure 14-11 shows the format
of the entire register, and Table 14-10 describes the Status register fields.

Some of the important fields include:

• The 4-bit Coprocessor Usability (CU) field controls the usability of 4
possible coprocessors. Regardless of the CU0 bit setting, CP0 is always
usable in Kernel mode. The XX bit enables the MIPS IV ISA in User
mode.

• By default, the R10000 processor implements the same user instruction
set as the R4400 processor. To enable execution of the MIPS IV
instructions in User mode, the MIPS IV User Mode bit, (XX) of the CP0
Status register must be set.

The MIPS IV instruction extension uses COP1X as the opcode; this designation
was COP3 in the R4400 processor. For this reason the CU3 bit is omitted in the
R10000 processor, and is used as the XX bit. In Kernel and Supervisor modes,
the state of the XX bit is ignored, and MIPS IV instructions are always
available.

Mode bit settings are shown in Table 14-9; dashes in the table represent don’t
cares.

Table 14-9 ISA and Status Register Settings for User, Supervisor and
Kernel Mode Operations

NOTE: Operation with the MIPS IV ISA does not assume or require that the
MIPS III instruction set or 64-bit addressing be enabled — KX, SX and UX may
all be set to zero.

Mode UX SX KX XX MIPS II MIPS III MIPS IV

User

0 - - 0 Yes No No

0 - - 1 Yes No Yes

1 - - 0 Yes Yes No

1 - - 1 Yes Yes Yes

Supervisor
- 0 - - Yes No Yes

- 1 - - Yes Yes Yes

Kernel - - - - Yes Yes Yes

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

Coprocessor 0 247

• The Reduced Power (RP) bit is reserved and should be zero. The
R10000 processor does not define a reduced power mode.

• The Reverse-Endian (RE) bit, bit 25, reverses the endianness of the
machine. The processor can be configured as either little-endian or
big-endian at system reset; reverse-endian selection is available in
Kernel and Supervisor modes, and in the User mode when the RE bit
is 0. Setting the RE bit to 1 inverts the User mode endianness.

• The 9-bit Diagnostic Status (DS) field is used for self-testing, and
checks the cache and virtual memory system. This field is described
in Table 14-11 and Figure 14-12.

• The 8-bit Interrupt Mask (IM) field controls the enabling of eight
interrupt conditions. Interrupts must be enabled before they can be
asserted, and the corresponding bits are set in both the Interrupt Mask
field of the Status register and the Interrupt Pending field of the Cause
register.

• The processor mode is undefined if the KSU field is set to 3 (112). The
R10000 processor implements this as User mode.

Figure 14-11 Status Register

RP FR RE IM (8 bits) KX SX UX R
X

L

IEE
R

L

KSUXX 0 SR 0 CH CE DETS

B
E

V

C
U

0

C
U

1

C
U

2

0RP

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Status Register

FR RE IM (8 bits) KX SX UX E
X

L

IEE
R

L

KSUXX 0 SR NMI CH CE DETS

B
E

V

Diagnostic Status Fields

C
U

0

C
U

1

C
U

2

Coprocessor
Usable

0

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 248 Chapter 14.

Status Register Fields

Table 14-10 describes the Status register fields.

Table 14-10 Status Register Fields

Field Description

XX
Enables execution of MIPS IV instructions in User mode.

1 → MIPS IV instructions usable
0 → MIPS IV instructions unusable

CU

Controls the usability of each of the four coprocessor unit
numbers. CP0 is always usable when in Kernel mode,
regardless of the setting of the CU0 bit.

1 → usable
0 → unusable

RP
In the R4400 processor, this bit enables reduced-power
operation by reducing the internal clock frequency. In the
R10000 processor, this bit should be set to zero.

FR
Enables additional floating-point registers

0 → 16 registers
1 → 32 registers

RE Reverse-Endian bit, valid in User mode.

DS Diagnostic Status field (see Figure 14-12).

IM

Interrupt Mask: controls the enabling of each of the external,
internal, and software interrupts. An interrupt is taken if
interrupts are enabled, and the corresponding bits are set in
both the Interrupt Mask field of the Status register and the
Interrupt Pending field of the Cause register.

0 → disabled
1→ enabled

KX

Enables 64-bit addressing in Kernel mode. The extended-
addressing TLB refill exception is used for TLB misses on
kernel addresses.

0 → 32−bit
1 → 64−bit

SX

Enables 64-bit addressing and operations in Supervisor
mode. The extended-addressing TLB refill exception is used
for TLB misses on supervisor addresses.

0 → 32−bit
1 → 64−bit

UX

Enables 64-bit addressing and operations in User mode. The
extended-addressing TLB refill exception is used for TLB
misses on user addresses.

0 → 32−bit
1 → 64−bit

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

Coprocessor 0 249

Table 14-10 (cont.) Status Register Fields

Diagnostic Status Field

The 9-bit Diagnostic Status (DS) field is used for self-testing, and checks the cache
and virtual memory system. This field is described in Table 14-11 and shown
Figure 14-12.

Some of the important DS fields include:

• In the R4400, the TS bit of the diagnostic field indicates a TLB shutdown
has occurred due to matching of multiple virtual page entries during
address translation. In the R10000 processor, the TS bit indicates a
TLB write has introduced an entry that would allow matching of more
than one virtual page entry during translation. In this case, the TLB
entries that allow the multiple matches, even in the Wired area, are
invalidated before the new TLB entry is written. This prevents
multiple matches during address translation.

The TS bit is updated for each TLB write. It can also be read and written by
software (in the R4400, the TS bit is read-only); to clear the TS bit one needs to
write a 0 into it. As in the R4400, Reset/Soft Reset/NMI exceptions also clear
the TS bit.

• The NMI bit is new to the R10000 processor; it distinguishes between
Soft Reset and NMI exceptions. Both exceptions set the SR bit to 1; the
NMI exception sets the NMI bit to 1, whereas the Soft Reset exception
sets it to 0.

• The CE bit is reserved in the R10000 processor and should be a 0.

Field Description

KSU

Mode bits
112 → Undefined (implemented as User mode)
102 → User
012 → Supervisor
002 → Kernel

ERL

Error Level; set by the processor when Reset, Soft Reset,
NMI, or Cache Error exception are taken.

0 → normal
1 → error

EXL

Exception Level; set by the processor when any exception
other than Reset, Soft Reset, NMI, or Cache Error exception
are taken.

0 → normal
1 → exception

IE
Interrupt Enable

0 → disable all interrupts
1 → enables all interrupts

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 250 Chapter 14.

Figure 14-12 Diagnostic Status Field

Table 14-11 Status Register Diagnostic Status Bits

Bit Description

BEV

Controls the location of TLB refill and general exception
vectors.

0 → normal
1→ bootstrap

TS

This bit is set when a TLB write presents an entry that matches
any other virtual page entry in the TLB. Should this occur,
any TLB entries that allow multiple matches, even in the
Wired area, are invalidated before this new entry can be
written into the TLB. This prevents multiple matches during
address translation.

0 → normal
1→ TLB shutdown has occurred.

SR 1→ Indicates a Soft Reset or NMI exception.

NMI
1→ Indicates a nonmaskable interrupt has occurred. Used to
distinguish between a Soft Reset and a nonmaskable interrupt
in a Soft Reset exception.

CH

Hit (tag match and valid state) or miss indication for last
CACHE Hit Invalidate, Hit Write Back Invalidate for a
secondary cache.

0 → miss
1 → hit

CE Reserved in the R10000, and should be set to 0.

DE

Specifies that cache parity or ECC errors cannot cause
exceptions.

0 → parity/ECC remain enabled
1 → disables parity/ECC

0 Reserved. Must be written as zeroes, and returns zeroes
when read.

24 22 21 20 19 18 17 16

TS SR CH CE DE

2 1 1 1 1 1 1

BEV

23

1

0 NMI

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

Coprocessor 0 251

Coprocessor Accessibility

Three Status register CU bits control coprocessor accessibility: CU0, CU1, and CU2
enable coprocessors 0, 1, and 2, respectively. If a coprocessor is unusable, any
instruction that accesses it generates an exception.

The following describes the coprocessor implementations and operations on the
R10000:

• Coprocessor 0 is always enabled in kernel mode, regardless of the CU0
bit.

• Coprocessor 1 is the floating-point coprocessor. If CU1 is 0 (disabled),
all floating-point instructions generate a Coprocessor Unusable
exception. In MIPS IV, the COP3 instruction is replaced with a second
floating-point instruction, COP1X. In addition, new functions are
added to COP1 (see Chapter 15, FPU Instructions). The floating-point
branch conditional and compare instructions are expanded to use the
eight Floating-Point Status register condition bits, instead of the
original single bit. If any of these extra bits are referenced (cc > 0)
when not using the MIPS IV ISA, an Unimplemented Instruction
exception is taken. The integer conditional move (MOVC) instruction
tests a floating-point condition bit; it causes a coprocessor unusable
exception if coprocessor 1 is disabled.

• Coprocessor 2 is defined, but does not exist in the R10000; its
instructions (COP2, LWC2, LDC2, SWC2, SDC2) always cause an
exception, but the exception code depends upon whether the
coprocessor, as indicated by CU2, is enabled.

• Coprocessor 3 has been removed from the MIPS III ISA, and is no
longer defined. If MIPS IV is disabled, the coprocessor 3 instruction
(COP3) always causes a Reserved Instruction exception.

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 252 Chapter 14.

14.11 Cause Register (13)
The 32-bit read/write Cause register describes the cause of the most recent
exception.

Figure 14-13 shows the fields of this register; Table 14-12 describes the Cause
register fields. A 5-bit exception code (ExcCode) indicates one of the causes, as
listed in Table 14-13.

All bits in the Cause register, with the exception of the IP[1:0] bits, are read-only;
IP[1:0] are used for software interrupts.

Table 14-12 Cause Register Fields

Figure 14-13 Cause Register Format

Field Description

BD

Indicates whether the last exception taken occurred in a branch
delay slot.

1 → delay slot
0 → normal

CE
Coprocessor unit number referenced when a Coprocessor
Unusable exception is taken. This bit is undefined for any other
exception.

IP

Indicates an interrupt is pending. This bit remains unchanged for
NMI, Soft Reset, and Cache Error exceptions.

1 → interrupt pending
0 → no interrupt

ExcCode Exception code field (see Table 14-13)

0 Reserved. Must be written as zeroes, and returns zeroes when
read.

Cause Register

 1

IP7

31 1527 16

2 12

8 7 6 2 0

8 1 251

0Exc
Code

1

00

282930

BD 0 CE IP0

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

Coprocessor 0 253

Table 14-13 Cause Register ExcCode Field

Exception
Mnemonic Description

Code Value

0 Int Interrupt

1 Mod TLB modification exception

2 TLBL TLB exception (load or instruction fetch)

3 TLBS TLB exception (store)

4 AdEL Address error exception (load or instruction fetch)

5 AdES Address error exception (store)

6 IBE Bus error exception (instruction fetch)

7 DBE Bus error exception (data reference: load or store)

8 Sys Syscall exception

9 Bp Breakpoint exception

10 RI Reserved instruction exception

11 CpU Coprocessor Unusable exception

12 Ov Arithmetic Overflow exception

13 Tr Trap exception

14 – Reserved

15 FPE Floating-Point exception

16–22 – Reserved

23 WATCH Reference to WatchHi/WatchLo address

24–30 – Reserved

31 – Reserved

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 254 Chapter 14.

14.12 Exception Program Counter (14)
The Exception Program Counter (EPC)† is a read/write register that contains the
address at which processing resumes after an exception has been serviced.

For synchronous exceptions, the EPC register contains either:

• the virtual address of the instruction that was the direct cause of the
exception, or

• the virtual address of the immediately preceding branch or jump
instruction (when the instruction is in a branch delay slot, and the
Branch Delay bit in the Cause register is set).

The processor does not write to the EPC register when the EXL bit in the Status
register is set to a 1.

Figure 14-14 shows the format of the EPC register.

Figure 14-14 EPC Register Format

† The ErrorEPC register provides a similar capability, described later in this chapter.

EPC Register

63 0

EPC

64

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

Coprocessor 0 255

14.13 Processor Revision Identifier (PRId) Register (15)
The 32-bit, read-only Processor Revision Identifier (PRId) register contains
information identifying the implementation and revision level of the CPU and
CP0. Figure 14-15 shows the format of the PRId register; Table 14-14 describes the
PRId register fields.

Figure 14-15 Processor Revision Identifier Register Format

Table 14-14 PRId Register Fields

The low-order byte (bits 7:0) of the PRId register is interpreted as a revision
number, and the high-order byte (bits 15:8) is interpreted as an implementation
number. The implementation number of the R10000 processor is 0x09. The
content of the high-order halfword (bits 31:16) of the register are reserved.

The revision number is stored as a value in the form y.x, where y is a major
revision number in bits 7:4 and x is a minor revision number in bits 3:0.

The revision number can distinguish some chip revisions, however there is no
guarantee that changes to the chip will necessarily be reflected in the PRId register,
or that changes to the revision number necessarily reflect real chip changes. For
this reason, software should not rely on the revision number in the PRId register
to characterize the chip.

Field Description

Imp Implementation number

Rev Revision number

0 Reserved. Must be written as zeroes, and returns zeroes
when read.

16 15

PRId Register

31 0

16

Imp (0x09)

8 8

0

8

Rev

7

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 256 Chapter 14.

14.14 Config Register (16)
The R10000 processor’s Config register has a different format from that of the
R4400, since the R10000 processor has different mode bits and configurations,
however some fields are still compatible: K0, DC, IC, and BE. The value of bits 24:0
are taken directly from the Mode bit settings during a reset sequence; refer to Table
8-1 for these bit definitions. Table 14-15 shows the R10000 Config register fields,
along with values which are hardwired into the register at boot time; Figure 14-16
shows the Config register format.

Table 14-15 Config Register Field Definitions

Figure 14-16 Config Register Format

Field Bits Name
Hardwired

Values

K0 2:0

Coherency algorithm
0002 → reserved
0012 → reserved
0102 → uncached
0112 → cacheable noncoherent
1002 → cacheable coherent exclusive
1012 → cacheable coherent exclusive on write
1102 → reserved
1112 → uncached accelerated

DN 4:3 Device number

CT 5 CohPrcReqTar

PE 6 PrcElmReq

PM 8:7 PrcReqMax

EC 12:9 SysClkDiv

SB 13 SCBlkSize

SK 14 SCCorEn

BE 15 MemEnd

SS 18:16 SCSize

SC 21:19 SCClkDiv

25:22 Reserved 0

DC 28:26 Primary data cache size (hardwired to 0112) 32 Kbytes

IC 31:29 Primary instruction cache size (hardwired to 0112) 32 Kbytes

Config Register
31

1

BE0

1619 715

1

DNCT

1

4 2 0

IC DC

3 3

28 26 25

2

23 22 21

SD

1

 SS

3

SK

14

SB

2

13

EC

4

12

1

9

3

8 6

PE

5 3

21

K0

24

0

1

 SC

3

PM

1829

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

Coprocessor 0 257

14.15 Load Linked Address (LLAddr) Register (17)
Physical addresses for Load Link instructions are no longer written into this
register. LLAddr is implemented as a read/write scratch register used for NT
compatibility.

Figure 14-17 shows the format of the LLAddr register.

Figure 14-17 LLAddr Register Format

LLAddr Register
31 0

R/W (NT)

32

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 258 Chapter 14.

14.16 WatchLo (18) and WatchHi (19) Registers
WatchHi and WatchLo are 32-bit read/write registers which contain a physical
address of a doubleword location in main memory. If enabled, any attempt to read
or write this location causes a Watch exception. This feature is used for debugging.

Bits 7:0 of the WatchHi register contain bits 39:32 of the trap physical address,
shown in Figure 14-18. The WatchLo register contains physical address bits 31:3.
The remaining bits of the register are ignored on write and read as zero.

Table 14-16 describes the WatchLo and WatchHi register fields.

Figure 14-18 WatchLo and WatchHi Register Formats

Table 14-16 WatchHi and WatchLo Register Fields

Field Description

PAddr1 Bits 39:32 of the physical address

PAddr0 Bits 31:3 of the physical address

R Trap on load references if set to 1

W Trap on store references if set to 1

0 Ignored on write and read as zero.

 WatchLo Register
31

29 1

R WPAddr0

1 1

3 01

WatchHi Register

2

31

24 8

8 07

0 PAddr1

0

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

Coprocessor 0 259

14.17 XContext Register (20)
The read/write XContext register contains a pointer to an entry in the page table
entry (PTE) array, an operating system data structure that stores virtual-to-
physical address translations. When there is a TLB miss, the operating system
software loads the TLB with the missing translation from the PTE array. The
XContext register no longer shares the information provided in the BadVAddr
register, as it did in the R4400.

The XContext register is for use with the XTLB refill handler, which loads TLB
entries for references to a 64-bit address space, and is included solely for operating
system use. The operating system sets the PTE base field in the register, as
needed. Normally, the operating system uses the Context register to address the
current page map, which resides in the kernel-mapped segment kseg3.

Figure 14-19 shows the format of the XContext register; Table 14-17 describes the
XContext register fields.

Figure 14-19 XContext Register Format

The 31-bit BadVPN2 field holds bits 43:13 of the virtual address that caused the
TLB miss; bit 12 is excluded because a single TLB entry maps to an even-odd page
pair. For a 4-Kbyte page size, this format may be used directly to address the pair-
table of 8-byte PTEs. For other page and PTE sizes, shifting and masking this
value produces the appropriate address.

Errata

The 0 field in Table 14-17 is revised.

Table 14-17 XContext Register Fields

Field Description

BadVPN2 The Bad Virtual Page Number/2 field is written by hardware on a miss. It contains the VPN of the
most recent invalidly translated virtual address.

R

The Region field contains bits 63:62 of the virtual address.
002 = user
012 = supervisor
112 = kernel.

0 Reserved. Must be written as zeroes, and returns zeroes when read.

PTEBase The Page Table Entry Base read/write field is normally written with a value that allows the
operating system to use the Context register as a pointer into the current PTE array in memory.

XContext Register
35 34 4 363 0

27

PTEBase BadVPN2

31 4

0R

2

37 36

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 260 Chapter 14.

14.18 FrameMask Register (21)
The FrameMask register is new with the R10000 processor. It masks bits of the
EntryLo0 and EntryLo1 registers so that these masked bits are not passed to the TLB
while doing a TLB write (either TLBWI or TLBWR).

A zero in the FrameMask register allows its corresponding bit in the EntryLo[1,0]
registers to pass to the TLB; a one in the FrameMask register masks off its
corresponding bit in the EntryLo registers and passes a zero to the TLB. Bits 15:0
of the FrameMask register control bits 33:18 of the EntryLo registers.

The remaining bits of this register are ignored on write and read as zeroes. The
content of this register is set to zero after a processor reset or a power-up event.

Figure 14-20 shows the FrameMask register format.

Figure 14-20 FrameMask Register Format

00 Mask bits, PA[39:24]

0151631

16 16

FrameMask Register

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

Coprocessor 0 261

14.19 Diagnostic Register (22)
CP0 register 22, the Diagnostic register, is a new 64-bit register for processor-
specific diagnostic functions. (Since this register is designed for local use, the
diagnostic functions are subject to change without notice.) Currently, this register
helps test the ITLB, branch caches, and the branch prediction scheme. In addition,
it provides choices for branch prediction algorithms, to help diagnostic program
writing.

Errata

The twelve fields of the Diagnostic register, shown in Figure 14-21, are described
below. All fields are read-only (all writes are ignored).

ITLBM: this field is a 4-bit read-only counter. This field is incremented by one for
each ITLB miss, and any overflow is ignored. Its value is undefined during reset,
and its value is meaningless when used in an unmapped space.

BSIdx: this field defines the entry in the branch stack to be used for the latest
conditional branch decoded. Its value is meaningless if the latest branch was an
unconditional branch.

DBRC: this field disables the use of the branch return cache (BRC).

BRCV: this field indicates whether or not the branch return cache (BRC) is valid.
BRC has only one entry (four instructions).

BRCW: this field indicates whether or not the latest branch (JAL, JALR RX,
BGEZAL, BGEZALL, BLTZAL, or BLTZALL) caused a write into BRC. It is not
affected by any other type of branch.

BRCH: this field indicates whether or not the latest branch (JR r31 or JALR rx,r31)
has a BRC hit. It not affected by any other type of branch.

MP: this field indicates whether or not the latest conditional branch verified was
mispredicted.

BPMode: this is a read-write field for branch prediction algorithm control.

002: 2-bit counter scheme

012: all conditional branches are predicted not taken

102: all conditional branches are predicted taken

112: forward conditional branches are predicted not taken and backward
conditional branches are predicted taken.

The default mode is 00 on processor reset.

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 262 Chapter 14.

BPState: this field contains the new 2-bit state for a conditional branch after it is
verified. It is also used to hold the 2-bit state to read/write when a branch
prediction table read/write operation is executed.

BPIdx: this field contains the index to the Branch Prediction Table (BPT) for BPT
read/write/initialization operations, and should contain VA[11:3] of the branch
for BPT read/write operations. The upper six bits of the BPIdx field contain the
line address for BPT line initialization operations; the lower three bits of BPIdx are
ignored.

BPOp: this field indicates the following BPT operations:

002: BPT read

012: BPT write

102: initializes BPT line to all zeroes (strongly not taken)

112: initializes BPT line to all ones (strongly taken).

Errata

0: Reserved. Must be written as zeroes, and returns zeroes when read.

Figure 14-21 shows the format of the Diagnostic register.

Figure 14-21 Diagnostic Register Format

BS
Idx

0
BRC

HW
MP

Mode Op0IdxState 0V

0171831

BS
Idx

BRC

HW
MP

BP

Mode Op0Idx

12311 12 13141516192021222728

21922214 1 1 15

State 0V

0 0

324863

12 16

475152

4

ITLBM

23

0 DBRC

1

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

Coprocessor 0 263

Errata

There are two ways to read the branch prediction state from the Branch Prediction
Table (BPT):

• Place an mfc0 rx, C0_Diag (a Move From Diagnostic register to GPR rx)
in the delay slot of the conditional branch. This read of the Diagnostic
register returns the next predicted state from the branch stacks before
the BPT is updated.

• Move the Index and the BPT read operation into the Idx and BPOp field
of the Diagnostic register. This mtc0 into CP0_Diag graduates as soon as
the write is completed; however, there could be a significant delay in
transferring the data from BPT to CP0_Diag. This delay occurs because
C0_Diag has a lower priority to access the BPT as compared to the
accesses by IFETCH and other processes. Thus, the prediction state
read from the C0_Diag may not reflect the content of the BPT. Use the
code sequence shown below to get the correct prediction state from
the BPT:

li rx # rx has index and BPT read for
Idx and BPOp, respectively.

mtc0 rx, C0_Diag # Set the Diagnostic register for reading the BPT
la ry, label # ry !=r31; la could be replaced by a dla for 64-bits
jr ry # This gives priority for C0_Diag to access BPT

label: mfc0 rz, C0_Diag # rz holds the state from BPT entry pointed by Idx

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 264 Chapter 14.

14.20 Performance Counter Registers (25)
The R10000 processor defines two performance counters and two associated
control registers, which are mapped into CP0 register 25. An encoding in the
MTC0/MFC0 instructions on register 25 indicates which counter or control
register is used.

Each counter is a 32-bit read/write register and is incremented by one each time
the countable event, specified in its associated control register, occurs. Each
counter can independently count one type of event at a time.

The counter asserts an interrupt, IP[7], when its most significant bit (bit 31)
becomes one (the counter overflows) and the associated performance control
register enables the interrupt.

The counting continues after counter overflow whether or not an interrupt is
signalled.

The format of the control registers are shown in Figure 14-22.

Figure 14-22 Control Register Format

0

0

 31

23

K

1

U

3

1 1

9

EXLEvent

5

IE

4

1

8 2

S

1 14

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

Coprocessor 0 265

The fields of the Control register are:

• The Event field specifies the event to be counted, listed in Table 14-18.

Table 14-18 Counter Events

Errata

Made various changes to Table 14-18, as indicated by the underlines. Note that the
updated material reflects the functionality of silicon revision 3.0 and later. The status of
earlier silicon revisions are documented as silicon errata available on www.mips.com.

• The IE bit enables the assertion of IP[7] when the associated counter
overflows.

• The U, S, K, and EXL bits indicate the processor modes in which the
event is counted: U is user mode; S is supervisor mode; K is kernel
mode when EXL and ERL both are set to 0; the system is in kernel
mode and handling an exception when EXL is set to 1, as shown in
Table 14-22.

Errata

Event Counter 0 Counter 1

0 Cycles Cycles
1 Instructions issued Instructions graduated
2 Load/prefetch/sync/CacheOp issued Load/prefetch/sync/CacheOp graduated
3 Stores (including store-conditional) issued Stores (including store-conditional) graduated
4 Store conditional issued Store conditional graduated
5 Failed store conditional Floating-point instructions graduated

6 Branches resolved Quadwords written back from primary data
cache

7 Quadwords written back from secondary cache TLB refill exceptions
8 Correctable ECC errors on secondary cache data Branches mispredicted

9 Instruction cache misses Secondary cache load/store and cache-ops
operations

10 Secondary cache misses (instruction) Secondary cache misses (data)
11 Secondary cache way mispredicted (instruction) Secondary cache way mispredicted (data)

12 External intervention requests External intervention request is determined to
have hit in secondary cache

13 External invalidate requests External invalidate request is determined to
have hit in secondary cache

14 Functional unit completion cycles Stores or prefetches with store hint to
CleanExclusive secondary cache blocks

15 Instructions graduated Stores or prefetches with store hint to Shared
secondary cache blocks

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 266 Chapter 14.

• 0: Reserved. Must be written as zeroes, and returns zeroes when read.

These modes can be set individually; for example, one could set all four bits to
count a certain event in all processor modes except during a cache error exception.

