
The Microarchitecture of the Pentium 4 Processor 1

The Microarchitecture of the Pentium 4 Processor

Glenn Hinton, Desktop Platforms Group, Intel Corp.
Dave Sager, Desktop Platforms Group, Intel Corp.
Mike Upton, Desktop Platforms Group, Intel Corp.

Darrell Boggs, Desktop Platforms Group, Intel Corp.
Doug Carmean, Desktop Platforms Group, Intel Corp.

Alan Kyker, Desktop Platforms Group, Intel Corp.
Patrice Roussel, Desktop Platforms Group, Intel Corp.

Index words: Pentium® 4 processor, NetBurst™ microarchitecture, Trace Cache, double-pumped
ALU, deep pipelining

ABSTRACT
This paper describes the Intel® NetBurst™
microarchitecture of Intel’s new flagship Pentium® 4
processor. This microarchitecture is the basis of a new
family of processors from Intel starting with the Pentium
4 processor. The Pentium 4 processor provides a
substantial performance gain for many key application
areas where the end user can truly appreciate the
difference.

In this paper we describe the main features and functions
of the NetBurst microarchitecture. We present the front-
end of the machine, including its new form of instruction
cache called the Execution Trace Cache. We also
describe the out-of-order execution engine, including the
extremely low latency double-pumped Arithmetic Logic
Unit (ALU) that runs at 3GHz. We also discuss the
memory subsystem, including the very low latency Level
1 data cache that is accessed in just two clock cycles. We
then touch on some of the key features that allow the
Pentium 4 processor to have outstanding floating-point
and multi-media performance. We provide some key
performance numbers for this processor, comparing it to
the Pentium® III processor.

INTRODUCTION
The Pentium 4 processor is Intel’s new flagship
microprocessor that was introduced at 1.5GHz in
November of 2000. It implements the new Intel NetBurst
microarchitecture that features significantly higher clock
rates and world-class performance. It includes several
important new features and innovations that will allow the
Intel Pentium 4 processor to deliver industry-leading
performance for the next several years. This paper

provides an in-depth examination of the features and
functions of the Intel NetBurst microarchitecture.

The Pentium 4 processor is designed to deliver
performance across applications where end users can truly
appreciate and experience its performance. For example,
it allows a much better user experience in areas such as
Internet audio and streaming video, image processing,
video content creation, speech recognition, 3D
applications and games, multi-media, and multi-tasking
user environments. The Pentium 4 processor enables real-
time MPEG2 video encoding and near real-time MPEG4
encoding, allowing efficient video editing and video
conferencing. It delivers world-class performance on 3D
applications and games, such as Quake 3∗ , enabling a new
level of realism and visual quality to 3D applications.

The Pentium 4 processor has 42 million transistors
implemented on Intel’s 0.18u CMOS process, with six
levels of aluminum interconnect. It has a die size of 217
mm2 and it consumes 55 watts of power at 1.5GHz. Its
3.2 GB/second system bus helps provide the high data
bandwidths needed to supply data to today’s and
tomorrow’s demanding applications. It adds 144 new
128-bit Single Instruction Multiple Data (SIMD)
instructions called SSE2 (Streaming SIMD Extension 2)
that improve performance for multi-media, content
creation, scientific, and engineering applications.

∗ Other brands and names are the property of their
respective owners.

Intel Technology Journal Q1, 2001

The Microarchitecture of the Pentium 4 Processor 2

OVERVIEW OF THE NETBURST™
MICROARCHITECTURE
A fast processor requires balancing and tuning of many
microarchitectural features that compete for processor die
cost and for design and validation efforts. Figure 1 shows
the basic Intel NetBurst microarchitecture of the Pentium
4 processor. As you can see, there are four main sections:
the in-order front end, the out-of-order execution engine,
the integer and floating-point execution units, and the
memory subsystem.

BTB/Branch Prediction

Out-of-order
execution

logic
RetirementFetch/Decode

Trace Cache

Microcode ROM

Front End

Branch History Update

Level 1 Data Cache

Execution Units

Bus Unit

Level 2 Cache

System Bus

Memory Subsystem

Out-of-order Engine

Integer and FP Execution Units

Figure 1: Basic block diagram

In-Order Front End
The in-order front end is the part of the machine that
fetches the instructions to be executed next in the program
and prepares them to be used later in the machine
pipeline. Its job is to supply a high-bandwidth stream of
decoded instructions to the out-of-order execution core,
which will do the actual completion of the instructions.
The front end has highly accurate branch prediction logic
that uses the past history of program execution to
speculate where the program is going to execute next.
The predicted instruction address, from this front-end
branch prediction logic, is used to fetch instruction bytes
from the Level 2 (L2) cache. These IA-32 instruction
bytes are then decoded into basic operations called uops
(micro-operations) that the execution core is able to
execute.