Errata

In describing the rules that are applied for the counting of each events listed in
Table 14-18, following terminology is used:

Done is defined as the point at which the instruction is successfully executed
by the functional unit but is not yet graduated.

Graduated is defined as the point in time when the instruction is successfully
executed (done), and it is the oldest instruction.

Secondary Cache Transaction Processing (SCTP) logic is on-chip logic in which up
to four internally-generated and one-externally generated secondary cache
transactions are queued to be processed.

The following rules apply for the counting of each event listed in Table 14-16:

Event 0 for Counter 0 and Counter 1: Cycles

The counter is incremented on each PClk cycle.

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

Coprocessor 0 267

Event 1 for Counter 0: Instructions Issued

The counter is incremented on each cycle by the sum of the three following events:

• Integer operations marked as done on the cycle. 0, 1 or 2 such
operations can be marked on each cycle. Since these operations (all
except for MUL and DIV) are marked done on the cycle following their
being issued to a functional unit, this number is nearly identical to the
number issued. The only difference is that re-issues are not counted.

• Floating point operations marked done in the active list. Possible values
are 0, 1 or 2. Since these operations take more than one cycle to
complete, it is possible for an instruction to be issued and then aborted
before it is counted, due to a branch-misprediction or exception
rollback.

• Load/store instructions first issued to the address calculation unit on
the previous cycle. Possible values are 0 or 1. Prefetch instructions are
counted as issued. Load/store instructions are counted as being issued
only once, even though they may have been issued more than one
time.† Any instruction which does not go to the load/store unit,
integer functional unit, or FP functional is counted. Some of those not
counted are: nops, bc1{f,t,fl,tl}, break, syscall, j, jal, jr, jalr, cp0
instructions.

Event 1 for Counter 1: Instruction Graduation.

The counter is incremented by the number of instructions that were graduated on
the previous cycle. When an integer multiply or divide instruction graduates, it is
counted as two instructions.

Event 2 for Counter 0: Load/Prefetch/Sync/CacheOp Issue.

Each of these instructions are counted as they are issued. A load instruction is
only counted once, even though it may have been issued more than one
time.†

Event 2 for Counter 1: Load/Prefetch/Sync/CacheOp Graduation.

Each of these instructions are counted as they are graduated. Up to four loads can
graduate in one cycle.

† This could be a result of DCache Tag being busy or four Instruction or Data cache
misses already present and waiting to be processed in the Secondary Cache
Transaction Processing (SCTP) logic.

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 268 Chapter 14.

Event 3 for Counter 0: Stores (Including Store-Conditional) Issued.

The counter is incremented on the cycle after a store instruction is issued to the
address-calculation unit. Note that a store can only be counted as having been
issued once, even though it may actually be issued more than once due to DCache
Tag being busy or there already being four load/store cache misses waiting in the
SCTP logic.

Event 3 For Counter 1: Store (Including Store-Conditional) Graduation.

Each graduating store (including SC) increments the counter. At most one store
can graduate per cycle.

Event 4 for Counter 0: Store-Conditional Issued.

This counter is incremented on the cycle after a store conditional instruction is
issued to the address-calculation unit. Note that an SC can only be counted as
having been issued once, even though it may actually be issued more than once
due to DCache Tag being busy or there already being four load/store cache misses
waiting in the SCTP logic.

Event 4 for Counter 1: Store-Conditional Graduation.

At most, one store-conditional can graduate per cycle. This counter is incremented
on the cycle following the graduation of a store-conditional instruction.

Event 5 for Counter 0: Failed Store Conditional.

This counter is incremented when a store-conditional instruction fails.

Event 5 for Counter 1: Floating-Point Instruction Graduation.

This counter is incremented by the number of FP instructions which graduated on
the previous cycle. Any instruction that sets the FP Status register bits (EVZOUI) is
counted as a graduated floating point instruction. There can be 0 to 4 such
instructions each cycle.

Event 6 for Counter 0: Conditional Branch Resolved

This counter is incremented when a conditional branch is determined to have been
“resolved.”† Note that when multiple floating-point conditional branches are
resolved in a single cycle, this counter is still only incremented by one. Although
this is a rare event, in this case the count would be incorrect.

† In other words, this count is the sum of the conditional branches that are known to
be both correctly predicted and mispredicted.

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

Coprocessor 0 269

Event 6 for Counter 1: Quadwords Written Back From Primary Data Cache

This counter is incremented once each cycle that a quadword of data is written
from primary data cache to secondary cache.

Event 7 for Counter 0: Quadwords Written Back From Secondary Cache

This counter is incremented once each cycle that a quadword of data is written
back from the secondary cache to the outgoing buffer located in the on-chip
system-interface unit. (Note that data from the outgoing buffer could be
invalidated by an external request and not sent out of the processor.)

Event 7 for Counter 1: TLB Refill Exception (Due To TLB Miss)

This counter is incremented on the cycle after the TLB miss handler is invoked. All
TLB misses are counted, whether they occur in the native code or within the TLB
handler.

Event 8 for Counter 0: Correctable ECC Errors On Secondary Cache Data.

This counter is incremented on the cycle after the correction of a single-bit error
on a quadword read from the secondary cache data array.

Event 8 for Counter 1: Branch Misprediction.

This counter is incremented on the cycle after a branch is restored because of
misprediction. Note that the misprediction is determined on the same cycle that
the conditional branch is resolved. The misprediction rate is the ratio of branch
mispredicted count to conditional branch resolve count.

Event 9 for Counter 0: Primary Instruction Cache Misses.

This counter is incremented one cycle after an instruction refill request is sent to
the SCTP logic.

Event 9 for Counter 1: Secondary Cache Load/Store and Cache-ops Operations

This counter is incremented one cycle after a request is entered into the SCTP
logic, provided the request was initially targeted at the primary data cache. Such
requests fall into three categories:

• primary data cache misses

• requests to change the state of primary and secondary and primary
data cache lines from Clean to Dirty, due to stores hitting a clean line in
the primary data cache

• requests initiated by Cache-op instructions

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 270 Chapter 14.

Event 10 for Counter 0: Secondary Cache Misses (Instruction)

This counter is incremented the cycle after the last quadword of a primary
instruction cache line is written from the main memory, while the secondary cache
refill continues.

Event 10 for Counter 1: Secondary Cache Misses (Data)

This counter is incremented the cycle after the second quadword of a data cache
line is written from the main memory, while the secondary cache refill continues.

Event 11 for Counter 0: Secondary Cache Way Misprediction (Instruction)

This counter is incremented when the secondary cache controller begins to retry
an access to the secondary cache after it hit in the non-predicted way, provided the
secondary cache access was initiated by the primary instruction cache.

Event 11 for Counter 1: Secondary Cache Way Misprediction (Data)

This counter is incremented when the secondary cache controller begins to retry
an access to the secondary cache because it hit in the non-predicted way, provided
the secondary cache access was initiated by the primary data cache.

Event 12 for Counter 0: External Intervention Requests

This counter is incremented on the cycle after an external intervention request
enters the SCTP logic.

Event 12 for Counter 1: External Intervention Requests Hits In Secondary Cache

This counter is incremented on the cycle after an external intervention request is
determined to have hit in the secondary cache.

Event 13 for Counter 0: External Invalidate Requests

This counter is incremented on the cycle after an external invalidate request enters
the SCTP logic.

Event 13 for Counter 1: External Invalidate Requests Hits In Secondary Cache

This counter is incremented on the cycle after an external invalidate request is
determined to have hit in the secondary cache.

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

Coprocessor 0 271

Event 14 for Counter 0: Functional Unit Completion Cycles

 This counter is incremented once on the cycle after at least one of the functional
units — ALU1, ALU2, FPU1, or FPU2 — marks an instruction as done.

Event 14 for Counter 1: Stores, or Prefetches with Store Hint to Clean Exclusive Secondary
Cache Blocks.

This counter is incremented on the cycle after a request to change the Clean
Exclusive state of the targeted secondary cache line to Dirty Exclusive is sent to the
SCTP logic.

Event 15 for Counter 0: Instruction Graduation.

This counter is incremented by the number of instructions that were graduated on
the previous cycle. When an integer multiply or divide instruction graduates, it is
counted as two graduated instructions.

Event 15 for Counter 1: Stores or Prefetches with Store Hint to Shared Secondary Cache
Blocks.

This counter is incremented on the cycle after a request to change the Shared state
of the targeted secondary cache line to Dirty Exclusive is sent to the SCTP logic.

The performance counters and associated control registers are written by using an
MTC0 instruction, as shown in Table 14-19.

Table 14-19 Writing Performance Registers Using MTC0

The performance counters and associated control registers are read by using a
MFC0 instruction, as shown in Table 14-20.

Table 14-20 Reading Performance Registers Using MFC0

Opcode[15:11] Opcode[1:0] Operation

11001 00 Move to Performance Control 0

11001 01 Move to Performance Counter 0

11001 10 Move to Performance Control 1

11001 11 Move to Performance Counter 1

Opcode[15:11] Opcode[1:0] Operation

11001 00 Move from Performance Control 0

11001 01 Move from Performance Counter 0

11001 10 Move from Performance Control 1

11001 11 Move from Performance Counter 1

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 272 Chapter 14.

The format of the performance control registers are shown in Table 14-21.

Table 14-21 Performance Control Register Format

The count enable field specifies whether counting is to be enabled during User,
Supervisor, Kernel, and/or Exception level mode. Any combination of count
enable bits may be asserted.

All unused bits in the performance control registers are reserved.

All counting is disabled when the ERL bit of the CP0 Status register is asserted.

Table 14-22 defines the operation of the count enable bits of the performance
control registers.

Table 14-22 Count Enable Bit Definition

The following rules apply:

• The performance counter registers may be preloaded with an MTC0
instruction, and counting is enabled by asserting one or more of the
count enable bits in the performance control registers.

• The interrupt enable bit must be asserted to cause IP[7].

• To determine the cause of the interrupt, the interrupt handler routine
must query the following:

- the performance counter register

- the interrupt enable bit of the associated performance control
register of both counters

• If neither of the counters caused the interrupt, IP[7] must be the result
of the CP0 Count register matching the CP0 Compare register.

[8:5] [4] [3:0]

Event select IP[7] interrupt enable Count enable
(U/S/K/EXL)

Count Enable Bit Count Qualifier (CP0 Status Register Fields)

U KSU = 2 (User mode), EXL = 0, ERL = 0

S KSU = 1 (Supervisor mode), EXL = 0, ERL = 0

K KSU = 0 (Kernel mode), EXL = 0, ERL = 0

EXL EXL = 1, ERL = 0

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

Coprocessor 0 273

14.21 ECC Register (26)
The R10000 processor implements a 10-bit read/write ECC register which is used
to read and write the secondary cache data ECC or the primary cache data parity
bits. (Tag ECC and parity are loaded to and stored from the TagLo register.)
Unlike the R4400, the only CacheOps that use ECC register are Index Load Data and
Index Store Data.

In the R4400, both the primary instruction and data caches are parity byte-
protected.

In the R10000 processor, the following protection schemes are used:

• The primary instruction cache is word-protected (where one word
contains 36 bits), and one parity bit is used for each instruction word
(IP in Figure 14-23).

• The primary data cache is byte-protected, with four bits used for each
32-bit data word (DP in Figure 14-23).

• Each quadword of the secondary cache data uses nine bits of ECC and
one bit of parity (SP and ECC in Figure 14-23).

The primary instruction CacheOps load or store one instruction word at a time;
therefore, one bit is used in the ECC register. The primary data CacheOps load or
store four bytes at a time; therefore, four bits are used in the ECC register. The
secondary CacheOps use ECC[9] as the parity bit and ECC[8:0] as the 9-bit ECC.
For the Index Store Data CacheOps, the unused bits are ignored. For Index Load
Data CacheOps, the unused a bits are with zeroes.

Figure 14-23 shows the format of the ECC register; Table 14-23 describes the
register fields.

Figure 14-23 ECC Register Format

Table 14-23 ECC Register Fields

Field Description

SP A 1-bit field specifying the parity bit read from or written to a
secondary cache.

ECC An 9-bit field specifying the ECC bits read from or written to a
secondary cache.

DP An 4-bit field specifying the parity bits read from or written to a
primary data cache.

IP An 1-bit field specifying the parity bit read from or written to a
primary instruction cache.

0 Reserved. Must be written as zeroes, and returns zeroes when read.

0

31

22

ECC9

9

89 0

DP4
IP1SP1

10

1

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 274 Chapter 14.

14.22 CacheErr Register (27)
The CacheErr register is a 32-bit read-only register that handles ECC errors in the
secondary cache or system interface, and parity errors in the primary caches.

R10000 processor correction policy is as follows:

• Parity errors cannot be corrected.

• Single-bit ECC errors can be corrected by hardware without taking a
Cache Error exception.

• Double-bit ECC errors can be detected but not corrected by hardware.

• All uncorrectable errors take Cache Error exceptions unless the DE bit
of the Status register is set.

• As in the R4400, cache errors are imprecise.

The CacheErr register provides cache index and status bits which indicate the
source and nature of the error; it is loaded when a Cache Error exception is taken.

CacheErr Register Format for Primary Instruction Cache Errors

Figure 14-24 shows the format of the CacheErr register when a primary instruction
cache error occurs.

Figure 14-24 CacheErr Register Format for Primary Instruction Cache Errors

EW: set when CacheErr register is already holding the values of a previous error

D: data array error (way1 || way0)

TA: tag address array error (way1 || way0)

TS: tag state array error (way1 || way0)

PIdx: primary cache virtual block index, VA[13:6]

Errata

0: Reserved. Must be written as zeroes, and returns zeroes when read.

0

D

28

2

TA

2

0

29

1

EW

30

1

00

 31

2

PIdx

6 13

8

0

5

6

0

24

8

1426 21

TS

2

27 23 2225

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

Coprocessor 0 275

CacheErr Register Format for Primary Data Cache Errors

Figure 14-25 shows the format of the CacheErr register when a primary data cache
error occurs.

Figure 14-25 CacheErr Register Format for Primary Data Cache Errors

EW: set when CacheErr register is already holding the values of a previous error

EE: tag error on an inconsistent block

D: data array error (way1 || way0)

TA: tag address array error (way1 || way0)

TS: tag state array error (way1 || way0)

TM: tag mod array error (way1 || way0)

PIdx: primary cache virtual double word index, VA[13:6]

Errata

0: Reserved. Must be written as zeroes, and returns zeroes when read.

0

TA

2

D

29

2

EW

30

1

01

 31

2

PIdx

2 13

11

0

3

0

6

14 3

TS

2

1922242628

EE

1 2

20

TM

27 25 23 21

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 276 Chapter 14.

CacheErr Register Format for Secondary Cache Errors

Figure 14-26 shows the format of the CacheErr register when a secondary cache
error occurs.

Figure 14-26 CacheErr Register Format for Secondary Cache Errors

EW: set when CacheErr register is already holding the values of a previous error

D: uncorrectable data array error (way1 || way0)

TA: uncorrectable tag array error (way1 || way0)

SIdx: secondary cache physical block index (PA[22:6] for 16-word block size or
PA[22:7] for 32-word block size)

Errata

0: Reserved. Must be written as zeroes, and returns zeroes when read.

0

D

2

0

29

1

EW

30

1

10

 31

2

SIdx

5 22

17 6

27 26 23

0

6

1

28

TA

2

25 24

0

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

Coprocessor 0 277

CacheErr Register Format for System Interface Errors

Figure 14-27 shows the format of the CacheErr register when a System interface
error occurs.

Figure 14-27 CacheErr Register Format for System Interface Errors

EW: set when CacheErr register is already holding the values of a previous error

EE: data error on a CleanExclusive or DirtyExclusive

D: uncorrectable system block data response error (way1 || way0)

SA: uncorrectable system address bus error

SC: uncorrectable system command bus error

SR: uncorrectable system response bus error

SIdx: secondary cache physical block index

Errata

0: Reserved. Must be written as zeroes, and returns zeroes when read.

0

D

2

EE

29

1

EW

30

1

11

 31

2

SIdx

522

17

25

0

628

6

SA

27

1

SC

1

SR

1

24 2326

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 278 Chapter 14.

14.23 TagLo (28) and TagHi (29) Registers
The TagHi and TagLo registers are 32-bit read/write registers used to hold the
following:†

• the primary cache tag and parity

• the secondary cache tag and ECC

• the data in primary or secondary caches for certain CacheOps

TagHi/Lo formats in the R10000 processor differ from those in the R4400 due to
changes in CacheOps and cache architecture. R10000 formats depend on the type
of CacheOp executed and the cache to which it is applied. The reserved fields are
read as zeroes after executing an Index Load Tag or an Index Load Data CacheOp and
ignored when executing an Index Store Tag or an Index Store Data CacheOp.

To ensure NT kernel compatibility, the TagLo register is implemented as a 32-bit
read/write register. The value written by an MTC0 instruction can be retrieved by
a MFC0 instruction, unless an intervening CACHE instruction has modified the
content.

This section gives the TagLo and TagHi register formats for the following
CacheOp and cache combinations:

• CacheOp is Index Load/Store Tag

- primary instruction cache operation

- primary data cache operation

- secondary cache operation

• CacheOp is Index Load/Store Data

- primary instruction cache operation

- primary data cache operation

- secondary cache operation

CacheOp is Index Load/Store Tag

This section describes the three states of the TagLo and TagHi registers, when the
CacheOp is an Index Load/Store Tag for the following operations:

• primary instruction cache operation

• primary data cache operation

• secondary cache operation

† To ensure NT kernel compatibility, the TagLo register is implemented as a 32-bit
read/write register. The value written by a MTC0 instruction can be retrieved by a
MFC0 instruction, unless intervening CACHE instructions modify the content.

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

Coprocessor 0 279

Primary Instruction Cache Operation

If the CacheOp is an Index Load/Store Tag for a primary instruction cache
operation, the fields of the TagHi and TagLo registers are defined as follows:

PTag0: contains physical address bits [35:12] stored in the cache tag

PState: contains the primary instruction cache state for the line, as follows:

1 = Valid

0 = Invalid

Errata

LRU: indicates which way is the least recently used of the set.

SP: state even parity bit for the PState field

TP: tag even parity bit.

PTag1: contains physical address bits [39:36] stored in the cache tag

Figure 14-28 shows the fields of the TagHi and TagLo registers.

Figure 14-28 TagHi/Lo Register Fields in Primary Instruction Cache
When CacheOp is Index Load/Store Tag

0: Reserved. Must be written as zeroes, and returns zeroes when read.

Primary Data Cache Operation

If the CacheOp is an Index Load/Store Tag for primary data cache operations, the
fields of the TagHi and TagLo registers are defined as follows:

State Modifier: holds the status of the line, as follows:

0012 = neither refilled or written

0102 = this line may have been written and inconsistent from the secondary
cache (W bit)

1002 = this line is being refilled (Refill bit).

PTag1: contains physical address bits [39:36] stored in the cache tag

PTag1

0 3

4

0

4 31

28

TagHi

0

PTag0

 31

24

0

1

LRU

3

1 1

8

TPPState

6

0

4

2

7

1

2

SP

1 1

TagLo0

1

5

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 280 Chapter 14.

PTag0: contains physical address bits [35:12] stored in the cache tag

PState: together with the Refill bit of the State Modifier in the TagHi register, PState
determines the state of the cache block in the primary data cache, as shown in
Table 14-24.

Table 14-24 PState Field Definition in TagHi/Lo Registers, For Primary Data Cache Operation
When CacheOp is Index Load/Store Tag

Errata

LRU: indicates which way is the least recently used of the set.

SP: state even parity bit for the PState field and the Way bit

Way: indicates which secondary cache set contains the primary cache line for this
tag

TP: tag even parity bit.

0: Reserved. Must be written as zeroes, and returns zeroes when read.

Figure 14-29 shows the fields of the TagHi and TagLo registers.

Figure 14-29 TagHi/Lo Register Fields in Primary Data Cache
When CacheOp is Index Load/Store Tag

PState Refill=0 Refill=1

002 Invalid Refill clean (block is being
refilled)

012 Shared Upgrade Share (converting
shared to dirty)

102 Clean
Exclusive

Upgrade Clean
(converting clean to dirty).

112

Dirty
Exclusive

Refill dirty (block is being
refilled for a store)

PTag1

0 3

4

0

31

25

28

3

State
Modifier TagHi

29

0

PState

6

PTag0

 31

24

Way

1

1

0

4

2

SP

2

1

LRU

3

1 1

78

TP

2

TagLo

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

Coprocessor 0 281

Secondary Cache Operation

If the CacheOp is an Index Load/Store Tag for secondary cache operations, the fields
of the TagHi and TagLo registers are defined as follows:

STag0: contains physical address bits [35:18] stored in the cache tag

SState: contains the secondary cache state of the line, as follows:

002 = Invalid

012 = Shared

102 = Clean Exclusive

112 = Dirty Exclusive

VIndex (virtual index): contains only two bits of significance since the32 Kbyte 2-
way set associative primary caches are addressed using only two untranslated
address bits (VA[13:12]) plus the offset within the virtual page.

ECC: contains the ECC for the STag, SState and VIndex fields.

Errata

MRU: indicates which way was the most recently used in the set.

STag1: contains the physical address bits [39:36] stored in the cache tag.

0: Reserved. Must be written as zeroes, and returns zeroes when read.

Figure 14-30 shows the fields of the TagHi and TagLo registers.

Figure 14-30 TagHi/Lo Register Fields in Secondary Cache
When CacheOp is Index Load/Store Tag

Errata

 Figure 14-30, size of the STag0 field is revised.

STag1

0 3

4

0

431

27

30

MRU

1

TagHi

ECC

0 6

7

VIndex

7 8

2

SState

1011

2

STag0

14 31

18

0

1

9

TagLo

13

0

2

12

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 282 Chapter 14.

CacheOp is Index Load/Store Data

This section describes the following three states of the TagLo and TagHi registers,
when the CacheOp is an Index Load/Store Data:

• primary instruction cache operation

• primary data cache operation

• secondary cache operation

Primary Instruction Cache Operation

If the CacheOp is an Index Load/Store Data for the primary instruction cache, the
TagHi register stores the most significant four bits of a 36-bit instruction, as shown
in Figure 14-31; the rest of the instruction is stored in the TagLo register.

Figure 14-31 TagHi/Lo Register Fields in Primary Instruction Cache
When CacheOp is Index Load/Store Data

Errata

0: Reserved. Must be written as zeroes, and returns zeroes when read.

Inst[35:32]

0 3

4

0

4 31

28

TagHi

Inst[31:0]

0 31

32

TagLo

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

Coprocessor 0 283

Primary Data Cache Operation

If the CacheOp is Index Load/Store Data for primary data cache, the TagHi register
is not used. The TagLo registers contains a 32-bit data word for the cache
operation, as shown in Figure 14-32.

Figure 14-32 TagHi/Lo Register Fields in Primary Data Cache
When CacheOp is Index Load/Store Data

Secondary Cache Operation

If the CacheOp is Index Load/Store Data for the secondary cache, a doubleword of
data is required for the CacheOp. The TagHi register stores the upper 32 bits of
the doubleword and the TagLo register stores the lower 32 bits, as shown below in
Figure 14-33.

Figure 14-33 TagHi/Lo Register Fields in Secondary Cache
When CacheOp is Index Load/Store Data

Not Used

0 31

32

TagHi

Data Word[31:0]

0 31

32

TagLo

Doubleword[63:32]

0 31

32

TagHi

Doubleword[31:0]

0 31

32

TagLo

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 284 Chapter 14.

14.24 ErrorEPC Register (30)
The ErrorEPC register is similar to the EPC register, except that ErrorEPC is used
on ECC and parity error exceptions. It is also used to store the program counter
(PC) on Reset, Soft Reset, and nonmaskable interrupt (NMI) exceptions.

The read/write ErrorEPC register contains the virtual address at which instruction
processing can resume after servicing an error. Figure 14-34 shows the format of
the ErrorEPC register.

Figure 14-34 ErrorEPC Register Format

ErrorEPC Register

63 0

ErrorEPC

64

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

Coprocessor 0 285

14.25 CP0 Instructions
Table 14-25 lists the CP0 instructions defined for the R10000 processor. Since they
are implementation dependent, they are included here and not in the MIPS ISA
manual.

Table 14-25 CP0 Instructions

Hazards

The processor detects most of the pipeline hazards in hardware, including CP0
hazards and load hazards. No NOP instructions are required to correct
instruction sequences.

Branch on Coprocessor 0

On the R4400 processor, CacheOps that hit in the specified cache set the CH bit in
the Diagnostic field of the CP0 Status register (bit 18). Though it was
undocumented, this bit could be tested by the Branch on Coprocessor 0 instructions
(bc0t, bc0f, bc0tl, bc0fl).

The R10000 processor also implements the CH bit but it is not associated with a
Coprocessor 0 condition. Instead, execution of a branch on Coprocessor 0
instruction takes a Reserved Instruction exception.

OpCode Description ISA

CACHE Cache Operation III

DMFC0 Doubleword Move From CP0 III

DMTC0 Doubleword Move To CP0 III

ERET Exception Return III

MFC0 Move from CP0 I

MTC0 Move to CP0 I

TLBP Probe TLB for Matching Entry I

TLBR Read Indexed TLB Entry I

TLBWI Write Indexed TLB Entry I

TLBWR Write Random TLB Entry I

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 286 Chapter 14.

14.26 CP0 Move Instructions
The R10000 processor implements Coprocessor 0 move instructions, MTC0, MFC0,
DMTC0, and DMFC0, exactly the same as in the R4400 processor, even though
some operations are undefined during certain conditions. The exact operations of
CP0 move instructions on 32/64-bit CP0 registers are summarized Table 14-26.

Table 14-26 CP0 Move Instructions

The returned value of MFC0/DMFC0 from a non-existing CP0 register is
undefined.

Instruction
CP0 Register

Size
MIPS 3
Enable?

Operation

MFC0 rt,rd 32 or 64 Don’t care rt <- rd31
32 || rd31..0

MTC0 rt,rd
32 Don’t care rd <- rt31..0

64 Don’t care rd <- rt63..0

DMFC0 rt,rd

32 Yes undefined (rt <- 032|| rd31..0)

64 Yes rt <- rd63..0

32 or 64 No Reserved Instruction exception

DMTC0 rt,rd

32 Yes undefined (rd <- rt31..0)

64 Yes rd <- rt63..0

32 or 64 No Reserved Instruction exception.

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

Coprocessor 0 287

14.27 CACHE Instruction

Format: CACHE op, offset(base)

Description:

The 16 bit offset is sign-extended and added to the contents of general register base to
form a CacheOp virtual address (VA). The VA is translated to a physical address (PA)
through the TLB, and the 5-bit opcode (decoded inTable 14-27) specifies a cache
operation for that address, together with the affected cache. Operation of this
instruction on any combination not listed in the tables below is undefined. The
operation of this instruction on uncached addresses is also undefined.

More detailed descriptions of the CacheOps listed below are given separately, in
Chapter 10, CACHE Instructions.

Table 14-27 CACHE Instruction Op Field Encoding

Op Field CACHE Instruction Variation Target Cache

00000 Index Invalidate (I)
00100 Index Load Tag (I)
01000 Index Store Tag (I)
10000 Hit Invalidate (I)
10100 Cache Barrier
11000 Index Load Data (I)
11100 Index Store Data (I)
00001 Index WriteBack Invalidate (D)
00101 Index Load Tag (D)
01001 Index Store Tag (D)
10001 Hit Invalidate (D)
10101 Hit WriteBack Invalidate (D)
11001 Index Load Data (D)
11101 Index Store Data (D)
00011 Index WriteBack Invalidate (S)
00111 Index Load Tag (S)
01011 Index Store Tag (S)
10011 Hit Invalidate (S)
10111 Hit WriteBack Invalidate (S)
11011 Index Load Data (S)
11111 Index Store Data (S)

CACHE Cache
31 2526 2021 1516 0

CACHE base op offset

6 5 5 16
1 0 1 1 1 1

CACHE

(see Table below)

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 288 Chapter 14.

Fill, Create Dirty, Hit WriteBack and Hit Set Virtual are not supported in the R10000
processor.

The R10000 processor adds two new CacheOps: Index Load Data (1102) and Index Store
Data (1112). These changes are also reflected in the CP0 TagHi, TagLo and ECC registers.

The primary instruction and data caches have a block size of 16 words and 32 bytes (8
data words), respectively.

NOTE: A 32-bit instruction is predecoded into a 36-bit instruction word before
entering the primary instruction cache. The instruction fetch addresses remain the
same and are not affected by the predecode.

The secondary cache, a unified cache, has a block size of either 64 or 128 bytes,
configurated during reset. For a cache of 2CACHESIZE bytes with 2BLOCKSIZE bytes per
tag,

VACACHESIZE-2..BLOCKSIZE

specifies the block for the primary cache, and

PACACHESIZE-2..BLOCKSIZE

specifies the block for the secondary cache.

For the Index CacheOps, address bit 0 is used to specify the way, 0 or 1, for the
CacheOp. For this reason, bit 0 is not checked for alignment-type Address Error
exception for the Index CacheOps. For CacheOps that access data in caches,

VABLOCKSIZE-1..2

specifies a word within a block for primary caches, and

PABLOCKSIZE-1..3

specifies a doubleword in the secondary cache.

A cache hit accesses the specified cache as normal data references, and performs the
specified operation if the cache block contains valid data at the specified physical
address. If the cache line is invalid or contains a differing physical address (a cache
miss), no operation is performed. Since the R10000 processor uses 2-way set associative
caches, the Hit operation performs tag comparison in both ways of the cache. No index
needs to be provided for such CacheOps. If both ways register a hit, the execution of
the CacheOp is undefined.

CACHE CACHE(continued)
Cache

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

Coprocessor 0 289

Write back from the primary data cache goes to the secondary cache, and write back
from the secondary cache goes to the system interface. The primary data cache is
written back to the secondary cache before the secondary cache is written back to the
system interface; the address to be written is based by the cache tag, rather than the
translated PA from the CacheOp instruction. A secondary cache write back also
interrogates the primary data cache for any dirty inconsistent data.

When a line is invalidated in the secondary cache, all subset lines in the primary
caches are also invalidated.

CacheOps are serialized with respect to cached loads/stores and CP0 instructions.
Therefore, in general, there are no hazards for CacheOps. However, if the CacheOps
modify the current instruction fetching stream, they may not work properly since the
instruction fetch pipeline usually prefetches and buffers instructions and CacheOps
are not serialized with respect to the instruction fetch pipeline. Programmers should
be aware of such potential hazards; one solution is to put a COP0 instruction after the
CacheOp to prevent the speculative execution and force the CacheOp to complete, and
then use a Jump Register instruction to flush the instruction fetch pipeline.
Succeeding instructions will then be re-fetched from caches.

If CP0 is not usable, a Coprocessor Unusable exception is taken. CacheOps may
induce Address Error or TLBL exceptions (Refill or Invalid) during address
translation, but never take a TLBS or Mod exception. The virtual address is used to
index the cache for an Index CacheOp, but need not match the cache physical tag;
unmapped addresses may be used to avoid TLB exceptions.

The R10000 processor does not support the CE bit, and programmers must supply
correct parity bits or ECC for some CacheOps.

The R10000 processor supports the CH bit for secondary CacheOps, Hit Invalidate,
and Hit WriteBack Invalidate. As in the R4400, a hit sets the CH bit of the Status
register, and a miss resets it. This bit is readable and writable by software.

For a detailed description of the individual CacheOps, see Chapter 10, CACHE
Instructions.

Operation:

Exceptions:

Coprocessor unusable exception

CACHE CACHE(continued)
Cache

32, 64 T: vAddr ← ((offset15)48 || offset15...0) + GPR[base]

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

CacheOp (op, vAddr, pAddr)

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 290 Chapter 14.

14.28 DMFC0 Instruction

Format: DMFC0 rt, rd

Description:

The contents of coprocessor register rd of the CP0 are loaded into general register rt.

This operation is defined for the R10000 operating in 64-bit mode and in 32-bit kernel
mode. Execution of this instruction in 32-bit user or supervisor mode causes a reserved
instruction exception. All 64-bits of the general register destination are written from
the coprocessor register source. The operation of DMFC0 on a 32-bit coprocessor 0
register is undefined.

Operation:

Exceptions:

Coprocessor unusable exception

Reserved instruction exception (R10000 in 32-bit user mode
 R10000 in 32-bit supervisor mode)

DMFC0 Doubleword Move From

rd

11 10

5

31 2526 2021 1516 0

COP0 DMF rt 0

6 5 5 11

System Control Coprocessor

0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 00

DMFC0

 64 T: data ← CPR[0,rd]

T+1: GPR[rt] ← data

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

Coprocessor 0 291

14.29 DMTC0 Instruction

Format: DMTC0 rt, rd

Description:

The contents of general register rt are loaded into coprocessor register rd of the CP0.

This operation is defined for the R10000 operating in 64-bit mode or in 32-bit kernel
mode. Execution of this instruction in 32-bit user or supervisor mode causes a
reserved instruction exception.

All 64-bits of the coprocessor 0 register are written from the general register source.
The operation of DMTC0 on a 32-bit coprocessor 0 register is undefined.

Because the state of the virtual address translation system may be altered by this
instruction, the operation of load instructions, store instructions, and TLB operations
immediately prior to and after this instruction are undefined.

Operation:

Exceptions:

Coprocessor unusable exception (R10000 in 32-bit user mode
 R10000 in 32-bit supervisor mode)

DMTC0 Doubleword Move To

rd

11 10

5

31 2526 2021 1516 0

COP0 DMT rt 0

6 5 5 11

System Control Coprocessor

0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 00

DMTC0

 64 T: data ← GPR[rt]

T+1: CPR[0,rd] ← data

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 292 Chapter 14.

14.30 ERET Instruction

Format: ERET

Description:

ERET is the R10000 instruction for returning from an interrupt, exception, or error trap.
Unlike a branch or jump instruction, ERET does not execute the next instruction.

ERET must not itself be placed in a branch delay slot.

If the processor is servicing an error trap (SR2 = 1), then load the PC from the ErrorEPC
and clear the ERL bit of the Status register (SR2). Otherwise (SR2 = 0), load the PC from
the EPC, and clear the EXL bit of the Status register (SR1).

An ERET executed between a LL and SC also causes the SC to fail.

If there is no exception (EXL=0 and ERL=0 in the Status register), execution of an ERET
instruction is meaningless.

Execution of an ERET when ERL=0, regardless of the state of EXL, sets EXL to 0 and a
jump is taken to the address presently held in the EPC register, even when there is no
exception.

Operation:

Exceptions:

Coprocessor unusable exception

ERETException Return

0

6

6 531 25 2426

COP0

6

0

ERET

191

CO
0 1 0 0 0 0 0 1 1 0 0 01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ERET

32, 64 T: if SR2 = 1 then
PC ← ErrorEPC
SR ← SR31...3 || 0 || SR1...0

else
PC ← EPC
SR ← SR31...2 || 0 || SR0

endif
LLbit ← 0

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

Coprocessor 0 293

14.31 MFC0 Instruction

Format: MFC0 rt, rd

Description:

The contents of coprocessor register rd of the CP0 are loaded into general register rt.

Operation:

Exceptions:

Coprocessor unusable exception

MFC0 Move From

rd

11 10

5

31 2526 2021 1516 0

COP0 MF rt 0

6 5 5 11

System Control Coprocessor

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

MFC0

32 T: data ← CPR[0,rd]

T+1: GPR[rt] ← data

64 T: data ← CPR[0,rd]

T+1: GPR[rt] ← (data31)32 || data31...0

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 294 Chapter 14.

14.32 Move To/From the Performance Counter

Errata

The R10000 processor defines two performance counters, and their associated
event specifier registers, which are mapped into the CP0 register 25. The following
instructions are used to perform an MTC0 to or an MFC0 from a performance
counter or an event specifier register. The event specifier registers are referred as
control registers in the description of CP0 register 25.

MFPC Move from
Performance Counter MFPC

00000

2125

5

COP0

2631

6

rt

1620

5

0

610

5

11001

1115

5

reg

15

5

1

0

1

MTPC Move to
Performance Counter MTPC

00100

2125

5

COP0

2631

6

rt

1620

5

0

610

5

11001

1115

5

reg

15

5

1

0

1

MFPS Move from
Performance Event Specifier MFPS

00000

2125

5

COP0

2631

6

rt

1620

5

0

610

5

11001

1115

5

reg

15

5

0

0

1

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

Coprocessor 0 295

Format: MFPC rt, reg — Move from performance counter
MTPC rt, reg — Move to performance counter
MFPS rt, reg — Move from performance event specifier
MTPS rt, reg — Move to performance event specifier

reg can be either a performance counter or an event specifier; only register 0 and 1 are
valid in the R10000 implementation.

Errata

The 0 field in each instruction is changed from a 1 to a 0.

MTPS Move to
Performance Event Specifier MTPS

00100

2125

5

COP0

2631

6

rt

1620

5

0

610

5

11001

1115

5

reg

15

5

0

0

1

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 296 Chapter 14.

14.33 MTC0 Instruction

Format: MTC0 rt, rd

Description:

The contents of general register rt are loaded into coprocessor register rd of CP0.

Operation:

Exceptions:

Coprocessor unusable exception

MTC0 Move To

rd

11 10

5

31 2526 2021 1516 0

COP0 MT rt 0

6 5 5 11

System Control Coprocessor

0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 00

MTC0

32, 64 T: data ← GPR[rt]
T+1: CPR[0,rd] ← data

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

Coprocessor 0 297

14.34 TLBP Instruction

Format: TLBP

Description:

The Index register is loaded with the address of the TLB entry whose contents match
the contents of the EntryHi register. If no TLB entry matches, the high-order bit of the
Index register is set to 0x80000000, as it is in the R4400 processor.

The architecture does not specify the operation of memory references associated with
the instruction immediately after a TLBP instruction, nor is the operation specified if
more than one TLB entry matches.

Operation:

Exceptions:

Coprocessor unusable exception

TLBPProbe TLB For Matching Entry

0

6

6 531 25 2426

COP0

6

0

TLBP

191

CO
0 1 0 0 0 0 0 0 1 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 01

TLBP

32 T: Index← 1 || 025 || undefined6

for i in 0...TLBEntries–1
if (TLB[i]95...77 = EntryHi31...12) and (TLB[i]76 or
(TLB[i]71...64 = EntryHi7...0)) then

Index ← 026 || i 5...0
endif

endfor

64 T: Index← 1 || 0 25 || undefined6

for i in 0...TLBEntries–1
if (TLB[i]171...141 and not (015 || TLB[i]216...205))
= EntryHi43...13) and not (015 || TLB[i]216...205)) and
(TLB[i]140 or (TLB[i]135...128 = EntryHi7...0)) then

Index ← 026 || i 5...0
endif

endfor

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 298 Chapter 14.

14.35 TLBR Instruction

Format: TLBR

Description:

The G bit (which controls ASID matching) read from the TLB is written into both of the
EntryLo0 and EntryLo1 registers.

The EntryHi and EntryLo registers are loaded with the contents of the TLB entry
pointed at by the contents of the TLB Index register.

In the R4400, this instruction had to be executed in unmapped spaces, and in the
R10000 processor it can be executed in unmapped spaces without any hazard. In
addition, TLBR can be executed in mapped spaces.

Operation:

Exceptions:

Coprocessor unusable exception

TLBR Read Indexed TLB Entry

0

6

6 531 25 2426

COP0

6

0

TLBR

191

CO
0 1 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 01

TLBR

32 T: PageMask ← TLB[Index5...0]127...96
EntryHi ← TLB[Index5...0]95...64 and not TLB[Index5...0]127...96
EntryLo1 ←TLB[Index5...0]63...32
EntryLo0 ← TLB[Index5...0]31...0

64 T: PageMask ← TLB[Index5...0]255...192
EntryHi ← TLB[Index5...0]191...128 and not TLB[Index5...0]255...192
EntryLo1 ←TLB[Index5...0]127...65 || TLB[Index5...0]140
EntryLo0 ← TLB[Index5...0]63...1 || TLB[Index5...0]140

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

Coprocessor 0 299

14.36 TLBWI Instruction

Format: TLBWI

Description:

The G bit of the TLB is written with the logical AND of the G bits in the EntryLo0 and
EntryLo1 registers.

The TLB entry pointed at by the contents of the TLB Index register is loaded with the
contents of the EntryHi and EntryLo registers.

The operation is invalid (and the results are unspecified) if the contents of the TLB
Index register are greater than the number of TLB entries in the processor.

In the R4400, this instruction had to be executed in unmapped spaces, and in the
R10000 processor it can be executed in unmapped spaces without any hazard.

There is no hazard to executing a TLB write in mapped space unless the write affects
those instructions that have been fetched and buffered by the processor. If necessary,
a flush to the instruction-fetch pipeline, such as execution of a jump register
instruction, after a TLB write can avoid this hazard.

In the R4400 processor, a TLB write instruction is used to write the whole page frame
number from the EntryLo registers to the TLB entry. Depending on the page size
specified in the corresponding PageMask register, the lower bits of PFN may not be
used for address translation. In the R10000 processor, the lower bits not used for
address translation are forced to zeroes during a TLB write. This does not affect TLB
address translation, however a TLB read may not retrieve what was originally written.

Operation:

Exceptions:

Coprocessor unusable exception

TLBWIWrite Indexed TLB Entry

0

6

6 531 25 2426

COP0

6

0

TLBWI

191

CO
0 1 0 0 0 0 0 0 0 0 1 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 01

TLBWI

32, 64T: TLB[Index5...0] ←
PageMask || (EntryHi and not PageMask) || EntryLo1 || EntryLo0

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 300 Chapter 14.

14.37 TLBWR Instruction

Format: TLBWR

Description:

The G bit of the TLB is written with the logical AND of the G bits in the EntryLo0 and
EntryLo1 registers.

The TLB entry pointed at by the contents of the TLB Random register is loaded with the
contents of the EntryHi and EntryLo registers.

In the R4400, this instruction had to be executed in unmapped spaces, and in the
R10000 processor it can be executed in unmapped spaces without any hazard.

There is no hazard to executing a TLB write in mapped space unless the write affects
those instructions that have been fetched and buffered by the processor. If necessary,
a flush to the instruction-fetch pipeline, such as execution of a jump register
instruction, after a TLB write can avoid this hazard.

In the R4400 processor, a TLB write instruction is used to write the whole page frame
number from the EntryLo registers to the TLB entry. Depending on the page size
specified in the corresponding PageMask register, the lower bits of PFN may not be
used for address translation. In the R10000 processor, the lower bits not used for
address translation are forced to zeroes during a TLB write. This does not affect TLB
address translation, however a TLB read may not retrieve what was originally written.

Operation:

Exceptions:

Coprocessor unusable exception

TLBWR Write Random TLB Entry

0

6

6 531 25 2426

COP0

6

0

TLBWR

191

CO
0 1 0 0 0 0 0 0 0 1 1 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 01

TLBWR

32, 64T: TLB[Random5...0] ←
PageMask || (EntryHi and not PageMask) || EntryLo1 || EntryLo0

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996301

15. Floating-Point Unit

This section describes the operation of the FPU, including the register definitions.

The Floating-Point unit consists of the following functional units:

• add unit

• multiply unit

• divide unit

• square-root unit

The add unit performs floating-point add and subtract, compare, and conversion
operations. Except for Convert Integer To Single-Precision (float), all operations
have a 2-cycle latency and a 1-cycle repeat rate.

The multiply unit performs single-precision or double-precision multiplication
with a 2-cycle latency and a 1-cycle repeat rate.

The divide and square-root units do single- or double-precision operations. They
have long latencies and low repeat rates (20 to 40 cycles).

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 302 Chapter 15.

15.1 Floating Point Unit Operations
The floating-point add, multiply, divide, and square-root units read their
operands and store their results in the floating-point register file. Values are
loaded to or stored from the register file by the load/store and move units.

A logic diagram of floating-point operations is shown in Figure 15-1, in which data
and instructions are read from the secondary cache into the primary caches, and
then into the processor. There they are decoded and appended to the floating-
point queue, passed into the FP register file where each is dynamically issued to
the appropriate functional unit. After execution in the functional unit, results are
stored, through the register file, in the primary data cache.

Figure 15-1 Logical Diagram of FP Operations

The floating-point queue can issue one instruction to the adder unit and one
instruction to the multiplier unit. The adder and multiplier each have two
dedicated read ports and a dedicated write port in the floating-point register file.

Because of their low repeat rates, the divide and square-root units do not have
their own issue port. Instead, they decode instructions issued to the multiplier
unit, using its operand registers and bypass logic. They appropriate a second cycle
later for storing their result.

When an instruction is issued, up to two operands are read from dedicated read
ports in the floating-point register file. After the operation has been completed, the
result can be written back into the register file using a dedicated write port. For
the add and multiply units, this write occurs four cycles after its operands were
read.

Flt.Pt.
Mult.

Divide
& SQRT.

FP
Adder

Prefetch
and

Predecode

Secondary
Cache

(512 Kbyte to 16 Mbyte)

2-way associative
32 Kbyte

Prefetch
and

Predecode

Primary
Instruction Cache

Branch Cache

Branch Address

System Bus

Prefetch
and

FP Queue
(16-entry)

Prefetch
and

PredecodeRegister
Rename

Map

Active and
Free Lists

Prefetch
and

Predecod
e

FP
Register

File
(64-by-64)

FP
Adder

FP.
Multiply.

FP Divide
& SQRT.

Primary
Data

Cache

Refill / Copyback

2-way associative
32 Kbyte

Prefetch
and

Predecode

Instruction
Decode/
Rename/
Branch

Unit

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

Floating-Point Unit 303

15.2 Floating-Point Unit Control
The control of floating-point execution is shared by the following units:

• The floating-point queue determines operand dependencies and
dynamically issues instructions to the execution units. It also controls
the destination registers and register bypass.

• The execution units control the arithmetic operations and generate
status.

• The graduate unit saves the status until the instructions graduate, and
then it updates the Floating-Point Status register.

15.3 Floating-Point General Registers (FGRs)
The Floating-Point Unit is the hardware implementation of Coprocessor 1 in the
MIPS IV Instruction Set Architecture. The MIPS IV ISA defines 32 logical floating-
point general registers (FGRs), as shown in Figure 15-2. Each FGR is 64 bits wide
and can hold either 32-bit single-precision or 64-bit double-precision values. The
hardware actually contains 64 physical 64-bit registers in the Floating-Point
Register File, from which the 32 logical registers are taken.

FP instructions use a 5-bit logical number to select an individual FGR. These
logical numbers are mapped to physical registers by the rename unit (in pipeline
stage 2), before the Floating-Point Unit executes them. Physical registers are
selected using 6-bit addresses.

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 304 Chapter 15.

32- and 64-Bit Operations

The FR bit (26) in the Status register determines the number of logical floating-
point registers available to the program, and it alters the operation of single-
precision load/store instructions, as shown in Figure 15-2.

• FR is reset to 0 for compatibility with earlier MIPS I and MIPS II ISAs,
and instructions use only the 16 physical even-numbered floating-point
registers (32 logical registers). Each logical register is 32 bits wide.

• FR is set to 1 for normal MIPS III and MIPS IV operations, and all 32 of
the 64-bit logical registers are available.

Figure 15-2 Floating-Point Registers

0

Status Bit FR=1

Thirty-two 64-bit Registers

6332 0

FGR = #0

Sixteen 64-bit Physical Registers

63 31

063

063

063

32 063 31

(Register is not implemented.)

(Register is not implemented.)

063

063

32 063 31

(Register is not implemented.)

FGR = #1

FGR = #3

FGR = #31 FGR = #30

FGR = #2

Status Bit FR= 0

(MIPS I and MIPS II compatible)

FGR = #0

FGR = #1

FGR = #2

FGR = #3

FGR = #30

FGR = #31

(MIPS III and MIPS IV only)

FGR = #0

Thirty-two 32-bit Logical Registers
Physical Register

Register #0

Register #1

Register #2

Register #3

Register #30

Register #31

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

Floating-Point Unit 305

Load and Store Operations

When FR = 0, floating-point load and stores operate as follows:

• A doubleword load or store is handled the same as if the FR bit was
set to 1, as long as the register selected is even (0, 2, 4, etc.).

• If the register selected is odd, the load/store is invalid.

These operations are shown in Figure 15-3. Singleword loads/stores to even and
odd registers are also shown.

Figure 15-3 Loading and Storing Floating-Point Registers in 16-Register Mode

NOTE: Move (MOV) and conditional move (MOVC, MOVN, MOVZ are
included in these arithmetic operations, although no arithmetic is actually
performed.

32 063 31

Load 32-bit Unchanged

031

Memory†

LWC1 ft,address

031

Memory†

SWC1 ft,address

3263

Sign extend reg.

(MFC1 rt,fs)

(MTC1 ft,rs)

†Move to/from selects an integer register instead.

Moved 32-bit data is sign-extended in 64-bit register.

Singleword Load/Store when Register is Odd

32 063 31

Unchanged Load 32-bit

031

Memory†

LWC1 ft,address (MTC1 ft,rs)

031

Memory†

SWC1 ft,address (MFC1 rt,fs)

FR=0 16-Register Mode

†Move to/from selects an integer register instead.

Moved 32-bit data is sign-extended in 64-bit register.

3263

Sign extend reg.

Doubleword Load/Store
 Same as FR=1 if register is even, else invalid.

Singleword Load/Store when Register is Even

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 306 Chapter 15.

When FR = 1, floating-point load and stores operate as follows:

• Single-precision operands are read from the low half of a register,
leaving the upper half ignored. Single-precision results are written
into the low half of the register. The high half of the result register is
architecturally undefined; in the R10000 implementation, it is set to
zero.

• Double-precision arithmetic operations use the entire 64-bit contents of
each operand or result register.

Because of register renaming, every new result is written into a temporary register,
and conditional move instructions select between a new operand and the previous
old value. The high half of the destination register of a single-precision conditional
move instruction is undefined (shown in Figure 15-5), even if no move occurs.

Singleword and doubleword loads and stores with the FPU in 32-register mode
(FR=1) are shown in Figure 15-4.

Figure 15-4 Loading and Storing Floating-Point Registers in 32-Register Mode

63 0

Memory† (or 64-bit register)

63 0

Load 64-bit Value

LDC1 ft,address

031

32-bit Value

3263

Undefined

031

Memory†

zero (dup)

LWC1 ft,address

031

Memory†

63 0

Memory† (or 64-bit register)

SDC1 ft,address

FR=1 32-Register Mode

Doubleword Load/Store Singleword Load/Store

(DMFC1 rt,fs)

(DMTC1 ft,rs)

SWC1 ft,address

(MTC1 ft,rs)

(MFC1 rt,fs)

†Move to/from selects an integer register instead.

Moved 32-bit data is sign-extended in 64-bit register.

3263

Sign extend reg.

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

Floating-Point Unit 307

Doubleword load, store and move to/from instructions load or store an entire 64-
bit floating-point register, as shown in Figure 15-5.

Figure 15-5 Operators on Floating-Point Registers

In MIPS I and MIPS II ISAs, all arithmetic instructions, whether single- or double-
precision, are limited to using even register numbers. Load, store and move
instructions transfer only a single word. Even and odd register numbers are used
to access the low and high halves, respectively, of double-precision registers.
When storing a floating-point register (SWC1 or MFC1), the processor reads the
entire register but writes only the selected half to memory or to an integer register.

Because the register renaming scheme creates a new physical register for every
destination, it is not sufficient just to enable writing half of the Floating-Point
register file when loading (LWC1 or MTC1); the unchanged half must also be
copied into the destination. This old value is read using the shared read port, it is
then merged with the new word, and the merged doubleword value is written. (A
write to the register file writes all 64 bits in parallel.)