The NetBurst microarchitecture has an advanced form of
a Level 1 (L1) instruction cache called the Execution
Trace Cache. Unlike conventional instruction caches, the
Trace Cache sits between the instruction decode logic and
the execution core as shown in Figure 1. In this location
the Trace Cache is able to store the already decoded IA-
32 instructions or uops. Storing already decoded
instructions removes the IA-32 decoding from the main
execution loop. Typically the instructions are decoded

once and placed in the Trace Cache and then used
repeatedly from there like a normal instruction cache on
previous machines. The IA-32 instruction decoder is only
used when the machine misses the Trace Cache and needs
to go to the L2 cache to get and decode new IA-32
instruction bytes.

Out-of-Order Execution Logic
The out-of-order execution engine is where the
instructions are prepared for execution. The out-of-order
execution logic has several buffers that it uses to smooth
and re-order the flow of instructions to optimize
performance as they go down the pipeline and get
scheduled for execution. Instructions are aggressively re-
ordered to allow them to execute as quickly as their input
operands are ready. This out-of-order execution allows
instructions in the program following delayed instructions
to proceed around them as long as they do not depend on
those delayed instructions. Out-of-order execution allows
the execution resources such as the ALUs and the cache
to be kept as busy as possible executing independent
instructions that are ready to execute.

The retirement logic is what reorders the instructions,
executed in an out-of-order manner, back to the original
program order. This retirement logic receives the
completion status of the executed instructions from the
execution units and processes the results so that the proper
architectural state is committed (or retired) according to
the program order. The Pentium 4 processor can retire up
to three uops per clock cycle. This retirement logic
ensures that exceptions occur only if the operation
causing the exception is the oldest, non-retired operation
in the machine. This logic also reports branch history
information to the branch predictors at the front end of the
machine so they can train with the latest known-good
branch-history information.

Integer and Floating-Point Execution Units
The execution units are where the instructions are actually
executed. This section includes the register files that store
the integer and floating-point data operand values that the
instructions need to execute. The execution units include
several types of integer and floating-point execution units
that compute the results and also the L1 data cache that is
used for most load and store operations.

Memory Subsystem
Figure 1 also shows the memory subsystem. This
includes the L2 cache and the system bus. The L2 cache
stores both instructions and data that cannot fit in the
Execution Trace Cache and the L1 data cache. The
external system bus is connected to the backside of the
second-level cache and is used to access main memory
when the L2 cache has a cache miss, and to access the
system I/O resources.

Intel Technology Journal Q1, 2001

The Microarchitecture of the Pentium 4 Processor 3

CLOCK RATES
Processor microarchitectures can be pipelined to different
degrees. The degree of pipelining is a microarchitectural
decision. The final frequency of a specific processor
pipeline on a given silicon process technology depends
heavily on how deeply the processor is pipelined. When
designing a new processor, a key design decision is the
target design frequency of operation. The frequency
target determines how many gates of logic can be
included per pipeline stage in the design. This then helps
determine how many pipeline stages there are in the
machine.

There are tradeoffs when designing for higher clock rates.
Higher clock rates need deeper pipelines so the efficiency
at the same clock rate goes down. Deeper pipelines make
many things take more clock cycles, such as mispredicted
branches and cache misses, but usually more than make
up for the lower per-clock efficiency by allowing the
design to run at a much higher clock rate. For example, a
50% increase in frequency might buy only a 30% increase
in net performance, but this frequency increase still
provides a significant overall performance increase.
High-frequency design also depends heavily on circuit
design techniques, design methodology, design tools,
silicon process technology, power and thermal
constraints, etc. At higher frequencies, clock skew and
jitter and latch delay become a much bigger percentage of
the clock cycle, reducing the percentage of the clock cycle
usable by actual logic. The deeper pipelines make the
machine more complicated and require it to have deeper
buffering to cover the longer pipelines.

Historical Trend of Processor Frequencies
Figure 2 shows the relative clock frequency of Intel’s last
six processor cores. The vertical axis shows the relative
clock frequency, and the horizontal axis shows the various
processors relative to each other.

1 1 1

1.5

2.5

1

0
0.5

1
1.5

2
2.5

3

286 386 486 P5 P6 P4P

R
el

at
iv

e
Fr

eq
ue

n
cy

Figure 2: Relative frequencies of Intel’s processors

Figure 2 shows that the 286, Intel386™, Intel486™ and
Pentium® (P5) processors had similar pipeline depths–
they would run at similar clock rates if they were all
implemented on the same silicon process technology.
They all have a similar number of gates of logic per clock
cycle. The P6 microarchitecture lengthened the processor
pipelines, allowing fewer gates of logic per pipeline stage,
which delivered significantly higher frequency and
performance. The P6 microarchitecture approximately
doubled the number of pipeline stages compared to the
earlier processors and was able to achieve about a 1.5
times higher frequency on the same process technology.