When instructions are renamed in MIPS I or II, the low bit of any FGR field is
forced to zero. Thus, each even/odd logical register number pair is treated as an
even-numbered double-precision register. Odd numbered logical registers are
not used in the mapping tables and dependency logic, but they remain mapped to
their latest physical registers.

031

32-bit Value

031

32-bit Value

3263

Unused

3263

Undefined

031

Functional Unit

63 0

64-bit Operand Value

63 0

Functional Unit

63 0

64-bit Result Value

zero

64-bit Double-Precision32-bit Single-Precision

In MIPS 1 and II ISA, arithmetic operations are valid only for even-numbered registers.

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 308 Chapter 15.

15.4 Floating-Point Control Registers
The MIPS IV ISA permits up to 32 control registers to be defined for each
coprocessor, but the Floating-Point Unit uses only two:

• Control register 0, the FP Implementation and Revision register

• Control register 31, the Floating-Point Status register (FSR)

Floating-Point Implementation and Revision Register

The following fields are defined for control register 0 in Coprocessor 1, the FP
Implementation and Revision register, as shown in Figure 15-6:

• The Implementation field holds an 8-bit number, 0x09, which identifies
the R10000 implementation of the floating point coprocessor.

• The Revision field is an 8-bit number that defines a particular revision
of the floating point coprocessor. Since it can be arbitrarily changed, it
is not defined here.

Figure 15-6 FP Implementation and Revision Register Format

16 15

Implementation and Revision Register

31 0

16

Imp (0x09)

8 8

0

8

Rev

7

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

Floating-Point Unit 309

Floating-Point Status Register (FSR)

Figure 15-7 shows the Floating-Point Status register (FSR), control register 31 in
Coprocessor 1. It is implemented in the graduation unit rather than the Floating-
Point Unit, because it is closely tied to the active list.

Bits 22:18 are unimplemented and must be set to zero. All other bits may be read
or written using Control Move instructions from or to Coprocessor 1
(subfunctions CFC1 or CTC1). These move instructions are fully interlocked; they
are delayed in the decode stage until all previous instructions have been
graduated, and no subsequent instruction is decoded until they have been
completed.

Figure 15-7 Floating-Point Status Register (FSR)

V Z O U I7 6 5 4 3 2 1 F 0 zero E V Z O U I V Z O U I RMV Z O U I7 6 5 4 3 2 1 FS 0 0

31

E V Z O U I V Z O U I RM

Cause Enables FlagsCondition Bits 7..0

30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Condition bits are True/False values set by floating-point compare instructions.
Flush (FS) bit: 0: A denormalized result causes an Unimplemented Operation exception.

 1: A denormalized result is replaced with zero. No exception is flagged.
Cause bits indicate the status of each floating-point arithmetic instruction. (Not by load, store, or move.)
Enable bits enable an exception if the corresponding Cause bit is set.
Flag bits are set whenever the corresponding Cause bit is a 1. These bits are cumulative. Once a bit is set, it
remains set until the FSR is written by a CTC1 instruction.

E Unimplemented operation. This exception is always enabled.
 IEEE 754 Exception bits: The following bits may be individually enabled:

V Invalid operation.
Z Division by zero. (Divide unit only.)
O Overflow.
U Underflow.
I Inexact operation. (Result can not be stored precisely.)

Round Mode (RM): (IEEE specification)
0: RN, Round to nearest representable value. If two values are equally near,

set the lowest bit to zero.
1: RZ, Round toward Zero. Round to the closest value whose magnitude is not greater than

the result.
2: RP, Round to Plus Infinity. Round to the closest value whose magnitude is not less than

the result.
3: RM, Round to Minus Infinity. Round to the closest value whose magnitude is not greater.

FP Status Register

1 1 1 1 1 1 1 1 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 310 Chapter 15.

Bit Descriptions of the FSR

Description of the bits in the FSR are as follows:

Condition Bits [31:25,23]: The Condition bits indicate the result of floating-point
compare instructions. The active list keeps track of these bits.

Cause Bits [17:12]: Each functional unit can detect exceptional cases in their
function codes, operands, or results. These cases are indicated by setting one of six
specific Cause bits. The Cause bits indicate the status of the floating-point
arithmetic instruction which graduated most recently or caused an exception to be
taken. The FSR is not modified by load, store, or move instructions. All cause bits,
except E, have corresponding Enable and Flag bits in the FSR.

E Unimplemented operation: the execution unit does not perform the
specified operation. This exception is always enabled.

V Invalid operation: this operation is not valid for the given operands.

Z Division by zero: (divide unit only) the result of division by zero is not
defined.

O Overflow: the result is too large in magnitude to be correctly
represented in the result format.

U Underflow: the result is too small in magnitude to be correctly
represented in the result format.

I Inexact Result: the result cannot be represented exactly.

NOTE: The FSR is modified only for instructions issued by the floating-point
queue. Move From (MFC or DMFC) instructions never set the Cause field;
status bits from the functional unit (multiplier) must be ignored. Move or
Move Conditional instructions can set the Unimplemented Operation
exception only in the Cause field. Load and store instructions are issued by the
address queue.)

The functional units generate the Cause bits and send them to the graduation unit
when the operation is completed.

Enable Bits [11:7]: The five Enable bits individually enable (when set to a 1) or
disable (when set to a 0) exceptions when the corresponding Cause bit is set.

Flag Bits [6:2]: One of the five Flag bits is set when a floating-point arithmetic
instruction graduates, if the corresponding Cause bit is set. The Flag bits are sticky
and remain set until the FSR is written. Thus, the Flag bits indicate the status of all
floating-point instructions graduated since the FSR was last written. The Flag bits
are not modified for any instructions which cause an exception to be taken.

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

Floating-Point Unit 311

Round Mode [1:0]: RM bits select one of the four IEEE rounding modes. Most
floating-point results cannot be precisely represented by the 32-bit or 64-bit
register formats, and must be truncated and rounded to a representable value.
The modes selected by the RM bit values are:

0: RN, round to nearest representable value. If two values are equally near,
set the lowest bit to zero.

1: RZ, round toward zero. Round to the closest value whose magnitude is not
greater than the result.

2: RP, round to plus infinity. Round to the closest value whose magnitude is
not less than the result.

3: RM, round to minus infinity. Round to the closest value whose magnitude
is not greater.

The Round and Enable bits only change when the FSR is written by a CTC1 (Move
To Coprocessor 1 Control Register) instruction. Each CTC1 instruction is
executed sequentially, after all previous floating-point instructions have been
completed, so these FSR bits do not change while any floating-point instruction is
active. These bits are broadcast from the graduation unit to all the floating-point
functional units.

When a Cause bit is set and its corresponding Enable bit is also set, an exception is
taken on the instruction. The result of the instruction is not stored, and the Flag
bits are not changed. If no exception is taken, the corresponding Flag bits are set.

The Cause and Flag bits may be read or written. If a CTC1 instruction sets both a
Cause bit and its Enable bit, an exception is taken immediately. The FSR is written,
but the exception is reported on the move instruction.

Loading the FSR

The FSR may be loaded from an integer register by a CTC1 instruction which
selects control register 31. This instruction is executed serially; that is, it is delayed
during decode until the entire pipeline has emptied, and it is completed before the
next instruction is decoded. This instruction writes all FSR bits.

If any Cause bit and its corresponding Enable bit are both set, an exception is taken
after FSR has been modified. The CTC1 instruction is aborted; it does not
graduate, even though it has changed the processor state.

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 312 Chapter 15.

15.5 FPU Instructions
This section describes the R10000 processor-specific implementations of the
following FPU instructions:

• CVT.L.fmt

• moves and conditional moves

• CFC1/CTC1CVT.L.fmt

CVT.L.fmt

The CVT.L.fmt instruction has a slight change in the R10000 processor
implementation. The R4400 processor allows conversion from a single or a double
up to a 53-bit long integer. If the result is greater than 53 bits after the conversion,
an Unimplemented Operation exception is taken. A back- conversion from a 53-
bit long integer to single/double also takes an Unimplemented Operation
exception.

Errata

In the R10000, the conversion allows only up to 51 bits; otherwise an
Unimplemented Operation exception is taken. The back-conversion from a 51-bit
long integer to single/double no longer takes an Unimplemented Operation
exception.

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

Floating-Point Unit 313

Moves and Conditional Moves

The only legal formats for the move and conditional move instructions are single
and double precision. The move instructions do not trap if their operands are
either denormalized or NaNs, which is consistent with the R4400 implementation.
Execution of floating-point move and conditional move instructions do not affect
the Cause field of the floating-point Status register unless they take an
Unimplemented Operation exception because an illegal formats was used.†

The upper 32 bits of the destination registers are undefined in architecture for all
the floating-point arithmetic operations in single-precision or 32-bit fixed format
(S or W). In the R10000 processor, the implementation clears the upper 32 bits,
including MOV.S, whereas R4400 and R4200 processors preserve the upper 32 bits
during the move.

For the floating-point conditional move instructions, MOVT.S, MOVF.S, MOVZ.S,
and MOVN.S, the R10000 processor always clears the upper 32 bits of the
destination register even though the condition is false.

In 32 floating-point register mode (FR=1), the upper 32 bits of the destination
register for the MTC1 and LWC1 instructions are architecturally undefined. The
R10000 processor implementation clears the upper 32 bits.

CFC1/CTC1

There are only two valid Floating-Point Control registers: 0 and 31. Access to
other registers is undefined.

† The Cause field is set to 100000 (E bit is 1).

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 314 Chapter 15.

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996315

16. Memory Management

This section describes the R10000 processor memory management, including:

• processor modes and exceptions

• virtual address space

• virtual address translation

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 316 Chapter 16.

16.1 Processor Modes
The R10000 has three operating modes and two addressing modes. All are
described in this section.

Processor Operating Modes

The three operating modes are listed in order of decreasing system privilege:

• Kernel mode (highest system privilege): can access and change any
register. The innermost core of the operating system runs in kernel
mode.

• Supervisor mode: has fewer privileges and is used for less critical
sections of the operating system.

• User mode (lowest system privilege): prevents users from interfering
with one another.

Selection between the three modes can be made by the operating system (when in
Kernal mode) by writing into Status register’s KSU field. The processor is forced
into Kernel mode when the processor is handling an error (the ERL bit is set) or an
exception (the EXL bit is set). Table 16-1 shows the selection of operating modes
with respect to the KSU, EXL and ERL bits.

Table 16-1 also shows how different instruction sets and addressing modes are
enabled by the Status register’s XX, UX, SX and KX bits. A dash (“-”) in this table
indicates a “don’t care.” For detailed information on the address spaces available
in each mode, refer to section titled, “Virtual Address Space,” in this chapter.

The R10000 processor was designed for use with the MIPS IV ISA; however, for
compatibility with earlier machines, the useable ISAs can be limited to either MIPS
III or MIPSI/II.

Table 16-1 Processor Modes

‡ No means the ISA is disabled; Yes means the ISA is enabled.

* Dashes (-) are “don’t care.”

XX
31

KX
7

SX
6

UX
5

KSU
4:3

ERL
2

EXL
1

Description
ISA‡

III
ISA*

IV
Addressing Mode

32-Bit/64-Bit

0
1
0
1

-*

-
-
-

-
-
-
-

0
0
1
1

10
10
10
10

0
0
0
0

0
0
0
0

User mode.

No
No
Yes
Yes

No
Yes
No
Yes

32
32
64
64

-
-

-
-

0
1

-
-

01
01

0
0

0
0 Supervisor mode. No

Yes
Yes
Yes

32
64

-
-

0
1

-
-

-
-

00
00

0
0

0
0 Kernel mode. Yes

Yes
Yes
Yes

32
64

-
-

0
1

-
-

-
-

-
-

0
0

1
1 Exception Level Yes

Yes
Yes
Yes

32
64

-
-

0
1

-
-

-
-

-
-

1
1

X
X Error Level. Yes

Yes
Yes
Yes

32
64

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

Memory Management 317

Addressing Modes

The processor’s addressing mode determines whether it generates 32-bit or 64-bit
memory addresses.

Refer to Table 16-1 for the following addressing mode encodings:

• In Kernel mode the KX bit allows 64-bit addressing; all instructions are
always valid.

• In Supervisor mode, the SX bit allows 64-bit addressing and the MIPS
III instructions. MIPS IV ISA is enabled all the time in Supervisor
mode.

• In User mode, the UX bit allows 64-bit addressing and the MIPS III
instructions; the XX bit allows the new MIPS IV instructions.

16.2 Virtual Address Space
The processor uses either 32-bit or 64-bit address spaces, depending on the
operating and addressing modes set by the Status register. Table 16-1 lists the
decoding of these modes.

The processor uses the following addresses:

• virtual address VA[43:0]

• region bits VA[63:59]

If a region is mapped, virtual addresses are translated in the TLB. Bits VA[58:44]
are not translated in the TLB and are sign extensions of bit VA[43].

In both 32-bit and 64-bit address mode, the memory address space is divided into
many regions, as shown in Figure 16-3. Each region has specific characteristics
and uses. The user can access only the useg region in 32-bit mode, or xuseg in 64-
bit mode, as shown in Figure 16-1. The supervisor can access user regions as well
as sseg (in 32-bit mode) or xsseg and csseg (in 64-bit mode), shown in Figure 16-2.
The kernel can access all regions except those restricted because bits VA[58:44] are
not implemented in the TLB, as shown in Figure 16-3.

The R10000 processor follows the R4400 implementation for data references only,
ensuring compatibility with the NT kernel. If any of the upper 33 bits are nonzero
for an instruction fetch, an Address Error is generated. Refer to Table 16-2 for
delineation of the address spaces.

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 318 Chapter 16.

 User Mode Operations

In User mode, a single, uniform virtual address space—labelled User segment—is
available; its size is:

• 2 Gbytes (231 bytes) in 32-bit mode (useg)

• 16 Tbytes (244 bytes) in 64-bit mode (xuseg)

Figure 16-1 shows User mode virtual address space.

Figure 16-1 User Mode Virtual Address Space

The User segment starts at address 0 and the current active user process resides in
either useg (in 32-bit mode) or xuseg (in 64-bit mode). The TLB identically maps all
references to useg/xuseg from all modes, and controls cache accessibility.

Address
Error

2 GB
Mapped

Address
Error

2 GB
Mapped

Address
Error

2 Gbytes
Mapped

0x 0000 0000

0x 7FFF FFFF
0x 8000 0000

0x FFFF FFFF

useg

KSU = 102 and
EXL = 0 and
ERL = 0 and

KSU = 102 and
EXL = 0 and
ERL = 0 and

UX = 0 UX = 1

Address
Error

16 Tbytes
Mapped

0x 0000 0000 0000 0000

0x 0000 0FFF FFFF FFFF
0x 0000 1000 0000 0000

0x FFFF FFFF FFFF FFFF

xuseg

32-bit 64-bit

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

Memory Management 319

32-bit User Mode (useg)

In User mode, when UX = 0 in the Status register, User mode addressing is
compatible with the 32-bit addressing model shown in Figure 16-1, and a 2-Gbyte
user address space is available, labelled useg.

All valid User mode virtual addresses have their most-significant bit cleared to 0;
any attempt to reference an address with the most-significant bit set while in User
mode causes an Address Error exception.

The system maps all references to useg through the TLB, and bit settings within
the TLB entry for the page determine the cacheability of a reference.

64-bit User Mode (xuseg)

In User mode, when UX =1 in the Status register, User mode addressing is
extended to the 64-bit model shown in Figure 16-1. In 64-bit User mode, the
processor provides a single, uniform virtual address space of 244 bytes, labelled
xuseg.

All valid User mode virtual addresses have bits 63:44 equal to 0; an attempt to
reference an address with bits 63:44 not equal to 0 causes an Address Error
exception.

Although the system may be in 32-bit mode, address logic still generates 64-bit
values. In this case the high 32 bits must equal the sign bit (31), or an Address
Error exception is taken.

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 320 Chapter 16.

 Supervisor Mode Operations

Supervisor mode is designed for layered operating systems in which a true kernel
runs in processor Kernel mode, and the rest of the operating system runs in
Supervisor mode.

The processor operates in Supervisor mode when the Status register contains the
Supervisor-mode bit-values shown in Table 16-1.

Figure 16-2 shows Supervisor mode address mapping.

Figure 16-2 Supervisor Mode Address Space

32-bit Supervisor Mode, User Space (suseg)

In Supervisor mode, when SX = 0 in the Status register and the most-significant bit
of the 32-bit virtual address is set to 0, the suseg virtual address space is selected; it
covers the full 231 bytes (2 Gbytes) of the current user address space. The virtual
address is extended with the contents of the 8-bit ASID field to form a unique
virtual address.

This mapped space starts at virtual address 0x0000 0000 and runs through 0x7FFF
FFFF.

Address
Error

Address
Error

2 Gbytes
Mapped

0.5 Gbytes
Mapped

suseg

sseg

0x 0000 0000

0x 7FFF FFFF
0x 8000 0000

0x BFFF FFFF
0x C000 0000

0x DFFF FFFF

0x FFFF FFFF

0x E000 0000

Address
Error

Address
Error

Address
Error

16 Tbytes
Mapped

16 Tbytes
Mapped

0.5 Gbytes
Mapped

xsuseg

xsseg

0x 0000 0000 0000 0000

0x 0000 0FFF FFFF FFFF
0x 0000 1000 0000 0000

0x 4000 0000 0000 0000
0x 3FFF FFFF FFFF FFFF

0x 4000 0FFF FFFF FFFF
0x 4000 1000 0000 0000

0x FFFF FFFF BFFF FFFF
0x FFFF FFFF C000 0000

0x FFFF FFFF DFFF FFFF

0x FFFF FFFF FFFF FFFF

0x FFFF FFFF E000 000032-bit

64-bit

KSU = 01 and
EXL = 0 and
ERL = 0 and
SX = 0

KSU = 01 and
EXL = 0 and
ERL = 0 and
SX = 1

csseg

0x 0000 0000 7FFF FFFF
0x 0000 0000 8000 0000

Address Error if UX=0

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

Memory Management 321

32-bit Supervisor Mode, Supervisor Space (sseg)

In Supervisor mode, when SX = 0 in the Status register and the three most-
significant bits of the 32-bit virtual address are 1102, the sseg virtual address space
is selected; it covers 229-bytes (512 Mbytes) of the current supervisor address
space. The virtual address is extended with the contents of the 8-bit ASID field to
form a unique virtual address.

This mapped space begins at virtual address 0xC000 0000 and runs through
0xDFFF FFFF.

64-bit Supervisor Mode, User Space (xsuseg)

In Supervisor mode, when SX = 1 in the Status register and bits 63:62 of the virtual
address are set to 002, selection of the xsuseg virtual address space is dependent
upon the UX bit.

• if UX = 1, the entire space from 0x0000 0000 0000 0000 through 0000
0FFF FFFF FFFF (16 Tbytes) is selected.

• If UX = 0, the address space 0x0000 0000 0000 0000 through 0000 0000
7FFF FFFF (2 Gbytes) is selected. Addressing the space ranging from
0000 0000 8000 0000 through 0000 0FFF FFFF FFFF will cause an
address error.

The virtual address is extended with the contents of the 8-bit ASID field to form a
unique virtual address.

64-bit Supervisor Mode, Current Supervisor Space (xsseg)

In Supervisor mode, when SX = 1 in the Status register and bits 63:62 of the virtual
address are set to 012, the xsseg current supervisor virtual address space is
selected. The virtual address is extended with the contents of the 8-bit ASID field
to form a unique virtual address.

This mapped space begins at virtual address 0x4000 0000 0000 0000 and runs
through 0x4000 0FFF FFFF FFFF.

64-bit Supervisor Mode, Separate Supervisor Space (csseg)

In Supervisor mode, when SX = 1 in the Status register and bits 63:62 of the virtual
address are set to 112, the csseg separate supervisor virtual address space is
selected. Addressing of the csseg is compatible with addressing sseg in 32-bit
mode. The virtual address is extended with the contents of the 8-bit ASID field to
form a unique virtual address.

This mapped space begins at virtual address 0xFFFF FFFF C000 0000 and runs
through 0xFFFF FFFF DFFF FFFF.

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 322 Chapter 16.

 Kernel Mode Operations

The processor operates in Kernel mode when the Status register contains the
Kernel-mode bit-values shown in Table 16-1.

Kernel mode virtual address space is divided into regions differentiated by the
high-order bits of the virtual address, as shown in Figure 16-3.

Figure 16-3 Kernel Mode Address Space

NOTE: If ERL = 1, the selected 2 Gbyte space becomes uncached and
unmapped.

32-bit

64-bit

(KSU = 00 or EXL = 1 or ERL = 1)
and KX = 0

0.5 Gbytes
Mapped

0.5 Gbytes
Mapped

0.5 Gbytes
Unmapped
Uncached

0.5 Gbytes
Unmapped

Cached

kseg3

ksseg

kseg1

kseg0

0x FFFF FFFF

0x E000 0000

0x C000 0000
0x BFFF FFFF

0x A000 0000

0x 9FFF FFFF

0x 8000 0000
0x 7FFF FFFF

2 Gbytes

Mapped

kuseg

0x 0000 0000

0.5 Gbytes
Mapped

0.5 Gbytes
Mapped

0.5 Gbytes
Unmapped
Uncached
0.5 Gbytes
Unmapped

Cached

Address
Error

Mapped

Unmapped

Address
Error

16 Tbytes
Mapped

Address
Error

16 Tbytes
Mapped

ckseg3

cksseg

ckseg1

ckseg0

xkseg

xkphys

xksseg

xkuseg

0x FFFF FFFF FFFF FFFF

0x FFFF FFFF E000 0000
0x FFFF FFFF DFFF FFFF

0x FFFF FFFF C000 0000
0x FFFF FFFF BFFF FFFF

0x FFFF FFFF A000 0000
0x FFFF FFFF 9FFF FFFF

0x FFFF FFFF 8000 0000
0x FFFF FFFF 7FFF FFFF

0x C000 0FFF 0000 0000
0x C000 0FFE FFFF FFFF

0x C000 0000 0000 0000
0x BFFF FFFF FFFF FFFF

0x 8000 0000 0000 0000
0x 7FFF FFFF FFFF FFFF

0x 4000 1000 0000 0000
0x 4000 0FFF FFFF FFFF

0x 4000 0000 0000 0000

0x 0000 0000 0000 0000

0x 0000 0FFF FFFF FFFF
0x 0000 1000 0000 0000

0x 3FFF FFFF FFFF FFFF

(KSU = 00 or EXL = 1 or ERL = 1)
and KX = 1

Address Error if UX=0
or ERL = 1

0x 0000 0000 7FFF FFFF
0x 0000 0000 8000 0000

Address Error if SX=0

(See Note below)

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

Memory Management 323

32-bit Kernel Mode, User Space (kuseg)

In Kernel mode, when KX = 0 in the Status register, and the most-significant bit of
the virtual address, A31, is cleared, the 32-bit kuseg virtual address space is
selected; it covers the full 231 bytes (2 Gbytes) of the current user address space.
The virtual address is extended with the contents of the 8-bit ASID field to form a
unique virtual address.

32-bit Kernel Mode, Kernel Space 0 (kseg0)

In Kernel mode, when KX = 0 in the Status register and the most-significant three
bits of the virtual address are 1002, 32-bit kseg0 virtual address space is selected; it
is the 229-byte (512-Mbyte) kernel physical space. References to kseg0 are not
mapped through the TLB; the physical address is selected by subtracting 0x8000
0000 from the virtual address. The K0 field of the Config register determines
cacheability and coherency.

32-bit Kernel Mode, Kernel Space 1 (kseg1)

In Kernel mode, when KX = 0 in the Status register and the most-significant three
bits of the 32-bit virtual address are 1012, 32-bit kseg1 virtual address space is
selected; it is the 229-byte (512-Mbyte) kernel physical space.

References to kseg1 are not mapped through the TLB; the physical address is
selected by subtracting 0xA000 0000 from the virtual address.

Caches are disabled for accesses to these addresses, and physical memory (or
memory-mapped I/O device registers) are accessed directly.

32-bit Kernel Mode, Supervisor Space (ksseg)

In Kernel mode, when KX = 0 in the Status register and the most-significant three
bits of the 32-bit virtual address are 1102, the ksseg virtual address space is
selected; it is the current 229-byte (512-Mbyte) supervisor virtual space. The
virtual address is extended with the contents of the 8-bit ASID field to form a
unique virtual address.

References to ksseg are mapped through the TLB.

32-bit Kernel Mode, Kernel Space 3 (kseg3)

In Kernel mode, when KX = 0 in the Status register and the most-significant three
bits of the 32-bit virtual address are 1112, the kseg3 virtual address space is
selected; it is the current 229-byte (512-Mbyte) kernel virtual space. The virtual
address is extended with the contents of the 8-bit ASID field to form a unique
virtual address.

References to kseg3 are mapped through the TLB.

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 324 Chapter 16.

64-bit Kernel Mode, User Space (xkuseg)

In Kernel mode, when KX = 1 in the Status register and bits 63:62 of the 64-bit
virtual address are 002, selection of the xkuseg virtual address space is dependent
upon the UX and ERL bits.

• if UX = 1 and ERL = 0, the entire space from 0x0000 0000 0000 0000
through 0000 0FFF FFFF FFFF (16 Tbytes) is selected.

• If UX = 0 or ERL = 1, the address space 0x0000 0000 0000 0000 through
0000 0000 7FFF FFFF (2 Gbytes) is selected. Addressing the space
ranging from 0000 0000 8000 0000 through 0000 0FFF FFFF FFFF will
cause an address error. Moreover, if ERL=1, the selected 2-Gbyte
address space becomes unmapped and uncached.

The virtual address is extended with the contents of the 8-bit ASID field to form a
unique virtual address.

64-bit Kernel Mode, Current Supervisor Space (xksseg)

In Kernel mode, when KX = 1 in the Status register and bits 63:62 of the 64-bit
virtual address are 012, selection of the xksseg virtual address space is dependent
upon the SX bit.

• if SX = 1, the entire space from 0x4000 0000 0000 0000 through 4000
0FFF FFFF FFFF (16 Tbytes) is selected.

• If SX = 0, access to any address in the space ranging from 0x4000 0000
0000 0000 through 4000 0FFF FFFF FFFF causes an address error.

The virtual address is extended with the contents of the 8-bit ASID field to form a
unique virtual address.

64-bit Kernel Mode, Physical Spaces (xkphys)

In Kernel mode, when KX = 1 in the Status register and bits 63:62 of the 64-bit
virtual address are 102, the xkphys virtual address space is selected; it is a set of
eight kernel physical spaces. Each kernel physical space contains either one or four
240-byte physical pages.

References to this space are not mapped; the physical address selected is taken
directly from bits 39:0 of the virtual address. Bits 61:59 of the virtual address
specify the cache algorithm, described in Chapter 4, the section titled “Cache
Algorithms.” If the cache algorithm is either uncached or uncached accelerated
(values of 2 or 7) the space contains four physical pages; access to addresses whose
bits 56:40 are not equal to 0 cause an Address Error exception. Address bits 58:57
carry the uncached attribute (described in Chapter 6, the section titled “Support for
Uncached Attribute”), and are not checked for address errors.

If the cache algorithm is neither uncached nor uncached accelerated, the space
contains a single physical page, as on the R4400 processor. In this case, access to
addresses whose bits 58:40 are not equal to a zero cause an Address Error
exception, as shown in Figure 16-4.

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

Memory Management 325

Figure 16-4 xkphys Virtual Address Space

‡ Accessing a reserved space results in undefined behavior.

0X B F F F F F F F F F F F F F F F
Address Error

0X 9 F F F F F F F F F F F F F F F
Address Error

0X B E 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0X 9 8 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0X B E 0 0 0 0 F F F F F F F F F F
Uncached Accelerated

0X 9 8 0 0 0 0 F F F F F F F F F F
Cacheable Noncoherent

0X B E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0X 9 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0X B D F F F F F F F F F F F F F F
Address Error

0X 9 7 F F F F F F F F F F F F F F
Address Error

0X B C 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0X 9 6 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0X B C 0 0 0 0 F F F F F F F F F F
Uncached Accelerated

0X 9 6 0 0 0 0 F F F F F F F F F F
Uncached

0X B C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0X 9 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0X B B F F F F F F F F F F F F F F
Address Error

0X 9 5 F F F F F F F F F F F F F F
Address Error

0X B A 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0X 9 4 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0X B A 0 0 0 0 F F F F F F F F F F
Uncached Accelerated

0X 9 4 0 0 0 0 F F F F F F F F F F
Uncached

0X B A 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0X 9 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0X B 9 F F F F F F F F F F F F F F
Address Error

0X 9 3 F F F F F F F F F F F F F F
Address Error

0X B 8 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0X 9 2 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0X B 8 0 0 0 0 F F F F F F F F F F
Uncached Accelerated

0X 9 2 0 0 0 0 F F F F F F F F F F
Uncached

0X B 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0X 9 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0X B 7 F F F F F F F F F F F F F F
Address Error

0X 9 1 F F F F F F F F F F F F F F
Address Error

0X B 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0X 9 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0X B 0 0 0 0 0 F F F F F F F F F F
Reserved‡ 0X 9 0 0 0 0 0 F F F F F F F F F F

Uncached
0X B 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0X 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0X A F F F F F F F F F F F F F F F
Address Error

0X 8 F F F F F F F F F F F F F F F
Address Error

0X A 8 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0X 8 8 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0X A 8 0 0 0 0 F F F F F F F F F F
Cacheable Exclusive Write

0X 8 8 0 0 0 0 F F F F F F F F F F
Reserved*

0X A 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0X 8 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0X A 7 F F F F F F F F F F F F F F
Address Error

0X 8 7 F F F F F F F F F F F F F F
Address Error

0X A 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0X 8 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0X A 0 0 0 0 0 F F F F F F F F F F Cacheable Exclusive
0X 8 0 0 0 0 0 F F F F F F F F F F

Reserved*
0X A 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0X 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 326 Chapter 16.

64-bit Kernel Mode, Kernel Space (xkseg)

In Kernel mode, when KX = 1 in the Status register and bits 63:62 of the 64-bit
virtual address are 112, the address space selected is one of the following:

• kernel virtual space, xkseg, the current kernel virtual space; the virtual
address is extended with the contents of the 8-bit ASID field to form a
unique virtual address

• one of the four 32-bit kernel mode compatibility spaces (described
below).

64-bit Kernel Mode, Compatibility Spaces (ckseg1:0, cksseg, ckseg3)

In Kernel mode, when KX = 1 in the Status register, bits 63:62 of the 64-bit virtual
address are 112, and bits 61:31 of the virtual address equal –1, the lower two bytes
of address, as shown in Figure 16-3, select one of the following 512-Mbyte
compatibility spaces.

• ckseg0. This 64-bit virtual address space is an unmapped region,
compatible with the 32-bit address model kseg0. The K0 field of the
Config register controls cacheability and coherency.

• ckseg1. This 64-bit virtual address space is an unmapped and uncached
region, compatible with the 32-bit address model kseg1.

• cksseg. This 64-bit virtual address space is the current supervisor
virtual space, compatible with the 32-bit address model ksseg.

• ckseg3. This 64-bit virtual address space is kernel virtual space,
compatible with the 32-bit address model kseg3.

Address Space Access Privilege Differences Between the R4400 and R1000

In the R4400, the 64-bit Supervisor mode can access the entire xsuseg space, and the
64-bit Kernel mode can access the entire xksseg and xkuseg spaces. Access
privileges in the R10000 are also dependent on the UX and SX bits:

• Access to the 64-bit user space in 64-bit Supervisor or Kernel mode
(xsuseg or xkuseg) is controlled by the UX bit. If UX=0, the 64-bit
Supervisor and Kernel modes can only access the 32-bit user space
(suseg or kuseg).

• Access to the 64-bit supervisor space in Kernel mode (xksseg) is
controlled by the SX bit. If SX=0, the 64-bit Kernel mode can only
access the 32-bit supervisor space (ksseg).

An Address Error exception is taken on an illegal access.

The R10000 processor implements the same access privileges for 32-bit processor
modes as in the R4400. The Table 16-2 summarizes the access privileges for all
processor modes in the R10000 processor.

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

Memory Management 327

Table 16-2 Access Privileges for User, Supervisor and Kernel Mode Operations

‡ For data references, the upper 32 bits of the virtual addresses are cleared before checking access privilege and TLB translation.

64-bit
Virtual Address

32-bit Mode 64-bit Mode

User‡ Supervisor Kernel User Supervisor
Kernel &

ERL=0
Kernel &

ERL=1

FFFFFFFF E0000000
TO

FFFFFFFF FFFFFFFF

AddrErr

AddrErr

OK

AddrErr

AddrErr

OK OK

FFFFFFFF C0000000
TO

FFFFFFFF DFFFFFFF
OK OK

FFFFFFFF A0000000
TO

FFFFFFFF BFFFFFFF

AddrErr

AddrErr

FFFFFFFF 80000000
TO

FFFFFFFF 9FFFFFFF

C0000FFF 00000000
TO

FFFFFFFF 7FFFFFFF

AddrErr

AddrErr AddrErr

C0000000 00000000
TO

C0000FFE FFFFFFFF
OK OK

80000000 00000000
TO

BFFFFFFF FFFFFFFF
OK OK

40001000 00000000
TO

7FFFFFFF FFFFFFFF
AddrErr AddrErr

40000000 00000000
TO

40000FFF FFFFFFFF
OK AddrErr if

SX=0
AddrErr if

SX=0

00001000 00000000
TO

3FFFFFFF FFFFFFFF
AddrErr AddrErr AddrErr

00000000 80000000
TO

00000FFF FFFFFFFF
OK

AddrErr if
UX=0

AddrErr if
UX=0

AddrErr

00000000 00000000
TO

00000000 7FFFFFFF
OK OK OK OK OK OK

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 328 Chapter 16.

16.3 Virtual Address Translation
Programs can operate using either physical or virtual memory addresses:

• physical addresses correspond to hardware locations in main memory

• virtual addresses are logical values only, and do not correspond to
fixed hardware locations

Virtual addresses must first be translated (finding the physical address at which
the virtual address points) before main memory can be accessed. This translation
is essential for multitasking computer systems, because it allows the operating
system to load programs anywhere in main memory independent of the logical
addresses used by the programs.

This translation also implements a memory protection scheme, which limits the
amount of memory each program may access. The scheme prevents programs
from interfering with the memory used by other programs or the operating
system.

Errata

Virtual Pages

Translated virtual addresses retrieve data in blocks, which are called pages. In the
R10000 processor, the size of each page may be selected from a range that runs
from 4 Kbytes to 16 Mbytes inclusive, in powers of 4 (that is, 4 Kbytes, 16 Kbytes,
64 Kbytes, etc.).

The virtual address bits which select a page (and thus are translated) are called the
page address. The lower bits which select a byte within the selected page are called
the offset and are not translated. The number of offset bits varies from 12 to 24 bits,
depending on the page size.

Virtual Page Size Encodings

Page size is defined in each TLB entry’s PageMask field. This field is loaded or read
using the PageMask register, as described in Chapter 14, PageMask Register (5).

Each entry translates a pair of physical pages. The low bit of the virtual address
page is not compared, because it is used to select between these two physical
pages.

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

Memory Management 329

Using the TLB

Translations are maintained by the operating system, using page tables in
memory. A subset of these translations are loaded into a hardware buffer called
the translation-lookaside buffer or TLB. The contents of this buffer are
maintained by the operating system; if an instruction needs a translation which is
not already in the buffer, an exception is taken so the operating system can
compute and load the needed translation. If all the necessary translations are
present, the program is executed without any delays.

The TLB contains 64 entries, each of which maps a pair of virtual pages. Formats
of TLB entries are shown in Figure 16-5.

Cache Algorithm Field

The Cache Algorithm fields of the TLB, EntryLo0, EntryLo1, and Config registers
indicate how data is cached. Cache algorithms are described in Chapter 4, Cache
Algorithms.

Format of a TLB Entry

Figure 16-5 shows the TLB entry formats for both 32- and 64-bit modes. Each field
of an entry has a corresponding field in the EntryHi, EntryLo0, EntryLo1, or
PageMask registers, as shown in Chapter 14, Coprocessor 0; for example the PFN
and uncached attribute (UC) fields of the TLB entry are also held in the EntryLo
registers.

Figure 16-5 Format of a TLB Entry

 12

255

13

192

MASK 0

191

VPN2 G

 31

128

1 4 8

ASID

140141

 28

127 64

PFN

63 0

39

0

139136 135

98 97

C VD

3 1 1

6566676970

0

1

 28

PFN

34 33

30

C VD

3 1 1

12356

0

1

0

0

30

0

171172

R

190 189

18

0

2

204205216217

UC

125

UC

61

2

2

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 330 Chapter 16.

Address Translation

Because a 64-bit address is unnecessarily large, only the low 44 address bits are
translated. The high two virtual address bits (bits 63:62) select between user,
supervisor, and kernel address spaces. The intermediate address bits (61:44) must
either be all zeros or all ones, depending on the address region. The TLB does not
include virtual address bits 61:59, because these are decoded only in the xkphys
region, which is unmapped.

For data cache accesses, the joint TLB (JTLB) translates addresses from the address
calculate unit. For instruction accesses, the JTLB translates the PC address if it
misses in the instruction TLB (ITLB). That entry is copied into the ITLB for
subsequent accesses. The ITLB is transparent to system software.

Address Space Identification (ASID)

Each independent task, or process, has a separate address space, assigned a unique
8-bit Address Space Identifier (ASID). This identifier is stored with each TLB
entry to distinguish between entries loaded for different processes. The ASID
allows the processor to move from one process to another (called a context switch)
without having to invalidate TLB entries.

The processor’s current ASID is stored in the low 8 bits of the EntryHi register.
These bits are also used to load the ASID field of an entry during TLB refill.

The ASID field of each TLB entry is compared to the EntryHi register; if the ASIDs
are equal or if the entry is global (see below), this TLB entry may be used to
translate virtual addresses. The ASID comparison is performed only when a new
value is loaded into the EntryHi register; the one-bit result of the match is stored in
a static Enable latch. (This bit is set whenever a new entry is loaded.)

Global Processes (G)

A translation may be defined as global so that it can be shared by all processes. This
G bit is set in the TLB entry and enables the entry independent of its ASID value.

Avoiding TLB Conflict

Setting the TS bit in the Status register indicates an entry being presented to the
TLB matches more than one virtual page entry in the TLB. Any TLB entries that
allow multiple matches, even in the Wired area, are invalidated before the new
entry can be written into the TLB. This prevents multiple matches during address
translation.

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996331

17. CPU Exceptions

This chapter describes the processor exceptions—a general view of the cause and
return of an exception, exception vector locations, and the types of exceptions that
are supported, including the cause, processing, and servicing of each exception.

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 332 Chapter 17.

17.1 Causing and Returning from an Exception
When the processor takes an exception, the EXL bit in the Status register is set to 1,
which means the system is in Kernel mode. After saving the appropriate state, the
exception handler typically changes the KSU bits in the Status register to Kernel
mode and resets the EXL bit back to 0. When restoring the state and restarting, the
handler restores the previous value of the KSU field and sets the EXL bit back to 1.

Returning from an exception also resets the EXL bit to 0 (see the ERET instruction
in Appendix A).

17.2 Exception Vector Locations
The Cold Reset, Soft Reset, and NMI exceptions are always vectored to the
dedicated Cold Reset exception vector at an uncached and unmapped address.
Addresses for all other exceptions are a combination of a vector offset and a base
address.

The boot-time vectors (when BEV = 1 in the Status register) are at uncached and
unmapped addresses. During normal operation (when BEV = 0) the regular
exceptions have vectors in cached address spaces; Cache Error is always at an
uncached address so that cache error handling can bypass a suspect cache.

The exception vector assignments for the R10000 processor shown in Table 17-1;
the addresses are the same as for the R4400.

Table 17-1 Exception Vector Addresses

BEV Exception Type
Exception Vector Address

32-bit 64-bit

Cold Reset/Soft Reset/
NMI

0xBFC00000 0xFFFFFFFF BFC00000

BEV=0

TLB Refill (EXL=0) 0x80000000 0xFFFFFFFF 80000000

XTLB Refill (EXL=0) 0x80000080 0xFFFFFFFF 80000080

Cache Error 0xA0000100 0xFFFFFFFF A0000100

Others 0x80000180 0xFFFFFFFF 80000180

BEV=1

TLB Refill (EXL=0) 0xBFC00200 0xFFFFFFFF BFC00200

XTLB Refill (EXL=0) 0xBFC00280 0xFFFFFFFF BFC00280

Cache Error 0xBFC00300 0xFFFFFFFF BFC00300

Others 0xBFC00380 0xFFFFFFFF BFC00380

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

CPU Exceptions 333

17.3 TLB Refill Vector Selection
In all present implementations of the MIPS III ISA, there are two TLB refill
exception vectors:

• one for references to 32-bit address space (TLB Refill)

• one for references to 64-bit address space (XTLB Refill)

Table 17-2 lists the exception vector addresses.

The TLB refill vector selection is based on the address space of the address (user,
supervisor, or kernel) that caused the TLB miss, and the value of the corresponding
extended addressing bit in the Status register (UX, SX, or KX). The current
operating mode of the processor is not important except that it plays a part in
specifying in which address space an address resides. The Context and XContext
registers are entirely separate page-table-pointer registers that point to and refill
from two separate page tables, however these two registers share BadVPN2 fields
(see Chapter 14 for more information). For all TLB exceptions (Refill, Invalid,
TLBL or TLBS), the BadVPN2 fields of both registers are loaded as they were in the
R4400.

In contrast to the R10000, the R4400 processor selects the vector based on the
current operating mode of the processor (user, supervisor, or kernel) and the value
of the corresponding extended addressing bit in the Status register (UX, SX or
KX). In addition, the Context and XContext registers are not implemented as
entirely separate registers; the PTEbase fields are shared. A miss to a particular
address goes through either TLB Refill or XTLB Refill, depending on the source of
the reference. There can be only be a single page table unless the refill handlers
execute address-deciphering and page table selection in software.

NOTE: Refills for the 0.5 Gbyte supervisor mapped region, sseg/ksseg, are
controlled by the value of KX rather than SX. This simplifies control of the
processor when supervisor mode is not being used.

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 334 Chapter 17.

Table 17-2 lists the TLB refill vector locations, based on the address that caused the
TLB miss and its corresponding mode bit.

Table 17-2 TLB Refill Vectors

Space Address Range Regions
Exception

Vector

Kernel

0xFFFF FFFF E000 0000
to

0xFFFF FFFF FFFF FFFF kseg3

Refill (KX=0)
or

XRefill (KX=1)

Supervisor

0xFFFF FFFF C000 0000
to

0xFFFF FFFF DFFF FFFF sseg, ksseg

Refill (KX=0)
or

XRefill (KX=1)

Kernel

0xC000 0000 0000 0000
to

0xC000 0FFE FFFF FFFF
xkseg XRefill(KX=1)

Supervisor

0x4000 0000 0000 0000
to

0x4000 0FFF FFFF FFFF
xsseg, xksseg XRefill (SX=1)

User

0x0000 0000 8000 0000
to

0x0000 0FFF FFFF FFFF
xsuseg, xuseg,
xkuseg

XRefill (UX=1)

User

0x0000 0000 0000 0000
to

0x0000 0000 7FFF FFFF

useg, xuseg, suseg,
xsuseg, kuseg,
xkuseg

Refill (UX=0)
or

XRefill (UX=1)

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

CPU Exceptions 335

Priority of Exceptions

The remainder of this chapter describes exceptions in the order of their priority
shown in Table 17-3 (with certain of the exceptions, such as the TLB exceptions
and Instruction/Data exceptions, grouped together for convenience). While
more than one exception can occur for a single instruction, only the exception with
the highest priority is reported. Some exceptions are not caused by the instruction
executed at the time, and some exceptions may be deferred. See the individual
description of each exception in this chapter for more detail.

Table 17-3 Exception Priority Order

Generally speaking, the exceptions described in the following sections are
handled (“processed”) by hardware; these exceptions are then serviced by
software.

‡ These exceptions are interrupt types, and may be imprecise. Priority may not be
followed when considering a specific instruction.

Cold Reset (highest priority)

Soft Reset

Nonmaskable Interrupt (NMI)‡

Cache error –– Instruction cache*

Cache error –– Data cache*

Cache error –– Secondary cache*

Cache error –– System interface*

Address error –– Instruction fetch

TLB refill –– Instruction fetch

TLB invalid –– Instruction fetch

Bus error –– Instruction fetch

Integer overflow, Trap, System Call, Breakpoint, Reserved
Instruction, Coprocessor Unusable, or Floating-Point Exception

Address error –– Data access

TLB refill –– Data access

TLB invalid –– Data access

TLB modified –– Data write

Watch*

Bus error –– Data access

Interrupt (lowest priority)*

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 336 Chapter 17.

Cold Reset Exception

Cause

The Cold Reset exception is taken for a power-on or “cold” reset; it occurs when
the SysGnt* signal is asserted while the SysReset* signal is also asserted.† This
exception is not maskable.

Processing

The CPU provides a special interrupt vector for this exception:

• location 0xBFC0 0000 in 32-bit mode

• location 0xFFFF FFFF BFC0 0000 in 64-bit mode

The Cold Reset vector resides in unmapped and uncached CPU address space, so
the hardware need not initialize the TLB or the cache to process this exception. It
also means the processor can fetch and execute instructions while the caches and
virtual memory are in an undefined state.

The contents of all registers in the CPU are undefined when this exception occurs,
except for the following register fields:

• In the Status register, SR and TS are cleared to 0, and ERL and BEV are
set to 1. All other bits are undefined.

• Config register is initialized with the boot mode bits read from the
serial input.

• The Random register is initialized to the value of its upper bound.

• The Wired register is initialized to 0.

• The EW bit in the CacheErr register is cleared.

• The ErrorEPC register gets the PC.

• The FrameMask register is set to 0.

• Branch prediction bits are set to 0.

• Performance Counter register Event field is set to 0.

• All pending cache errors, delayed watch exceptions, and external
interrupts are cleared.

Servicing

The Cold Reset exception is serviced by:

• initializing all processor registers, coprocessor registers, caches, and
the memory system

• performing diagnostic tests

• bootstrapping the operating system

† If SysGnt* remains deasserted (high) while SysReset* is asserted, the processor
interprets this as a Soft Reset exception.

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

CPU Exceptions 337

Soft† Reset Exception

Cause

The Soft Reset exception occurs in response to a Soft Reset (See Chapter 8, the
section titled “Soft Reset Sequence”).

A Soft Reset exception is not maskable.

The processor differentiates between a Cold Reset and a Soft Reset as follows:

• A Cold Reset occurs when the SysGnt* signal is asserted while the
SysReset* signal is also asserted.

• A Soft Reset occurs if the SysGnt* signal remains negated when a
SysReset* signal is asserted.

In R4400 processor, there is no way for software to differentiate between a Soft
Reset exception and an NMI exception. In the R10000 processor, a bit labelled
NMI has been added to the Status register to distinguish between these two
exceptions. Both Soft Reset and NMI exceptions set the SR bit and use the same
exception vector. During an NMI exception, the NMI bit is set to 1; during a Soft
Reset, the NMI bit is set to 0.

Processing

When a Soft Reset exception occurs, the SR bit of the Status register is set,
distinguishing this exception from a Cold Reset exception.

When a Soft Reset is detected, the processor initializes minimum processor state.
This allows the processor to fetch and execute the instructions of the exception
handler, which in turn dumps the current architectural state to external logic.
Hardware state that loses architectural state is not initialized unless it is necessary
to execute instructions from unmapped uncached space that reads the registers,
TLB, and cache contents.

The Soft Reset can begin on an arbitrary cycle boundary and can abort multicycle
operations in progress, so it may alter machine state. Hence, caches, memory, or
other processor states can be inconsistent: data cache blocks may stay at the refill
state and any cached loads/stores to these blocks will hang the processor.
Therefore, CacheOps should be used to dump the cache contents.

After the processor state is read out, the processor should be reset with a Cold
Reset sequence.

† Soft Reset is also known colloquially as Warm Reset.

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 338 Chapter 17.

A Soft Reset exception preserves the contents of all registers, except for:

• ErrorEPC register, which contains the PC

• ERL bit of the Status register, which is set to 1

• SR bit of the Status register, which is set to 1 on Soft Reset or an NMI;
0 for a Cold Reset

• BEV bit of the Status register, which is set to 1

• TS bit of the Status register, which is set to 0

• PC is set to the reset vector 0xFFFF FFFF BFC0 0000

• clears any pending Cache Error exceptions

Servicing

A Soft Reset exception is intended to quickly reinitialize a previously operating
processor after a fatal error.

It is not normally possible to continue program execution after returning from this
exception, since a SysReset* signal can be accepted anytime.

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

CPU Exceptions 339

NMI Exception

Cause

The NMI exception is caused by assertion of the SysNMI* signal.

An NMI exception is not maskable.

In R4400 processor, there is no way for software to differentiate between a Soft
Reset exception and an NMI exception. In the R10000 processor, a bit labelled
NMI has been added to the Status register to distinguish between these two
exceptions. Both Soft Reset and NMI exceptions set the SR bit and use the same
exception vector. During an NMI exception, the NMI bit is set to 1; during a Soft
Reset, the NMI bit is set to 0.

Processing

When an NMI exception occurs, the SR bit of the Status register is set,
distinguishing this exception from a Cold Reset exception.

An exception caused by an NMI is taken at the instruction boundary. It does not
abort any state machines, preserving the state of the processor for diagnosis. The
Cause register remains unchanged and the system jumps to the NMI exception
handler (see Table 17-1).

An NMI exception preserves the contents of all registers, except for:

• ErrorEPC register, which contains the PC

• ERL bit of the Status register, which is set to 1

• SR bit of the Status register, which is set to 1 on Soft Reset or an NMI;
0 for a Cold Reset

• BEV bit of the Status register, which is set to 1

• TS bit of the Status register, which is set to 0

• PC is set to the reset vector 0xFFFF FFFF BFC0 0000

• clears any pending Cache Error exceptions

Servicing

The NMI can be used for purposes other than resetting the processor while
preserving cache and memory contents. For example, the system might use an
NMI to cause an immediate, controlled shutdown when it detects an impending
power failure.

It is not normally possible to continue program execution after returning from this
exception, since an NMI can occur during another error exception.

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 340 Chapter 17.

Address Error Exception

Cause

The Address Error exception occurs when an attempt is made to execute one of the
following:

• reference to an illegal address space

• reference the supervisor address space from User mode

• reference the kernel address space from User or Supervisor mode

• load or store a doubleword that is not aligned on a doubleword
boundary

• load, fetch, or store a word that is not aligned on a word boundary

• load or store a halfword that is not aligned on a halfword boundary

This exception is not maskable.

Processing

The common exception vector is used for this exception. The AdEL or AdES code
in the Cause register is set, indicating whether the instruction caused the exception
with an instruction reference, load operation, or store operation shown by the EPC
register and BD bit in the Cause register.

When this exception occurs, the BadVAddr register retains the virtual address that
was not properly aligned or that referenced protected address space. The contents
of the VPN field of the Context, XContext, and EntryHi registers are undefined, as
are the contents of the EntryLo register.

The EPC register contains the address of the instruction that caused the exception,
unless this instruction is in a branch delay slot. If it is in a branch delay slot, the
EPC register contains the address of the preceding branch instruction and the BD
bit of the Cause register is set as indication.

Servicing

The process executing at the time is handed a UNIX SIGSEGV (segmentation
violation) signal. This error is usually fatal to the process incurring the exception.