The NetBurst microarchitecture was designed to have an
even deeper pipeline (about two times the P6
microarchitecture) with even fewer gates of logic per
clock cycle to allow an industry-leading clock rate.
Compared to the P6 family of processors, the Pentium 4
processor was designed with a greater than 1.6 times
higher frequency target for its main clock rate, on the
same process technology. This allows it to operate at a
much higher frequency than the P6 family of processors
on the same silicon process technology. At its
introduction in November 2000, the Pentium 4 processor
was at 1.5 times the frequency of the Pentium III
processor. Over time this frequency delta will increase as
the Pentium 4 processor design matures.

Different parts of the Pentium 4 processor run at different
clock frequencies. The frequency of each section of logic
is set to be appropriate for the performance it needs to
achieve. The highest frequency section (fast clock) was
set equal to the speed of the critical ALU-bypass
execution loop that is used for most instructions in integer
programs. Most other parts of the chip run at half of the
3GHz fast clock since this makes these parts much easier
to design. A few sections of the chip run at a quarter of
this fast-clock frequency making them also easier to
design. The bus logic runs at 100MHz, to match the
system bus needs.

As an example of the pipelining differences, Figure 3
shows a key pipeline in both the P6 and the Pentium 4
processors: the mispredicted branch pipeline. This
pipeline covers the cycles it takes a processor to recover
from a branch that went a different direction than the
early fetch hardware predicted at the beginning of the
machine pipeline. As shown, the Pentium 4 processor has
a 20-stage misprediction pipeline while the P6
microarchitecture has a 10-stage misprediction pipeline.
By dividing the pipeline into smaller pieces, doing less
work during each pipeline stage (fewer gates of logic), the
clock rate can be a lot higher.

Intel Technology Journal Q1, 2001

The Microarchitecture of the Pentium 4 Processor 4

11 22 33 44 55 66 77 88 99 1010

FetchFetch FetchFetch DecodeDecode DecodeDecode DecodeDecode RenameRename ROB RdROB Rd RdyRdy/Sch/Sch DispatchDispatch ExecExec

Basic Pentium III Processor Basic Pentium III Processor MispredictionMisprediction Pipeline Pipeline

Basic Pentium 4 Processor Basic Pentium 4 Processor MispredictionMisprediction Pipeline Pipeline

11 22 33 44 55 66 77 88 99 1010 1111 1212
TC TC Nxt Nxt IPIP TC FetchTC Fetch DriveDrive AllocAlloc RenameRename QueQue SchSch SchSch SchSch

1313 1414
DispDisp DispDisp

1515 1616 1717 1818 1919 2020
RFRF ExEx FlgsFlgs Br CkBr Ck Drive DriveRF RF

Figure 3: Misprediction Pipeline

Allocator / Register RenamerAllocator / Register Renamer

Memory Memory uopuop Queue Queue Integer/Floating Point Integer/Floating Point uop uop QueueQueue

FP Register / BypassFP Register / Bypass

FPFP
MMXMMX
SSESSE
SSE2SSE2

FPFP
MoveMove

Simple FPSimple FP

L1 Data Cache (8Kbyte 4-way)L1 Data Cache (8Kbyte 4-way)

Memory SchedulerMemory Scheduler FastFast Slow/General FP SchedulerSlow/General FP Scheduler

Integer Register File / Bypass NetworkInteger Register File / Bypass Network

ComplexComplex
Instr.Instr.

Slow ALUSlow ALU

SimpleSimple
Instr.Instr.

2x ALU2x ALU

SimpleSimple
Instr.Instr.

2x ALU2x ALU

LoadLoad
AddressAddress

AGUAGU

StoreStore
AddressAddress

AGUAGU

256 bits256 bits

64-bits wide64-bits wide

QuadQuad
PumpedPumped
3.2 GB/s3.2 GB/s

BusBus
InterfaceInterface

UnitUnit

SystemSystem
BusBus

L2 CacheL2 Cache
(256K Byte(256K Byte

8-way)8-way)

48GB/s48GB/s

InstructionInstruction
TLB/TLB/PrefetcherPrefetcher

Front-End BTBFront-End BTB
(4K Entries)(4K Entries)

Instruction DecoderInstruction Decoder

Trace CacheTrace Cache
(12K (12K µµopsops))

Trace Cache BTBTrace Cache BTB
(512 Entries)(512 Entries)

MicrocodeMicrocode
ROMROM

µµopop Queue Queue

Figure 4: Pentium® 4 processor microarchitecture

NETBURST MICROARCHITECTURE
Figure 4 shows a more detailed block diagram of the
NetBurst microarchitecture of the Pentium 4 processor.
The top-left portion of the diagram shows the front end of
the machine. The middle of the diagram illustrates the
out-of-order buffering logic, and the bottom of the
diagram shows the integer and floating-point execution
units and the L1 data cache. On the right of the diagram
is the memory subsystem.