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

CPU Exceptions 341

TLB Exceptions

Three types of TLB exceptions can occur:

• TLB Refill occurs when there is no TLB entry that matches an
attempted reference to a mapped address space.

• TLB Invalid occurs when a virtual address reference matches a TLB
entry that is marked invalid.

• TLB Modified occurs when a store operation virtual address reference
to memory matches a TLB entry which is marked valid but is not dirty
(the entry is not writable).

The following three sections describe these TLB exceptions.

NOTE: TLB Refill vector selection is also described earlier in this chapter, in
the section titled, TLB Refill Vector Selection.

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 342 Chapter 17.

TLB Refill Exception

Cause

The TLB refill exception occurs when there is no TLB entry to match a reference to
a mapped address space. This exception is not maskable.

Processing

There are two special exception vectors for this exception; one for references to 32-
bit address spaces, and one for references to 64-bit address spaces. The UX, SX,
and KX bits of the Status register determine whether the user, supervisor or kernel
address spaces referenced are 32-bit or 64-bit spaces; the TLB refill vector is
selected based upon the address space of the address causing the TLB miss (user,
supervisor, or kernel mode address space), together with the value of the
corresponding extended addressing bit in the Status register (UX, SX, or KX). The
current operating mode of the processor is not important except that it plays a part
in specifying in which space an address resides. An address is in user space if it is
in useg, suseg, kuseg, xuseg, xsuseg, or xkuseg (see the description of virtual address
spaces in Chapter 16). An address is in supervisor space if it is in sseg, ksseg, xsseg
or xksseg, and an address is in kernel space if it is in either kseg3 or xkseg. Kseg0,
kseg1, and kernel physical spaces (xkphys) are kernel spaces but are not mapped.

All references use these vectors when the EXL bit is set to 0 in the Status register.
This exception sets the TLBL or TLBS code in the ExcCode field of the Cause register.
This code indicates whether the instruction, as shown by the EPC register and the
BD bit in the Cause register, caused the miss by an instruction reference, load
operation, or store operation.

When this exception occurs, the BadVAddr, Context, XContext and EntryHi registers
hold the virtual address that failed address translation. The EntryHi register also
contains the ASID from which the translation fault occurred. The Random register
normally contains a valid location in which to place the replacement TLB entry.
The contents of the EntryLo register are undefined. The EPC register contains the
address of the instruction that caused the exception, unless this instruction is in a
branch delay slot, in which case the EPC register contains the address of the
preceding branch instruction and the BD bit of the Cause register is set.

Servicing

To service this exception, the contents of the Context or XContext register are used
as a virtual address to fetch memory locations containing the physical page frame
and access control bits for a pair of TLB entries. The two entries are placed into the
EntryLo0/EntryLo1 register; the EntryHi and EntryLo registers are written into the
TLB.

It is possible that the virtual address used to obtain the physical address and access
control information is on a page that is not resident in the TLB. This condition is
processed by allowing a TLB refill exception in the TLB refill handler. This second
exception goes to the common exception vector because the EXL bit of the Status
register is set.

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

CPU Exceptions 343

TLB Invalid Exception

Cause

The TLB invalid exception occurs when a virtual address reference matches a TLB
entry that is marked invalid (TLB valid bit cleared). This exception is not
maskable.

Processing

The common exception vector is used for this exception. The TLBL or TLBS code
in the ExcCode field of the Cause register is set. This indicates whether the
instruction, as shown by the EPC register and BD bit in the Cause register, caused
the miss by an instruction reference, load operation, or store operation.

When this exception occurs, the BadVAddr, Context, XContext and EntryHi
registers contain the virtual address that failed address translation. The EntryHi
register also contains the ASID from which the translation fault occurred. The
Random register normally contains a valid location in which to put the
replacement TLB entry. The contents of the EntryLo registers are undefined.

The EPC register contains the address of the instruction that caused the exception
unless this instruction is in a branch delay slot, in which case the EPC register
contains the address of the preceding branch instruction and the BD bit of the
Cause register is set.

Servicing

A TLB entry is typically marked invalid when one of the following is true:

• a virtual address does not exist

• the virtual address exists, but is not in main memory (a page fault)

• a trap is desired on any reference to the page (for example, to maintain
a reference bit)

After servicing the cause of a TLB Invalid exception, the TLB entry is located with
TLBP (TLB Probe), and replaced by an entry with that entry’s Valid bit set.

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 344 Chapter 17.

TLB Modified Exception

Cause

The TLB modified exception occurs when a store operation virtual address
reference to memory matches a TLB entry that is marked valid but is not dirty and
therefore is not writable. This exception is not maskable.

Processing

The common exception vector is used for this exception, and the Mod code in the
Cause register is set.

When this exception occurs, the BadVAddr, Context, XContext and EntryHi registers
contain the virtual address that failed address translation. The EntryHi register
also contains the ASID from which the translation fault occurred. The contents of
the EntryLo register are undefined.

The EPC register contains the address of the instruction that caused the exception
unless that instruction is in a branch delay slot, in which case the EPC register
contains the address of the preceding branch instruction and the BD bit of the
Cause register is set.

Servicing

The kernel uses the failed virtual address or virtual page number to identify the
corresponding access control information. The page identified may or may not
permit write accesses; if writes are not permitted, a write protection violation
occurs.

If write accesses are permitted, the page frame is marked dirty/writable by the
kernel in its own data structures. The TLBP instruction places the index of the TLB
entry that must be altered into the Index register. The EntryLo register is loaded
with a word containing the physical page frame and access control bits (with the
D bit set), and the EntryHi and EntryLo registers are written into the TLB.

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

CPU Exceptions 345

Cache Error Exception

The Cache Error exception is described in Chapter 9, Cache Error Exception.

Virtual Coherency Exception

Errata

The Virtual Coherency exception is not implemented in the R10000 processor,
since the virtual coherency condition is handled in hardware. When the hardware
detects the Virtual Coherency exception, it invalidates the lines in all other
segments of the primary cache that could cause aliasing. This takes six cycles more
than that needed to refill the primary cache line (the refill would have occurred
even if there was no Virtual Coherency exception detected).

In the R4400 processor, a Virtual Coherency exception occurs when a primary
cache miss hits in the secondary cache but VA[14:12] are not the same as the PIdx
field of the secondary cache tag, and the cache algorithm specifies that the page is
cached. When such a situation is detected in the R10000 processor, the primary
cache lines at the old virtual index are invalidated and the PIdx field of the
secondary cache is written with the new virtual index.

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 346 Chapter 17.

Bus Error Exception

Cause

A Bus Error exception occurs when a processor block read, upgrade, or double/
single/partial-word read request receives an external ERR completion response,
or a processor double/single/partial-word read request receives an external ACK
completion response where the associated external double/single/partial-word
data response contains an uncorrectable error. This exception is not maskable.

Processing

The common interrupt vector is used for a Bus Error exception. The IBE or DBE
code in the ExcCode field of the Cause register is set, signifying whether the
instruction (as indicated by the EPC register and BD bit in the Cause register)
caused the exception by an instruction reference, load operation, or store
operation.

The EPC register contains the address of the instruction that caused the exception,
unless it is in a branch delay slot, in which case the EPC register contains the
address of the preceding branch instruction and the BD bit of the Cause register is
set.

Servicing

The physical address at which the fault occurred can be computed from
information available in the CP0 registers.

• If the IBE code in the Cause register is set (indicating an instruction
fetch reference), the instruction that caused the exception is located at
the virtual address contained in the EPC register (or 4+ the contents of
the EPC register if the BD bit of the Cause register is set).

• If the DBE code is set (indicating a load or store reference), the
instruction that caused the exception is located at the virtual address
contained in the EPC register (or 4+ the contents of the EPC register if
the BD bit of the Cause register is set).

The virtual address of the load and store reference can then be obtained by
interpreting the instruction. The physical address can be obtained by using the
TLBP instruction and reading the EntryLo registers to compute the physical page
number. The process executing at the time of this exception is handed a UNIX
SIGBUS (bus error) signal, which is usually fatal.

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

CPU Exceptions 347

Integer Overflow Exception

Cause

An Integer Overflow exception occurs when an ADD, ADDI, SUB, DADD,
DADDI or DSUB instruction results in a 2’s complement overflow. This exception
is not maskable.

Processing

The common exception vector is used for this exception, and the OV code in the
Cause register is set.

The EPC register contains the address of the instruction that caused the exception
unless the instruction is in a branch delay slot, in which case the EPC register
contains the address of the preceding branch instruction and the BD bit of the
Cause register is set.

Servicing

The process executing at the time of the exception is handed a UNIX SIGFPE/
FPE_INTOVF_TRAP (floating-point exception/integer overflow) signal. This
error is usually fatal to the current process.

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 348 Chapter 17.

Trap Exception

Cause

The Trap exception occurs when a TGE, TGEU, TLT, TLTU, TEQ, TNE, TGEI,
TGEUI, TLTI, TLTUI, TEQI, or TNEI instruction results in a TRUE condition. This
exception is not maskable.

Processing

The common exception vector is used for this exception, and the Tr code in the
Cause register is set.

The EPC register contains the address of the instruction causing the exception
unless the instruction is in a branch delay slot, in which case the EPC register
contains the address of the preceding branch instruction and the BD bit of the
Cause register is set.

Servicing

The process executing at the time of a Trap exception is handed a UNIX SIGFPE/
FPE_INTOVF_TRAP (floating-point exception/integer overflow) signal. This
error is usually fatal.

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

CPU Exceptions 349

System Call Exception

Cause

A System Call exception occurs during an attempt to execute the SYSCALL
instruction. This exception is not maskable.

Processing

The common exception vector is used for this exception, and the Sys code in the
Cause register is set.

The EPC register contains the address of the SYSCALL instruction unless it is in a
branch delay slot, in which case the EPC register contains the address of the
preceding branch instruction.

If the SYSCALL instruction is in a branch delay slot, the BD bit of the Status
register is set; otherwise this bit is cleared.

Servicing

When the System Call exception occurs, control is transferred to the applicable
system routine. Additional distinctions can be made by analyzing the Code field
of the SYSCALL instruction (bits 25:6), and loading the contents of the instruction
whose address the EPC register contains.

To resume execution, the EPC register must be altered so that the SYSCALL
instruction does not re-execute; this is accomplished by adding a value of 4 to the
EPC register (EPC register + 4) before returning.

If a SYSCALL instruction is in a branch delay slot, a more complicated algorithm,
beyond the scope of this description, may be required.

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 350 Chapter 17.

Breakpoint Exception

Cause

A Breakpoint exception occurs when an attempt is made to execute the BREAK
instruction. This exception is not maskable.

Processing

The common exception vector is used for this exception, and the BP code in the
Cause register is set.

The EPC register contains the address of the BREAK instruction unless it is in a
branch delay slot, in which case the EPC register contains the address of the
preceding branch instruction.

If the BREAK instruction is in a branch delay slot, the BD bit of the Status register
is set, otherwise the bit is cleared.

Servicing

When the Breakpoint exception occurs, control is transferred to the applicable
system routine. Additional distinctions can be made by analyzing the Code field of
the BREAK instruction (bits 25:6), and loading the contents of the instruction
whose address the EPC register contains. A value of 4 must be added to the
contents of the EPC register (EPC register + 4) to locate the instruction if it resides
in a branch delay slot.

To resume execution, the EPC register must be altered so that the BREAK
instruction does not re-execute; this is accomplished by adding a value of 4 to the
EPC register (EPC register + 4) before returning.

If a BREAK instruction is in a branch delay slot, interpretation of the branch
instruction is required to resume execution.

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

CPU Exceptions 351

Reserved Instruction Exception

Cause

The Reserved Instruction exception occurs when one of the following conditions
occurs:

• an attempt is made to execute an instruction with an undefined major
opcode (bits 31:26)

• an attempt is made to execute a SPECIAL instruction with an
undefined minor opcode (bits 5:0)

• an attempt is made to execute a REGIMM instruction with an
undefined minor opcode (bits 20:16)

• an attempt is made to execute 64-bit operations in 32-bit mode when
in User or Supervisor modes

• an attempt is made to execute a COP1X when the MIPS IV ISA is not
enabled

64-bit operations are always valid in Kernel mode regardless of the value of the
KX bit in the Status register.

This exception is not maskable.

Processing

The common exception vector is used for this exception, and the RI code in the
Cause register is set.

The EPC register contains the address of the reserved instruction unless it is in a
branch delay slot, in which case the EPC register contains the address of the
preceding branch instruction.

Servicing

No instructions in the MIPS ISA are currently interpreted. The process executing
at the time of this exception is handed a UNIX SIGILL/ILL_RESOP_FAULT
(illegal instruction/reserved operand fault) signal. This error is usually fatal.

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 352 Chapter 17.

Coprocessor Unusable Exception

Cause

The Coprocessor Unusable exception occurs when an attempt is made to execute
a coprocessor instruction for either:

• a corresponding coprocessor unit (CP1 or CP2) that has not been
marked usable, or

• CP0 instructions, when the unit has not been marked usable and the
process executes in either User or Supervisor mode.

This exception is not maskable.

Processing

The common exception vector is used for this exception, and the CpU code in the
Cause register is set. The contents of the Coprocessor Usage Error field of the
coprocessor Control register indicate which of the four coprocessors was
referenced. The EPC register contains the address of the unusable coprocessor
instruction unless it is in a branch delay slot, in which case the EPC register
contains the address of the preceding branch instruction.

Servicing

The coprocessor unit to which an attempted reference was made is identified by
the Coprocessor Usage Error field, which results in one of the following situations:

• If the process is entitled access to the coprocessor, the coprocessor is
marked usable and the corresponding user state is restored to the
coprocessor.

• If the process is entitled access to the coprocessor, but the coprocessor
does not exist or has failed, interpretation of the coprocessor
instruction is possible.

• If the BD bit is set in the Cause register, the branch instruction must be
interpreted; then the coprocessor instruction can be emulated and
execution resumed with the EPC register advanced past the
coprocessor instruction.

• If the process is not entitled access to the coprocessor, the process
executing at the time is handed a UNIX SIGILL/ILL_PRIVIN_FAULT
(illegal instruction/privileged instruction fault) signal. This error is
usually fatal.

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

CPU Exceptions 353

Floating-Point Exception

Cause

The Floating-Point exception is used by the floating-point coprocessor. This
exception is not maskable.

Processing

The common exception vector is used for this exception, and the FPE code in the
Cause register is set.

The contents of the Floating-Point Control/Status register indicate the cause of this
exception.

Servicing

This exception is cleared by clearing the appropriate bit in the Floating-Point
Control/Status register.

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 354 Chapter 17.

Watch Exception

Cause

A Watch exception occurs when a load or store instruction references the physical
address specified in the WatchLo/WatchHi System Control Coprocessor (CP0)
registers. The WatchLo register specifies whether a load or store initiated this
exception.

A Watch exception violates the rules of a precise exception in the following way:
If the load or store reference which triggered the Watch exception has a cacheable
address and misses in the data cache, the line will then be read from memory into
the secondary cache if necessary, and refilled from the secondary cache into the
data cache. In all other cases, cache state is not affected by an instruction which
takes a Watch exception.

The CACHE instruction never causes a Watch exception.

The Watch exception is postponed if either the EXL or ERL bit is set in the Status
register. If either bit is set, the instruction referencing the WatchLo/WatchHi
address is executed and the exception is delayed until the delay condition is
cleared; that is, until ERL and EXL both are cleared (set to 0). The EPC contains the
address of the next unexecuted instruction.

A delayed Watch exception is cleared by system reset or by writing a value to the
WatchLo register.†

Watch is maskable by setting the EXL or ERL bits in the Status register.

Processing

The common exception vector is used for this exception, and the Watch code in the
Cause register is set.

Servicing

The Watch exception is a debugging aid; typically the exception handler transfers
control to a debugger, allowing the user to examine the situation.

To continue program execution, the Watch exception must be disabled to execute
the faulting instruction. The Watch exception must then be reenabled. The
faulting instruction can be executed either by interpretation or by setting
breakpoints.

† An MTC0 to the WatchLo register clears a delayed Watch exception.

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

CPU Exceptions 355

Interrupt Exception

Cause

The Interrupt exception occurs when one of the eight interrupt conditions is
asserted. The significance of these interrupts is dependent upon the specific
system implementation.

Each of the eight interrupts can be masked by clearing the corresponding bit in the
Interrupt-Mask (IM) field of the Status register, and all of the eight interrupts can
be masked at once by clearing the IE bit of the Status register.

Processing

The common exception vector is used for this exception, and the Int code in the
Cause register is set.

The IP field of the Cause register indicates current interrupt requests. It is possible
that more than one of the bits can be simultaneously set (or even no bits may be
set) if the interrupt is asserted and then deasserted before this register is read.

On Cold Reset, an R4400 processor can be configured with IP[7] either as a sixth
external interrupt, or as an internal interrupt set when the Count register equals
the Compare register. There is no such option on the R10000 processor; IP[7] is
always an internal interrupt that is set when one of the following occurs:

• the Count register is equal to the Compare register

• either one of the two performance counters overflows

Software needs to poll each source to determine the cause of the interrupt (which
could come from more than one source at a time). For instance, writing a value to
the Compare register clears the timer interrupt but it may not clear IP[7] if one of
the performance counters is simultaneously overflowing. Performance counter
interrupts can be disabled individually without affecting the timer interrupt, but
there is no way to disable the timer interrupt without disabling the performance
counter interrupt.

Servicing

If the interrupt is caused by one of the two software-generated exceptions
(described in Chapter 6, the section titled “Software Interrupts”), the interrupt
condition is cleared by setting the corresponding Cause register bit, IP[1:0], to 0.
Software interrupts are imprecise. Once the software interrupt is enabled,
program execution may continue for several instructions before the exception is
taken. Timer interrupts are cleared by writing to the Compare register. The
Performance Counter interrupt is cleared by writing a 0 to bit 31, the overflow bit,
of the counter.

Cold Reset and Soft Reset exceptions clear all the outstanding external interrupt
requests, IP[2] to IP[6].

If the interrupt is hardware-generated, the interrupt condition is cleared by
correcting the condition causing the interrupt pin to be asserted.

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 356 Chapter 17.

17.4 MIPSIV Instructions
The system must either be in Kernel or Supervisor mode, or have set the XX bit of
the Status register to a 1 in order to use the MIPS IV instruction set. In User mode,
if XX is a 0 and an attempt is made to execute MIPS IV instructions, an exception
will be taken. The type of exception that will be taken depends upon the type of
instruction whose execution was attempted; a list is given in Table 17-4. Note that
operating with MIPS IV instructions does not require that MIPS III instruction set
or 64-bit addressing is enabled.

MIPS IV instructions that use or modify the floating-point registers (CP1 state) are
also affected by the CU1 bit of the CP0 Status register. If CU1 is not set, a
Coprocessor Unusable exception may be signaled.

The Reserved Instruction (RI), Coprocessor Unusable (CU), and Unimplemented
Operation (UO) exceptions for MIPS IV instructions are listed in the Table 17-4
below.

Table 17-4 MIPS IV Instruction Exceptions

Exceptions Instructions CU1 MIPS4

RI CPU (undefined) - -

RI MOVN,Z - 0

RI
MOVT,F

- 0

CU 0 1

RI PREF - 0

CU COP1 (all instructions) 0 -

UO (undefined) 1 -

RI BC (cc>0) 1 0

UO C (cc>0) 1 0

UO MOVN,Z,T,F 1 0

UO RECIP, RSQRT 1 0

RI COP1X (all instructions) - 0

CU (all instructions) 0 1

RI (undefined) 1 1

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

CPU Exceptions 357

17.5 COP0 Instructions
Execution of an RFE instruction causes a Reserved Instruction exception in the
R10000 processor.

The execution of undefined COP0 functions is undefined in the R10000 processor.

17.6 COP1 Instructions
The R10000 and R4400 processors do not generate the same exceptions for
undefined COP1 instructions. In the R4400 processor, undefined opcodes or
formats in the sub field take an Unimplemented Operation exceptions. In the
R10000 processor, undefined opcodes (bits 25:24 are 0 or 1) take Reserved
Instruction exceptions and undefined formats (bits 25:24 are 2 or 3) take
Unimplemented Operation exceptions.

In MIPS II on an R4400 processor, the execution of DMTC1, DMFC1, and L format
take Unimplemented Operation exceptions. In MIPS II on the R10000 processor,
the execution of DMTC1 and DMFC1 take Reserved Instruction exceptions

The attempted execution of the L format takes an Unimplemented Operation
exception when the MIPS III mode is not enabled.

A CTC1 instruction that sets both Cause and Enable bits also forces an immediate
floating-point exception; the EPC register points to the offending CTC1
instruction.

17.7 COP2 Instructions
If the CU2 bit of the CP0 Status register is not set during an attempted execution
of such Coprocessor 2 instructions as COP2, LWC2, SWC2, LDC2, and SDC2, the
system takes a Coprocessor Unusable exception.

In the R4400 processor, if the CU2 bit is set, COP2 instructions are handled as
NOPs; the operations of Coprocessor 2 load/store instructions are undefined. In
the R10000 processor, an execution of a Coprocessor 2 instruction takes a Reserved
Instruction exception when CU2 bit is set.

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 358 Chapter 17.

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996359

18. Cache Test Mode

The R10000 processor provides a cache test mode that may be used during
manufacturing test and system debug to access the following internal RAM arrays:

• data cache data array

• data cache tag array

• instruction cache data array

• instruction cache tag array

• secondary cache way predication table

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 360 Chapter 18.

18.1 Interface Signals
Cache test mode is accessed by using a subset of the system interface signals. By
not requiring the use of any secondary cache interface signals, the internal RAM
arrays may be accessed for single-chip LGA as well as R10000/secondary cache
module configurations.

The following system interface signals are used during cache test mode:

• SysAD(57:0)

• SysVal*

Any input signals not listed above are ignored by the processor when it is
operating in cache test mode, and any output signals not listed above are
undefined during cache test mode.

18.2 System Interface Clock Divisor
Cache test mode is supported for all system interface clock speeds. However,
since cache test mode repeat rates and latencies are expressed in terms of PClk
cycles, the external agent must take care when operating at any system interface
clock divisor other than Divide-by-1.

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

Cache Test Mode 361

18.3 Entering Cache Test Mode
In order for the processor to enter cache test mode, the external agent must begin
a Power-on or Cold Reset sequence.

Rather than negating SysReset* at the end of the reset sequence, the external
agent loads the mode bits into the processor by driving the mode bits (with the
CTM signal asserted) on SysAD(63:0), waits at least two SysClk cycles, and then
asserts SysGnt* for at least one SysClk cycle.

After waiting at least another 100 ms, the external agent may issue the first cache
test mode command.

Figure 18-1 shows the cache test mode entry sequence.

Figure 18-1 Cache Test Mode Entry Sequence

SysAD(63:0)

SysVal*

Cycle

SysClk

Master

SysGnt*

SysReset*

Assert CTM mode bit First cache test mode command

EA EA EA EA EA EA EA EA EA EA EA EA EA EA EA EA EA

Modes

1 2 3 4 5 10 11 12 13 14 15 166 7 8 9 17

SysRespVal*

≥100ms ≥100ms

Cmd

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 362 Chapter 18.

18.4 Exit Sequence
To leave cache test mode, the external agent does the following:

• loads the mode bits into the processor by driving the mode bits (with
the CTM mode bit negated) on SysAD(63:0)

• waits at least two SysClk cycles

• asserts SysGnt* for at least one SysClk cycle

After at least one SysClk cycle, the external agent may negate SysReset* to end the
reset sequence.

Figure 18-2 shows the cache test mode exit sequence.

Figure 18-2 Cache Test Mode Exit Sequence

SysAD(63:0)

SysVal*

EA EA EA EA EA EA EA EA EA EA EA EA EA EA EA EA EA

Cycle

SysClk

Master

SysGnt*

Modes

SysReset*

Negate CTM mode bit

1 2 3 4 5 10 11 12 13 14 15 166 7 8 9 17

SysRespVal*

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

Cache Test Mode 363

18.5 SysAD(63:0) Encoding
Encoding of the SysAD(63:0) bus during cache test mode is shown in Table 18-1.
“Unused” fields are read as “undefined,” and must be written as zeroes.

Table 18-1 Cache Test Mode SysAD(63:0) Encoding

SysAD Bit
Data

Cache Data
Array

Data
Cache Tag

Array

Instruction
Cache Data

Array

Instruction
Cache Tag

Array

Secondary
Cache Way
Predication

Array

0

Data

Tag parity

Data

Tag parity MRU

1 SCWay Unused

Unused

2 State
parity

State
parity

3 LRU LRU

4
Unused Unused

5

6
State

State

7 Unused

31:8
Tag Tag

35:32 Data parity

36

Unused
StateMod

Data parity

Unused38:37
Unused

39 Unused

42:40
0 1 2 3 4

Array select

43 Write/Read select

44 Auto-increment select

45 Way

57:46 Address

63:58 Unused

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 364 Chapter 18.

18.6 Cache Test Mode Protocol
This section describes the cache test mode protocol in detail, including:

• normal write protocol

• auto-increment protocol

• normal read protocol

• auto-increment read protocol

Normal Write Protocol

A cache test mode normal write operation writes a selected RAM array. The write
address, way, array, and data are specified in the write command.

The external agent issues a normal write command by:

• driving the address on SysAD(57:46)

• driving the way on SysAD(45)

• negating the auto-increment select on SysAD(44)

• asserting the Write/Read select on SysAD(43)

• driving the array select on SysAD(42:40)

• driving the write data on SysAD(39:0)

• asserting SysVal* for one SysClk cycle

Normal writes have a repeat rate of 8 PClk cycles.

Figure 18-3 depicts two cache test mode normal writes.

Figure 18-3 Cache Test Mode Normal Write Protocol

Cycle

SysClk

SysVal*

Master

SysAD(63:0)

1 2 3 4 5 10 11 12 13 14 15 166 7 8 9 17

EA EA EA EA EA EA EA EA EA EA EAEAEAEA EA EAEA

NrmWr NrmWr

SysReset*

SysGnt*

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

Cache Test Mode 365

Auto-Increment Write Protocol

A cache test mode auto-increment write operation writes a selected RAM array.
The write address is obtained by incrementing the previous write address, and the
write way is obtained from the previous write way.

 If an overflow occurs when incrementing the previous write address, the address
wraps to 0, and the way is toggled.

The write data is identical to the previous write data.

For proper results, an auto-increment write must always be proceeded by a
normal or auto-increment write.

The external agent issues an auto-increment write command by:

• asserting the auto-increment select on SysAD(44)

• asserting the Write/Read select on SysAD(43)

• driving the array select on SysAD(42:40)

• asserting SysVal* for one SysClk cycle

Auto-increment writes have a repeat rate of one PClk cycle.

Figure 18-4 depicts three cache test mode auto-increment writes.

Figure 18-4 Cache Test Mode Auto-Increment Write Protocol

Cycle

SysClk

SysVal*

Master

SysAD(63:0)

1 2 3 4 5 10 11 12 13 14 15 166 7 8 9 17

EA EA EA EA EA EA EA EA EA EA EAEAEAEA EA EAEA

IncWr IncWr IncWr

SysReset*

SysGnt*

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 366 Chapter 18.

Normal Read Protocol

A cache test mode normal read operation reads a selected RAM array. The read
address, way, and array are specified by the read command.

The external agent issues a normal read command by:

• driving the address on SysAD(57:46)

• driving the way on SysAD(45)

• negating the auto-increment select on SysAD(44)

• negating the Write/Read select on SysAD(43)

• driving the array select on SysAD(42:40)

• asserting SysVal* for one SysClk cycle.

After a read latency of 15 PClk cycles, the processor provides the read response by:

• entering Master state

• driving the read data on SysAD(39:0)

• asserting SysVal* for one SysClk cycle.

In the following SysClk cycle, the processor reverts to Slave state.

Normal reads have a repeat rate of 17 PClk cycles.

Figure 18-5 depicts two cache test mode normal reads.

Figure 18-5 Cache Test Mode Normal Read Protocol

Cycle

SysClk

SysVal*

Master

SysAD(63:0)

1 2 3 4 5 10 11 12 13 14 15 166 7 8 9 17

EA EA EA - - - - - - P 0 ---EA - --

NrmRd NrmRdRdRsp

SysReset*

SysGnt*

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

Cache Test Mode 367

Auto-Increment Read Protocol

A cache test mode auto-increment read operation reads a selected RAM array.
The read address is obtained by incrementing the previous access address, and the
read way is obtained from the previous access way.

If an overflow occurs when incrementing the previous access address, the address
wraps to 0, and the way is toggled.

The external agent issues an auto-increment read command by:

• asserting the auto-increment select on SysAD(44)

• negating the Write/Read select on SysAD(43)

• driving the array select on SysAD(42:40)

• asserting SysVal* for one SysClk cycle.

After a read latency of 15 PClk cycles, the processor provides the read response
by:

• entering Master state

• driving the read data on SysAD(39:0)

• asserting SysVal* for one SysClk cycle.

In the following SysClk cycle, the processor reverts to Slave state.

Auto-increment reads have a repeat rate of 17 PClk cycles.

Figure 18-6 depicts two cache test mode auto-increment reads.

Figure 18-6 Cache Test Mode Auto-Increment Read Protocol

Cycle

SysClk

SysVal*

Master

SysAD(63:0)

1 2 3 4 5 10 11 12 13 14 15 166 7 8 9 17

EA EA EA - - - - - - P 0 ---EA - --

IncRd IncRdRdRsp

SysReset*

SysGnt*

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

 368 Chapter 18.

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996 A-369

A. Glossary

The following terms are defined in this Glossary:

• superscalar processor

• pipeline

• pipeline latency

• pipeline repeat rate

• out-of-order execution

• dynamic scheduling

• instruction fetch, decode, issue, execution, completion, and graduation

• active list

• free list and busy registers

• register renaming and unnaming

• nonblocking loads and stores

• speculative branching

• logical and physical registers

• register files

• ANDES architecture

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

A- 370 Appendix A.

A.1 Superscalar Processor
A superscalar processor is one that can fetch, execute and complete more than one
instruction in parallel. By implication, a superscalar processor has more than one
pipeline (see below).

A.2 Pipeline
In the processor pipeline, the execution of each instruction is divided into a
sequence of simpler suboperations. Each suboperation is performed by a separate
hardware section called a stage, and each stage passes its result to a succeeding
stage.

Normally, each instruction only remains in each stage for a single cycle, and each
stage begins executing a new instruction as previous instructions are being
completed in later stages. Thus, a new instruction can often begin during every
cycle.

Pipelines greatly improve the rate at which instructions can be executed, as long
as there are no dependencies. The efficient use of a pipeline requires that several
instructions be executed in parallel, however the result of any instruction is not
available for several cycles after that instruction has entered the pipeline. Thus,
new instructions must not depend on the results of instructions which are still in
the pipeline.

A.3 Pipeline Latency
The latency of an execution pipeline is the number of cycles between the time an
instruction is issued and the time a dependent instruction (which uses its result as
an operand) can be issued.

In the R10000 processor, most integer instructions have a single-cycle latency, load
instructions have a 2-cycle latency for cache hits, and floating-point addition and
multiplication have a 2-cycle latency. Integer multiply, floating-point square-root,
and all divide instructions are computed iteratively and have longer latencies.

A.4 Pipeline Repeat Rate
The repeat rate of the pipeline is the number of cycles that occur between the
issuance of one instruction and the issuance of the next instruction to the same
execution unit. In the R10000 processor, the main five pipelines all have repeat
rates of one cycle, but the iterative units have longer repeat delays.

A.5 Out-of-Order Execution
The “program order” of instructions is the sequence in which they are fetched and
decoded. In the R10000 processor, instructions may be issued, executed, and
completed out of program order. They are always graduated in program order.

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

A-371

A.6 Dynamic Scheduling
The R10000 processor can issue instructions to functional units out of program
order; this capability is known as dynamic scheduling or dynamic issuing.

The R10000 processor can dynamically issue an instruction as soon as all its
operands are available and the required execution unit is not busy. Thus, an
instruction is not delayed by a stalled previous instruction unless it needs the
results of that previous instruction.

A.7 Instruction Fetch, Decode, Issue, Execution, Completion, and Graduation
In general, instructions are fetched, decoded, and graduated in their original program
order, but may be issued, executed, and completed out of program order, as shown
in Figure A-1.

• Instruction fetching is the process of reading instructions from the
instruction cache.

• Instruction decode includes register renaming and initial dependency
checks. For branch instructions, the branch path is predicted and the
target address is computed.

• An instruction is issued when it is handed over to a functional unit for
execution.

• An instruction is complete when its result has been computed and
stored in a temporary physical register.

• An instruction graduates when this temporary result is committed as
the new state of the processor. An instruction can graduate only after
it and all previous instructions have been successfully completed.

Figure A-1 Dynamic Scheduling

A.8 Active List
The R10000 processor’s active list is a program-order list of decoded instructions.
For each instruction, the active list indicates the physical register which contained
the previous value of the destination register (if any). If this instruction graduates,
that previous value is discarded and the physical register is returned to the free
list. The active list records status, such as those instructions that have completed,
or those instructions that have detected exceptions. Instructions are appended to
the bottom of the list as they are decoded and instructions are removed from the
top as they graduate.

In order

Fetch Decode

Issue Execute Complete

Graduate

Out of order

Time

In order

Instruction

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

A- 372 Appendix A.

A.9 Free List and Busy Registers
A busy-bit table indicates whether or not a result has been written into each of the
physical registers. Each register is initially defined to be busy when it is moved
from the free list to the active list; the register becomes available (“not busy”)
when its instruction completes and its result is stored in the register file.

The busy-bit table is read for each operand while an instruction is decoded, and
these bits are written into the queue with the instruction. If an operand is busy, the
instruction must wait in the queue until the operand is “not busy.” The queues
determine when an operand is ready by comparing the register number of the
result coming out of each execution unit with the register number of each operand
of the instructions waiting in the queue.

With a few exceptions, the integer and address queues have integer operand
registers, and the floating-point queue has floating-point operand registers.

A.10 Register Renaming
As it executes instructions, the processor generates a myriad of temporary register
results. These temporary values are stored in register files together with permanent
values. The temporary values become new permanent values when their
corresponding instructions graduate.

Register renaming is used to resolve data dependencies during the dynamic
execution of instructions.

To ensure each instruction is given correct operand values, the logical register
numbers (names) used in the instruction are mapped to physical registers. Each
time a new value is put in a logical register, it is assigned to a new physical register.
Thus, each physical register has only a single value. Dependencies are determined
using these physical register numbers.

An example of register renaming is shown below. The following Doubleword
Shift Left Logical instruction,

has one register operand (r2) plus a 5-bit shift count of value two stored in the sa
field; the value in r2 is shifted left by two and this value is stored in r3.

The physical execution of the instruction above, with register renaming, is given
below:

Physical execution Rename operation

p3←p2 shift left 2 r3 = p3

When the DSLL instruction is executed, the logical destination register r3 is
assigned a new physical register, p3, from the free list.

DSLL r3,r2,2

opcode rs rt dest sa function

spec - r2 r3 2 DSLL

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

A-373

Register renaming also allows exceptions to be handled in a precise manner. Out-
of-order execution means that an instruction can change its result register even
before all prior instructions have been completed. However, if any of the prior
instructions cause an exception, the original register value must be restored.
Since each new register value is loaded into a new physical register (physical
register values are not overwritten until the physical register is placed in the free
list), previous values remain unchanged in the original physical registers and
these previous values can be restored.†

An instruction can be aborted up until the time it graduates, and all register and
memory values can be restored to a precise state following any exception. This
state is restored by unnaming the temporary physical registers assigned to
subsequent instructions.

Registers are unnamed by writing the old destination register into the mapping
table and returning the new destination register to the free list. Unnaming is done
in reverse program order, in case a logical register was used more than once. After
renaming, the register files contain only the permanent values which were created
by instructions prior to the exception.

Once an instruction has graduated, all previous values are lost.

A.11 Nonblocking Loads and Stores
Loads and stores are nonblocking; that is, cache misses do not stall the processor.
All other parts of the processor may continue to work on non-dependent
instructions while as many as four cache misses are being processed.

† This same technique is used to reverse mispredicted speculative branches.

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

A- 374 Appendix A.

A.12 Speculative Branching
Normally, about one of every six instructions is a branch. Since four instructions
are fetched each cycle, the R10000 processor encounters, on average, a branch
instruction every other cycle, as shown in Figure A-2.

Figure A-2 Speculative Branching

When a branch instruction was encountered in previous processors, the
instruction fetch and instruction issue halted until it was determined whether or
not to take the branch. For instance, a branch delay slot was designed into the
MIPS architecture to handle the intrinsic delay of a branch and to keep the pipeline
filled.

Since the processor fetches up to four instructions each clock cycle, there is not
enough time to resolve branches without stalling the fetch/decode circuitry. The
processor therefore predicts the outcome of every branch and speculatively
executes the branch based on this branch prediction.

The branch prediction circuit consists of a 512-entry RAM, using a 2-bit prediction
scheme: two bits are assigned to a branch instruction, and indicate whether or not
the branch was taken the last time it occurred. The four possible prediction states
are: strongly taken, weakly taken, weakly not taken, strongly not taken. If the
branch was taken the last two times, there is a good probability it will be taken this
time too — or the inverse.†

The R10000 processor can speculate up to four branches deep. Shadow copies of
the mapping tables are kept every time a prediction is made, allowing the R10000
processor to recover from a mispredicted branch in a single cycle.

† Simulations have shown the R10000 branch prediction algorithm to be over 90%
accurate.

I1

Cycle 0

On average, one of outI2

I3

I4

I5

I6

I7

I8

Cycle 1

every six instructions
is a Branch

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

A-375

A.13 Logical and Physical Registers
Register renaming (described above) distinguishes between logical registers,
which are referenced within instruction fields, and physical registers, which are
actually located in the hardware register file. The programmer is only aware of
logical registers; the implementation of physical registers is entirely transparent.

Logical register numbers are dynamically mapped onto physical register
numbers. This mapping uses mapping tables which are updated after each
instruction is decoded; each new result is written into a new physical register.
This value is temporary and the previous contents of each logical register can be
restored if its instruction must be aborted following an exception or a
mispredicted branch.

Register renaming simplifies dependency checks. Logical register numbers can be
ambiguous when instructions are executed out of order, since a succession of
different values may be assigned to the same register. But physical register
numbers uniquely identify each result, making dependency checking
unambiguous.

The queues and execution units use physical register numbers. Integer and
floating-point registers are implemented with separate renaming hardware and
multi-port register files.

A.14 Register Files
The R10000 processor has two 64-bit-wide register files to store integer and
floating-point values. Each file contains 64 registers. The integer register file has
seven read and three write ports; the floating-point register file has five read and
three write ports.

The integer and floating-point pipelines each use two dedicated operand ports
and one dedicated result port in the appropriate register file. The Load/Store unit
uses two dedicated integer operand ports for address calculation. It must also
load or store either integer or floating-point values, sharing a result port and a
read port in both register files.

These shared ports are also used to move data between the integer and floating-
point register files, to store branch and link return addresses, and to read the
target address for branch register instructions.

A.15 ANDES Architecture
The R10000 processor uses the MIPS ANDES architecture, or Architecture with
Non-sequential Dynamic Execution Scheduling.

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

A- 376 Appendix A.

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

Index I-1

Numerics

16-word, cache refill
read sequence 71
write sequence 76

32-bit
address space 317
mode, TLB entry format 329

32-word, cache refill
read sequence 71
write sequence 76

4-word, cache refill
read sequence 69
write sequence 74

599CLGA, see CLGA

64-bit
address space 317
mode, TLB entry format 329

8-word, cache refill
read sequence 70
write sequence 75

A

AC electrical specifications 215
asynchronous inputs 216
delay time 216
hold time 216
maximum operating conditions 215
setup time 216
test specification 215
timing

secondary cache 215
System interface 215

access privileges, address space 326
ACK completion response 130
ACK, signal 90
active list, definition of 371
add unit, FPU 301

address
encodings, mode 317
Kernel mode 322
mapping

Kernel mode 322
Supervisor mode 320
User mode 318

mode 317
page 328
physical 187
queue 6, 12

instruction graduation 12
issue ports 12
number of entries 12
number of instructions written per cycle 12
organized as FIFO 12
sequencing 12

space
access privileges 326
kernel 317
supervisor 317
user 317
virtual 317

Supervisor mode 320
translation 330
User mode 318
virtual 187

Address Error exception 340
Address Space Identifier, see also ASID 330
address/data bus signals 41
AdEL, indication 340
AdES, indication 340
algorithms

cache, five types of 53, 57
aliasing, virtual 67
allocate request number requests, external 134
ALU (arithmetic logic unit)

No. 1 18
No. 2 18

Index

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

I- 2 Index

ALU1 9, 11
ALU2 9, 11
ANDES, Architecture with Non-sequential Dynamic

Execution Scheduling 4, 375
arbitration protocol, System interface 108
arbitration rules, System interface 109
arbitration signals 41
arbitration, cluster bus 82
Architecture with Non-sequential Dynamic Execution

Scheduling, see also ANDES 375
arithmetic instructions, FPU 310
arithmetic logic unit, see also ALU 18
array 62
array, page table entry (PTE) 241
ASID (Address Space Identifier)

context switch 330
relationship to Global (G) bit in TLB entry 330

ASID (Address Space Indentifier)
stored in EntryHi register 330

ASID, field 245
asynchronous inputs, AC electrical specification 216
auto-increment read, cache test mode 367
auto-increment write, cache test mode 365

B

Bad Virtual Address register (BadVAddr) 244
BadVAddr register 241, 259, 340
BadVPN2, field 241, 259
BD, (branch delay) bit 252, 254
BE, (memory endianness) bit 256
BEV, (boot exception vector) bit 250
BEV, bit 171, 332
block

instruction cache 9
primary data cache 9
secondary cache 10
size

primary data cache 48
primary instruction cache 46
secondary cache 51

block data transfers 94
external block data responses 94
processor block write requests 94
processor coherency data responses 94

boundary scan register, JTAG 206
BPIdx, field 262
BPMode, field 261
BPOp, field 262
BPState, field 262
branch

determining next address 17
instruction, limits on execution 17
prediction 14, 31, 374
prediction rates, improving 21
speculative 374
unit 10, 17

Branch on Coprocessor 0 instructions 285
BRCH, field 261
BRCV, field 261
BRCW, field 261
Breakpoint exception 350
BSIdx, field 261
buffer

cached request 89
cluster request 89
incoming 89, 90
outgoing 89, 91
uncached 89, 92

bus
SysAD 102
SysCmd 95
SysResp 105
SysState 104

Bus Error exception 346
busy-bit table 372
bypass register, JTAG 205

C

C, (coherency attribute) bit 239
cache 4

algorithms 53
and processor requests 57
cacheable coherent exclusive on write, description

of 54
cacheable coherent exclusive, description of 54
cacheable noncoherent, description of 54
fields, encoding of 53
for kseg0 address space 53
for mapped address space 53
for xkphys address space 53

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

Index I-3

uncached accelerated, description of 55
uncached, description of 54
where specified 53

associativity 45
block ownership 58
misses 25
nonblocking 23, 25
ordering constraints 15
pages 328
primary 4
primary data 9

block size 48
changing states 49
description of 48
diagram, state 50
error handling 175
index and tag 49
interleaving 32
refill 31
state diagram 50
states 49
subset of secondary cache 49
write back protocol 48

primary instruction 9
block size 46
description of 46
diagram, state 47
error handling 174
error protection 174
index and tag 46
refill 31
state diagram 47
states 46

rules, ownership of a cache block 58
secondary 4

associativity 10, 51
block size 51
block state 67
blocks 10
changing states 52
clock domain 157
data array 60
data array width 62
description of 51
diagram, state 52
ECC 10
error handling 176
index and tag 51

indexing 62
indexing the data array 62
indexing the tag array 63
interface frequencies 61
sizes 10
specifying block size 60
specifying cache size 60
state diagram 52
states 51
tag 66
tag and data array ECC 60
tag array 60
way prediction 64
way prediction table 63
write back protocol 51

strong ordering
example of 16

structure, two-level 45
Cache Barrier CACHE instruction 198
Cache Error exception 171, 345

precision 171
prioritization 171

Cache Error handler 171
CACHE instruction

support for I/O 152
CACHE instructions 172, 187, 188, 287

and a hit in the cache 189
and Address Error exception 189
and CE bit 190
and CH bit 190
and CP0 188
and invalidation 190
and TLB Invalid exception 189
and TLB Refill exception 189
and Watch exception 189
and write back 189
Cache Barrier 198
effect on the uncached buffer 92
Hit Writeback Invalidate 199
Index Hit Invalidate 197
Index Invalidate 192
Index Load Data 201
Index Load Tag 194, 195, 197, 198, 199, 201, 202
Index Store Data 202
Index Store Tag 195
Index Writeback Invalidate 192
op field encoding 191
serial operations 190

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

I- 4 Index

unsupported instructions 190
using the physical address 188
using the virtual address 188

cache miss stalls 25
Cache Operation, see also CACHE instructions 285
cache test mode

entry 361
exit 362

cacheable coherent exclusive on write, cache algorithm 53,
54

cacheable coherent exclusive, cache algorithm 53, 54
cacheable noncoherent, cache algorithm 53, 54
cached request buffer 89
CacheErr register 171, 172, 174, 175, 274
CacheOp, see also CACHE instructions 187, 287
capacitors, decoupling 218
cause bits, FPU 310
Cause register 105, 106, 244, 252, 254
Cause, field (FP) 310
CE, bit 190, 249, 250, 252
CH, bit 190, 250, 285
chip revisions, R10000 255
ckseg0 space 326
ckseg1 space 326
ckseg3 space 326
cksseg space 326
CLGA (ceramic land grid array) 220

electrical characteristics 221
layout 220
mechanical characteristics 220
package 220
pinout 224
thermal characteristics 222

clock
domain

in secondary cache 157
internal processor clock domain 155
secondary cache clock domain 155
System interface clock domain 155

signal
PClk 156
SCClk 157
SysClk 155
SysClkRET 156

signals, overview of 41

clock divisor, system interface 80, 360
cluster bus 36, 82

operation 148
cluster coordinator 81, 82
cluster request buffer 89
coherency conflicts 143
coherency protocol, directory-based 153
coherency request, external 138, 140
coherency schemes 36
coherency, System interface

external intervention exclusive request 141
external intervention shared request 141
external invalidate request 141

CohPrcReqTar, mode bit 102, 149, 152, 164
cold reset 159

sequence 162
Cold Reset exception 332
Compare register 106, 244
completing, an instruction 371
completion, definition of 373
condition bit dependencies 14
Condition, field (FP) 310
conditional move instruction (FP) 313
Config register 256
conflicts

coherency 143
internal 143

TLB, avoiding 330
Context register 241, 259
context switch 330
control registers, FPU 308
controller, TAP 204
coordinator, cluster 81
COP1 instructions 357
COP2 instructions 357
Coprocessor 0, see also CP0 235
Coprocessor 1 see also CP1, COP1 251
Coprocessor 2 see also CP2, COP2 251
Coprocessor 3 see also CP3, COP3 251
Coprocessor Unusable exception 352
correctable error 168
Count register 106, 244
CP0 (coprocessor 0) 235

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

Index I-5

branch on CP0 instructions 285
hazards 285
instructions 285, 357
load hazards 285
move instructions 286
registers, list of 236

csseg space 321
CT, bit 256
CTM, mode bit 166, 361, 362
CU, (coprocessor usability) field 246, 248, 251
CVT.L.fmt instruction 312

D

D, (dirty) bit 239
data cache

see also cache, primary data 48
data dependencies 20
data path, secondary cache 10
data quality indication 92
DBRC, field 261
DC characteristics of I/O signals 214
DC electrical specifications 210

input and output 214
input level sensing 212
maximum operating conditions 211
mode definitions 212
power supply levels 210
unused inputs 213
Vref, voltage reference 212

DC power supply levels 210
DC voltage, reference 212
DC, (data cache size) field 256
DCOk, signal 38, 160, 211, 212, 217
DE, bit 172, 250
debugging, and Watch registers 258
decoding, an instruction 371
decoupling capacitance 218
delay times, AC electrical 216
dependencies

condition bit 14
exception 15
instruction 13
memory 14
pipeline 13
register 14, 375

DevNum, mode bits 164
Diagnostic register 261
directory-based coherency protocol 153
divide unit, FPU 301
division by zero, FP 310
divisor, clock, system interface 80, 360
DMFC0, instruction 286, 290
DMTC0, instruction 286, 291
DN, (device number) field 256
Done, bit 11
done, see also completion 373
Doubleword Move From CP0, instruction 285
Doubleword Move To CP0, instruction 285
DP, (primary data cache parity) field 273
DS, (diagnostic status) field 247, 248, 249
duplicate tags, external 34
dynamic issue 13, 371
dynamic scheduling 371

E

EC, field 256
ECC (error correcting code)

matrix for secondary cache data array 177
matrix for secondary cache tag array 179
matrix for System interface 183
register 273
secondary cache 10

ECC register 69, 74
ECC, field 273
efficiency, program, suggestions for increasing 21
electrical specifications

AC 215
DC 210

Enable, field (FP) 310
enable/output delay 216
EntryHi register 245, 329

ASID field in 330
EntryLo registers, and FrameMask register 260
EntryLo0 register 239, 329
EntryLo1 register 239, 329
EPC register 254
ERET, instruction 292
ERL, (error level) bit 171, 249, 316

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

I- 6 Index

ERR completion response 130
ERR, signal 90
error

correctable 168
handling 167

protocol 185
levels, in the Status register 316
protection 167

schemes used in R10000 173
protection schemes, used in R10000

ECC 173
parity 173
sparse encoding 173

uncorrectable 169
handling an 171
limiting the propagation of 170

units that detect and report uncorrectable errors 171
error correcting code see also ECC 173
Error Exception Program Counter (ErrorEPC) register 284
Event, field 265
EW, bit in CacheErr register 172
ExcCode, field 252, 253
exception levels, in the Status register 316
exception processing, CPU

exception types
Address Error 340
Breakpoint 350
Bus Error 346
Cache Error 171, 345
Coprocessor Unusable 352
Floating-Point 353
Integer Overflow 347
Interrupt 355
NMI 339
Reserved Instruction 351
Soft Reset 337
System Call 349
TLB 341
TLB Invalid 341, 343
TLB Modified 341, 344
TLB Refill 341, 342
Trap 348
Virtual Coherency 345
Watch 354

exception vector location
Reset 332
TLB Refill 332

exception vector selection 333
precise handling 15
priority of 333, 335
TLB refill vector locations 334

Exception Program Counter (EPC) register 254
Exception Return, instruction 285
executing, an instruction 371
execution order 13
execution pipelines 6
execution units, iterative 375
execution, speculative 20, 374
EXL, (exception level) bit 249, 254, 316, 332
external ACK completion response 90, 130
external agent 34, 35, 79

also referred to as cluster coordinator 81
connecting to 81

external allocate request number request protocol 134
external block data response 94, 128

protocol 127
external coherency conflicts 144
external coherency request latency 146
external coherency requests, action taken 142
external completion response 131

protocol 130
external double/single/partial-word data response protocol

129
external duplicate tags, support for 152
external interface 10

memory accesses 32
priority operations 32

external interrupt request 105
protocol 136

external intervention exclusive request 141
external intervention request 133

protocol 133
external intervention shared request 141
external invalidate request 141

protocol 135
external NACK completion response 130
external request 80, 87

protocol 132
external response 80, 87

protocol 127

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

Index I-7

F

fetch pipeline 6, 17
fetching, an instruction 371
FGR (Floating-Point General register)

32-bit operations 304
5-bit select 303
64-bit operations 304
load operations 305
operations 304
Status register FR bit 304
store operations 305

Fill, field 245
flag

uncorrectable error 90
Flag, field (FP) 310
floating-point

adder 18
adder pipeline 6
divide 18, 302
multiplier 18
pipeline 7
queue 6, 11

instructions written each cycle 11
number of allowable entries 11
ports 11
sequencing 11

registers 303
rounding mode 311
square root 18

Floating-Point exception 353
Floating-Point Status register see also FSR 309
Floating-Point Unit, see also FPU 301
flow control 93

external data response 93
external request 93
processor coherency data response 93
processor eliminate request 93
processor read request 93
processor upgrade request 93
processor write request 93
signals 41

format, TLB entry 329
FPU 301

Active List, control of FSR 309
add unit 301
arithmetic instructions 310

cause bits, FSR 310
changing rounding mode using a CTC1 311
compare 310
condition bits 310
control registers 308
divide unit 301
FGRs (general registers) 303
FSR, (Status register in FPU) 309
graduation, control of FSR 309
instructions, processor specific 312
latency 301
logic diagram 302
move to floating-point 307
multiply unit 301
operations 302
queue

controlling units 303
move unit, FPU 302

read ports 302
register file 302
repeat rate 301
rounding modes 311
serial dependency circuit 307
square-root unit 301

FR, field 248
FrameMask register 240, 260
free list 372
freeing the request number, with completion response 130
FSR (Floating-Point Status register)

cause bits 310
condition bits 310
division by zero 310
enable bits 310
flag bits 310
inexact result 310
invalid operation 310
load exceptions 311
loading the FSR 311
overflow 310
RM, round to minus infinity 311
RN, round to nearest representable value 311
RP, round to plus infinity 311
RZ, round toward zero 311
underflow 310
unimplemented operation 310

functional unit 9
branch 10

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

I- 8 Index

floating-point adder 9
floating-point multiplier 9
instruction decode and rename 10
integer ALU 9
iterative 9
Load/Store Unit 9

G

G, (Global) bit in TLB 240, 330
gathering data, in identical mode 92
gathering data, in sequential mode 92
global processes (G bit in TLB) 330
graduation

definition of 373
of an instruction 371

Grant parking 108

H

hardware emulation, support for 154
hardware interrupts 105
hazards, CP0 285
Hit Writeback Invalidate CACHE instruction 199
hold times, AC electrical 216

I

I/O signals, DC characteristics 214
I/O, support for 152
IC, (instruction cache size) field 256
IE, (interrupt enable) bit 249
IE, bit 265
IM, (interrupt mask) field 247
implementation number, R10000 processor 255
incoming buffer 89, 90
Index Hit Invalidate CACHE instruction 197
Index Invalidate CACHE instruction 192
Index Load Data CACHE instruction 201
Index Load Tag CACHE instruction 194, 195, 197, 198,

199, 201, 202
Index Load Tag instruction 72
Index register 237
Index Store Data CACHE instruction 74, 202
Index Store Tag CACHE instruction 77, 195
Index Writeback Invalidate CACHE instruction 192
indexing, the secondary cache 62

inexact result (FP) 310
initialization 159
input voltage levels, maximum 217
instruction

CACHE, see also CACHE instructions 172, 187, 285,
287

CacheOp, see also CACHE instructions 287
completion 20, 371
COP0 see also CP0 357
COP1 357
COP2 357
decoding 371
dependencies 13
DMFC0 285, 290
DMFC1 310
DMTC0 285, 291
ERET 285, 292
execution 371
fetching 371
FPU, processor specific 312

CFC1 313
CTC1 313
CVT.L.fmt 312
for valid FP control registers 313
moves and conditional moves 313

graduation 371
issue 20, 371

superscalar 20
latencies 29
load linked 27
MFC0 285, 293
MFC1 307, 310
MFPC 295
MFPS 295
MTC0 285, 296
MTPC 295
MTPS 295
prefetch 25
processor-specific 26
queue 11, 17
repeat rates 29
serializing 23, 190
store conditional 27
SWC1 307
SYNC 28, 56, 148
TLBP 285, 297
TLBR 285, 298
TLBWI 285, 299

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

Index I-9

TLBWR 285, 300
unsupported CACHE 190

instruction cache, block size see also cache, primary
instruction 46

instruction register, JTAG 205
integer

queue 11
branch instructions 11
divide instructions 11
multiply instructions 11
ports 11
shift instructions 11

integer ALU pipeline 6
Integer Overflow exception 347
integer queue 6
interface, external 10
internal coherency conflicts 143
internal processor clock domain 156
Interrupt exception 355
interrupt mask, bit 244
Interrupt register 105
interrupt request, external 105
interrupts 105

hardware 105
nonmaskable 106
software 106
timer 106

invalid operation, FP 310
invalidate request, external 135
invalidation, and CACHE instructions 190
IP, (interrupt pending) bit 252, 273
ISA (Instruction Set Architecture)

MIPS I 2
MIPS II 2
MIPS III 2
MIPS IV 2, 303

issue, dynamic 371
issuing, an instruction 371
iterative execution units 375
ITLB (instruction TLB) 330
ITLBM, field 261

J

JTAG

boundary scan register 206
bypass register 205
Capture-DR state 206
instruction register 205
interface 203

instruction register 205
JTCK signal 204
JTDI signal 204
JTDO signal 204
JTMS signal 204
Tap controller 204
test access port 204

Shift-DR state 205, 206
signals 43
Update-DR state 206
Update-IR state 205

JTCK, signal 43, 204, 213
JTDI, signal 43, 204, 205, 213
JTDO, signal 43, 204, 205
JTLB (joint TLB) 330
JTMS, signal 43, 204, 213

K

K0, field 256
Kernel mode 316

address mapping 322
ckseg0 space 326
ckseg1 space 326
ckseg3 space 326
cksseg space 326
kseg0 space 323
kseg1 space 323
kseg3 space 323
ksseg space 323
kuseg space 323
operations 322
xkphys space 324
xkseg space 326
xksseg space 324
xkuseg space 324

kseg0 space 323
Kseg0CA, mode bits 164
kseg1 space 323
kseg3 space 323
ksseg space 323
KSU, field 247, 249, 332

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

I- 10 Index

kuseg space 323
KX, bit 248, 316

L

latency 29
accessing secondary cache 31
definition of 370
external coherency request 146
FPU 301

least-recently used replacement algorithm (LRU) 9
level sensing, input 212
list, free 372
LL instruction 27
LLAddr register 257
load hazards, CP0 285
load linked 27
load operations, FPU registers 305
Load/Store Unit pipeline 6
loads

nonblocking 373
logic diagram, FPU 302
logical register

initialization (necessity for) 160
logical register, see also physical register 375
LRU (least-recently used) replacement algorithm 9

M

mapped, virtual address region 317
mapping table 375
Mask, field 242
master state 81

and flow control 93
matches, multiple, in TLB 330
MemEnd, mode bits 165
memory dependencies 14
memory ordering 15
memory protection 328
MFC0, instruction 286, 293
MIPS III ISA, disabled and enabled 240
MIPS IV, instruction set see also ISA 356
miscellaneous system signals 42
mispredicted branch 31
mode

addressing 317
addressing, encodings 317

Kernel mode 317
Supervisor mode 317
User mode 317

operating 316
mode bits 164

CohPrcReqTar 102, 149, 152, 164
CTM 166, 361, 362
DevNum 164
Kseg0CA 164
MemEnd 165
ODrainSys 166, 212
PrcElmReq 123, 153, 164, 198
PrcReqMax 93, 113, 115, 121, 125, 164
SCBlkSize 51, 60, 92, 165
SCClkDiv 61, 156, 160, 165
SCClkTap 157, 166
SCCorEn 165, 177, 179
SCSize 51, 60, 165
SysClkDiv 80, 156, 160, 165

mode definitions, DC 212
Move from CP0, instruction 285
Move from performance counter, instruction 295
Move from performance event specifier, instruction 295
move instruction (FP) 313
Move to CP0, instruction 285
Move to performance counter, instruction 295
Move to performance event specifier, instruction 295
Move To/From the Performance Counter, instructions 294
MP, field 261
MTC0, instruction 69, 286, 296
multiple matches, in TLB 330
multiplier pipeline 6
multiply unit, FPU 301
multiprocessor system 35

arbitration 111
cluster bus 35
with external agent 35

multiprocessor system, using dedicated external agents 84
multiprocessor system, using the cluster bus 85

N

NACK completion response 130
NACK, signal 90

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

Index I-11

NMI see also nonmaskable interrupt 284
NMI, bit 249, 250
nonblocking cache 25
nonblocking, loads and stores 373
Nonmaskable Interrupt (NMI) exception 106, 332, 339
normal read, cache test mode 366
normal write, cache test mode 364
NT compatibility, LLAddr register 257
number, request 87

O

ODrainSys, mode bit 166, 212
offset, in page address 328
op field encoding of CACHE instructions 191
operating conditions, AC 215
operating mode

Kernel 316, 322
Supervisor 316, 320
User 316, 318

operations, FPU 302
ordering, memory 15
ordering, strong 15
out of program order, execution 370
outgoing buffer 89, 91, 92
outstanding requests 87
overflow (FP) 310

P

package configuration 219
package, see CLGA

PAddr0, field 258
PAddr1, field 258
page

address 328
offset 328
size

code 328
defined 328

virtual 328
page table entry (PTE) array 241
PageMask register 242, 328, 329
parity protection 173
PClk, signal 61, 80, 366, 367

PE, bit 256
performance

branch prediction 31
cache 31
R10000 28, 31

Performance Counter interrupt 244
Performance Counter register 264
permanent register 372
PFN

bits 240
fields, in EntryLo registers 240

phase-locked loop 158
physical address 187, 188
physical memory addresses 328
physical page frame number 239
physical register, see also logical register 375
PIdx, primary cache index 67
pipeline 17

definition of 370
fetch 6, 17
floating-point 7
floating-point multiplier 6
integer ALU 6
latency 370
Load/Store Unit 6
out of order execution 370
repeat rate 370
sequence 370
stage (definition) 370
stage 1 17, 18
stage 2 17
stages 4-6 18
stalls 13

PLL 158
PLLDis, signal 43, 213
PLLRC, capacitor 221
PLLSpare, signals 213
PM, field 256
power interface signals, see also individual signals 38
power supply

levels, DC 210
regulation 217

power-on reset 159
sequence 160

PrcElmReq, mode bit 123, 153, 164, 198

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

I- 12 Index

PrcReqMax, mode bits 93, 113, 115, 121, 125, 164
precise exceptions 15
prediction, branch 374
prediction, secondary cache, way 63
prefetch instruction 25
primary data cache, see also cache, primary data 9
primary instruction cache, see also cache, primary instruction

9
Probe TLB for Matching Entry, instruction 285
processor block read request protocol 113
processor block write request 94

protocol 117
processor coherency data response 94

protocol 139
processor coherency state response protocol 138
processor double/single/partial-word read request protocol

115
processor double/single/partial-word write request protocol

119
processor eliminate request protocol 123
processor request 80, 86

flow control protocol 125
protocol 112

processor response 80, 87
protocols 137

Processor Revision Identifier (PRId) register 255
processor upgrade request 131

protocol 121
processor-specific instructions 26
program order 13

dynamic execution 13
instruction completion 371
instruction decoding 371
instruction execution 371
instruction fetching 371
instruction graduation 371
instruction issue 371

protection
ECC 173
memory 328
parity 173
SECDED 173
sparse encoding 173

protocol
arbitration, System interface 108

error handling 185
write back 45
write invalidate cache coherency 45

PTE (page table entry) 241
PTEBase, field 241, 259

Q

queue
address 6
instruction 17
integer 6

R

R, (region) field 245, 259
R, bit 258
R10000 processor

ANDES architecture 4
caches 4
execution pipelines 6
overview 4
pipeline stages 5
superscalar pipeline 5

R4000 superpipeline 3
Random entries 243
Random register 238
RE, (reverse endian) bit 247
Read Indexed TLB Entry, instruction 285
read port, FPU 302
read sequences 68

16-word 71
32-word 71
4-word 69
8-word 70
tag 72

reference voltage 217
DC 212

register
BadVAddr 241, 244, 259, 340
boundary scan, JTAG 206
bypass, JTAG 205
CacheErr 171, 172, 174, 175, 274
Cause 105, 106, 244, 252, 254
Compare 106, 244
Config 256
Context 241, 259
Count 106, 244

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

Index I-13

CP0 (description of) 235
dependency 14, 375
Diagnostic 261
ECC 69, 74, 273
EntryHi 245
EntryLo0 239
EntryLo1 239
EPC 254
Error Exception Program Counter (ErrorEPC) 284
Exception Program Counter (EPC) 254
file

FPU 302
ports 375

FrameMask 240, 260
Index 237
instruction, JTAG 205
LLAddr 257
logical, see also physical register 17, 375
PageMask 242, 328
Performance Counter 264
permanent 372
physical, see also logical register 17, 375
Processor Revision Identifier (PRId) 255
Random 238
renaming 14, 372
Status 171, 172

ERL bit 316
EXL bit 316
SX bit 326
TS bit 330
USL field 316
UX bit 326

TagHi 69, 74, 278
TagLo 69, 74, 278
temporary 372
unnamed 373
WatchHi 258
WatchLo 258
Wired 238, 243
write before reading (necessity for) 160
XContext 259

renaming, register 372
repeat rate 29

accessing secondary cache 31
definition of 370
FPU 301

replacement algorithm, cache 9
request cycle 80

request number 87
freeing with completion response 130

request, outstanding 87
Reserved Instruction exception 351
reset

cold 159, 162
power-on 159, 160
soft (warm) 159, 163

response bus signals 42
response cycle 80
revision number, R10000 processor 255
RM, field (FP) 311
RN, field (FP) 311
rounding modes, in FSR 311
RP, (reduced power) bit 247
RP, field (FP) 311
rules, arbitration for System interface 109
RZ, field (FP) 311

S

SB, (secondary cache block size) bit 256
SC instruction 27
SC(A,B)Addr, signals 39, 62, 63
SC(A,B)DWay, signals 39, 62, 70, 75
SC, bit 256
SCADCS, signal 39
SCADOE, signal 39
SCADWr, signal 39
SCBDCS, signal 39
SCBDOE, signal 39
SCBDWr, signal 39
SCBlkSize, mode bits 51, 60, 92, 165
SCClk frequency 118, 139
SCClk, signal 39, 61, 157
SCClkDiv, mode bits 61, 156, 160, 165
SCClkTap, mode bits 157, 166
SCCorEn, mode bits 165, 177, 179
SCData, signal 39
SCDataChk, bus 176, 179
SCDataChk, signal 39
scheduling, dynamic 371
SCSize, mode bits 51, 60, 165
SCTag, signals 40, 66

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

I- 14 Index

SCTagChk, bus 179
SCTagChk, signal 40
SCTagLSBAddr, signal 39, 63
SCTCS, signal 40
SCTOE, signal 40
SCTWay, signal 40, 63, 65, 70
SCTWr, signal 40
SECDED 173
secondary cache interface signals, see also individual signals

39
secondary cache, see also cache, secondary 51
SelDVCO, signal 43, 213
serial operations 23, 190
serial operations and CACHE instructions 190
serializing instruction 23, 190
setup times, AC electrical 216
signal integrity 217

decoupling capacitance 218
maximum input voltage levels 217
power supply regulation 217
reference voltage 217

signals
power interface, see also individual signals 38
secondary cache interface, see also individual signals 39
System interface, see also individual signals 41
test interface, see also individual signals 43

size, page in memory 328
SK, bit 256
slave state 81

and flow control 93
soft (warm) reset 159, 163
Soft Reset

exception 337
Soft Reset exception 332
software interrupts 106
SP, bit 273
sparse encoding protection 173
special interrupt vector 336
specifications, test, AC electrical 215
speculative branching 374
speculative execution 14, 21, 374
square-root unit, FPU 301
SR, bit 250, 337, 339
SS, (secondary cache size) field 256

sseg space 321
SSRAM 59, 64

address signals 39
clock signals 39
data signals 39
tag signals 40

stage, definition of 370
stalls, improving performance 13
standard package configuration 219
state

master 81
slave 81

state bus signals 42
Status register 171

in FPU, see also FSR 304
store conditional 27
store operations, FPU registers 305
stores

and uncached buffer 55
nonblocking 373

strong ordering 15
example of 16

superpipeline, architecture 3
superpipeline, R4000 3
superscalar

pipeline 3
processor

definition of 3, 370
superscalar processor 13
Supervisor mode 316

address mapping 320
csseg space 321
operations 320
sseg space 321
suseg space 320
xsseg space 321
xsuseg space 321

suseg space 320
switch, context 330
SX, bit 248, 316, 326
SYNC

instruction 28, 56, 148
prevented from graduating 92

SysAD, bus signals 41, 95, 100, 102, 181, 182, 360,
362, 363, 364, 365, 366, 367

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

Index I-15

SysAD[20:16]
interrupt register 105

SysAD[39:0]
during address cycle 103

SysAD[56:40]
during address cycle 103

SysAD[57]
secondary cache block way indication 103

SysAD[59:58]
uncached attribute 102

SysAD[63:0]
address cycle encoding 102
data cycle encoding 104

SysAD[63:60]
address cycle 102
interrupt 105

SysADChk, bus 182
SysADChk, signal 42, 164
SysClk cycle 93, 127, 148
SysClk, signal 28, 41, 80, 104, 106, 108, 109, 113,

121, 125, 154, 155, 215, 216, 366, 367
SysClkDiv, mode bits 156, 160, 165
SysClkRet, signal 41, 156, 158
SysCmd, bus 41, 95, 170, 181, 182
SysCmd[0] 90

ECC 100
processor data cycles 100

SysCmd[10:8] 95
data response 99
external intervention and invalidate requests 98

SysCmd[11:0]
map 101
protocol 107

SysCmd[11] 95
SysCmd[2:0]

processor write requests 98
SysCmd[2:1]

block data response 100
processor requests 97

SysCmd[4:3]
data cycles 100
external special requests 99
processor read requests 96
processor upgrade requests 97

SysCmd[5]

data cycles 99
SysCmd[5], bit 90
SysCmd[7:5]

external requests 98
processor requests 96

SysCmdPar, signal 41, 181
SysCorErr, signal 42, 168, 177, 179, 182
SysCyc, signal 42, 154
SysGblPerf, signal 28, 42, 56, 148
SysGnt, signal 41, 108, 109, 110, 112, 114, 116, 118,

120, 122, 124, 127, 132, 133, 134, 135,
136, 139, 148, 160, 162, 163, 336, 337,
361, 362

SysNMI, signal 42, 106, 339
SysRdRdy, signal 41, 109, 113, 115, 121, 125

and flow control 93
SysRel, signal 41, 108, 110, 112, 114, 116, 118, 120,

122, 124, 127, 132, 133, 134, 135, 136,
139, 148

SysReq, signal 41, 108, 109, 112, 114, 116, 118, 120,
122, 124, 139, 148, 162

SysReset, signal 42, 160, 162, 163, 204, 216, 336,
337, 338, 361, 362

SysResp, bus 42, 95, 105, 184
SysResp[4:0]

external completion response 130
SysResp[4:2]

driving completion indication 105
SysRespPar, signal 42, 184
SysRespVal, signal 42, 130, 160, 162, 163, 184
SysState, bus 42, 95, 104, 170, 184
SysState[0]

processor coherency data response 146
SysState[2:0]

encoding 104
SysStatePar, signal 42, 184
SysStateVal, signal 42, 104
System Call exception 349
system configuration

multiprocessor 35
uniprocessor 34

System interface 10, 79
arbitration

in a cluster bus system 82, 111
in a uniprocessor system 110
protocol 108

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

I- 16 Index

rules 109
block write request protocol 117
buffers 89
bus encoding

description of buses 95
SysAD 102
SysCmd 95
SysResp 105
SysState 104

cached request buffer 89
clock domain 156
cluster bus 82
cluster request buffer 89
coherency 141
coherency conflicts, action taken 143
connecting to an external agent 81
connections to various system configurations 83
directory-based coherency protocol 153
error handling

on buses 181
on SysAD bus 182
on SysCmd bus 181
on SysResp bus 184
on SysState bus 184
schemes 180

error protection
for buses 180
schemes 180

external agent 79
external allocate request number request protocol 134
external block data response protocol 127
external coherency requests, action taken 142
external completion response protocol 130
external data response flow control 93, 94
external double/single/partial-word data response

protocol 129
external duplicate tags, support for 152
external interrupt request protocol 136
external intervention exclusive request 141
external intervention request protocol 133
external intervention shared request 141
external invalidate request 141

protocol 135
external request 80, 87

flow control 93
protocol 132

external response 80, 87
protocol 127

flow control 93
frequencies 80
grant parking 108
hardware emulation, support for 154
I/O 152
incoming buffer 90
internal coherency conflicts 143
interrupts 105
master state 81
multiprocessor connections

with cluster bus 85
with dedicated external agents 84

outgoing buffer 91
outstanding processor requests 87
outstanding requests on the System interface 87
port 4
processor block read request protocol 113
processor coherency data response protocol 139
processor coherency state response protocol 138
processor double/single/partial-word read request

protocol 115
processor double/single/partial-word write request

protocol 119
processor eliminate request protocol 123
processor request 80, 86

flow control protocol 125
protocol 112

processor response 80, 87
protocols 137

processor upgrade request protocol 121
register-to-register operation 80
request 86

cycle 80
number field 87
protocol 112

response 86
cycle 80
protocol 112

signals 41, 81
slave state 81
split transaction 87
support for I/O 152
uncached attribute 153
uncached buffer 92
uniprocessor connections 83

SysUncErr, signal 42, 169, 170, 174, 175, 179
SysVal, signal 42, 113, 115, 117, 119, 121, 123, 127,

129, 133, 134, 135, 136, 139, 181, 360,
364, 365, 366, 367

MIPS R10000 Microprocessor User's Manual Version 2.0 of October 10, 1996

Index I-17

SysWrRdy, signal 41, 118, 119, 123, 125, 139
and flow control 93

T

table
busy-bit 372
mapping 375

tag bus, secondary cache, SCTag 66
tag read sequence 72
tag write sequence 77
TagHi register 69, 74, 278
TagLo register 69, 74, 278
tags, external, duplicate 152
TAP controller 204, 205
TCA, signal 43, 213
TCB, signal 43, 213
temporary register 372
test access port (TAP) 204
test interface signals, see also individual signals 43
test mode, cache 361, 362
test signals, miscellaneous 43
Timer interrupt 106

disabling 244
TLB 329

32-bit-mode entry format 329
64-bit-mode entry format 329
address

translation, avoiding multiple matches 330
ASID field 330
avoiding conflict 330
Cache Algorithm fields 329
entry formats 329
exceptions 341
Global (G) bit 330
ITLB 330
misses 241
multiple matches, avoiding 330
number of entries 329
page size code 328
used with Context register 241

TLB (Translation Lookaside Buffer) 7
JTLB 330

TLB Invalid exception 189, 341, 343
TLB Modified exception 341, 344
TLB Probe (TLBP) instruction 237, 245

TLB Read (TLBR) instruction 237
TLB Read Indexed (TLBR) instruction 245
TLB Refill 333
TLB Refill exception 189, 341, 342
TLB Write Indexed (TLBWI) instruction 237, 245
TLB Write Random instruction 238, 245
TLBP, instruction 297
TLBR, instruction 298
TLBWI, instruction 299
TLBWR, instruction 300
Translation Look-Aside Buffer, see also TLB 329
translation, virtual address 328, 330
Trap exception 348
trap physical address, and Watch registers 258
TriState, signal 43, 206
TS, (TLB shutdown) bit 249, 250
TS, bit, in Status register 330
two-level cache structure 45

U

UC, (uncached attribute) bit 239
uncached

accelerated
blocks, completely gathered 55
blocks, incompletely gathered 55
stores 55

attribute, support for 153
buffer 89, 92
cache algorithm 53, 54

uncached accelerated 240
uncached accelerated, cache algorithm 53, 55
uncached attribute 240
uncorrectable error 169

detection, suppressed 172
flag 90, 92

underflow (FP) 310
unimplemented operation (FP) 310
uniprocessor system 34, 83

arbitration rules 110
unnaming, register 373
useg space 318, 319
User mode 316

address mapping 318
operations 318

Version 2.0 of October 10, 1996 MIPS R10000 Microprocessor User's Manual

I- 18 Index

useg space 319
xuseg space 319

UX, bit 248, 316, 326

V

V, (valid) bit 239
Vcc, signal 38, 210, 221
VccPa, signal 38
VccPd, signal 38
VccQ, signal 210, 211, 214
VccQSC, signal 38, 210, 221
VccQSys, signal 38, 210, 221
vector locations, TLB refill 334
vector, special interrupt 336
virtual address 187, 188

space 317
translation 328

virtual aliasing 67
Virtual Coherency exception 345
virtual memory addresses 328
voltage

input, maximum 217
reference 217

VPN2, field 245
Vref, signal 217
VrefByp, signal 38
VrefSC, signal 38, 212
VrefSys, signal 38, 212
Vss, signal 38, 221
VssPa, signal 38
VssPd, signal 38

W

W, bit 258
Watch exception 189, 354
WatchHi register 258
WatchLo register 258
way prediction table, secondary cache 64
Wired entries 243
Wired register 238, 243
write back protocol 45

and cache operations 189
primary data cache 48

Write Indexed TLB Entry, instruction 285
Write Random TLB Entry, instruction 285
write sequences 73

16-word 76
32-word 76
4-word 74
8-word 75
tag 77

X

XContext register 259
xkphys

decoding virtual address bits VA(61:59) 330
space 324

xkseg space 326
xksseg space 324
xkuseg space 324
xsseg space 321
xsuseg space 321
XTLB Refill 333
XTLB refill handler, used with XContext register 259
xuseg space 318, 319
XX, (MIPS IV User mode) bit 246, 248, 316, 356