Front End
The front end of the Pentium 4 processor consists of
several units as shown in the upper part of Figure 4. It
has the Instruction TLB (ITLB), the front-end branch
predictor (labeled here Front-End BTB), the IA-32
Instruction Decoder, the Trace Cache, and the Microcode
ROM.

Intel Technology Journal Q1, 2001

The Microarchitecture of the Pentium 4 Processor 5

Trace Cache
The Trace Cache is the primary or Level 1 (L1)
instruction cache of the Pentium 4 processor and delivers
up to three uops per clock to the out-of-order execution
logic. Most instructions in a program are fetched and
executed from the Trace Cache. Only when there is a
Trace Cache miss does the NetBurst microarchitecture
fetch and decode instructions from the Level 2 (L2)
cache. This occurs about as often as previous processors
miss their L1 instruction cache. The Trace Cache has a
capacity to hold up to 12K uops. It has a similar hit rate
to an 8K to 16K byte conventional instruction cache.

IA-32 instructions are cumbersome to decode. The
instructions have a variable number of bytes and have
many different options. The instruction decoding logic
needs to sort this all out and convert these complex
instructions into simple uops that the machine knows how
to execute. This decoding is especially difficult when
trying to decode several IA-32 instructions each clock
cycle when running at the high clock frequency of the
Pentium 4 processor. A high-bandwidth IA-32 decoder,
that is capable of decoding several instructions per clock
cycle, takes several pipeline stages to do its work. When
a branch is mispredicted, the recovery time is much
shorter if the machine does not have to re-decode the IA-
32 instructions needed to resume execution at the
corrected branch target location. By caching the uops of
the previously decoded instructions in the Trace Cache,
the NetBurst microarchitecture bypasses the instruction
decoder most of the time thereby reducing misprediction
latency and allowing the decoder to be simplified: it only
needs to decode one IA-32 instruction per clock cycle.

The Execution Trace Cache takes the already-decoded
uops from the IA-32 Instruction Decoder and assembles
or builds them into program-ordered sequences of uops
called traces. It packs the uops into groups of six uops per
trace line. There can be many trace lines in a single trace.
These traces consist of uops running sequentially down
the predicted path of the IA-32 program execution. This
allows the target of a branch to be included in the same
trace cache line as the branch itself even if the branch and
its target instructions are thousands of bytes apart in the
program.

Conventional instruction caches typically provide
instructions up to and including a taken branch instruction
but none after it during that clock cycle. If the branch is
the first instruction in a cache line, only the single branch
instruction is delivered that clock cycle. Conventional
instruction caches also often add a clock delay getting to
the target of the taken branch, due to delays getting
through the branch predictor and then accessing the new
location in the instruction cache. The Trace Cache avoids
both aspects of this instruction delivery delay for
programs that fit well in the Trace Cache.

The Trace Cache has its own branch predictor that directs
where instruction fetching needs to go next in the Trace
Cache. This Trace Cache predictor (labeled Trace BTB in
Figure 4) is smaller than the front-end predictor, since its
main purpose is to predict the branches in the subset of
the program that is currently in the Trace Cache. The
branch prediction logic includes a 16-entry return address
stack to efficiently predict return addresses, because often
the same procedure is called from several different call
sites. The Trace-Cache BTB, together with the front-end
BTB, use a highly advanced branch prediction algorithm
that reduces the branch misprediction rate by about 1/3
compared to the predictor in the P6 microarchitecture.

Microcode ROM
Near the Trace Cache is the microcode ROM. This ROM
is used for complex IA-32 instructions, such as string
move, and for fault and interrupt handling. When a
complex instruction is encountered, the Trace Cache
jumps into the microcode ROM which then issues the
uops needed to complete the operation. After the
microcode ROM finishes sequencing uops for the current
IA-32 instruction, the front end of the machine resumes
fetching uops from the Trace Cache.

The uops that come from the Trace Cache and the
microcode ROM are buffered in a simple, in-order uop
queue that helps smooth the flow of uops going to the out-
of-order execution engine.

ITLB and Front-End BTB
The IA-32 Instruction TLB and front-end BTB, shown at
the top of Figure 4, steer the front end when the machine
misses the Trace Cache. The ITLB translates the linear
instruction pointer addresses given to it into physical
addresses needed to access the L2 cache. The ITLB also
performs page-level protection checking.

Hardware instruction prefetching logic associated with the
front-end BTB fetches IA-32 instruction bytes from the
L2 cache that are predicted to be executed next. The fetch
logic attempts to keep the instruction decoder fed with the
next IA-32 instructions the program needs to execute.
This instruction prefetcher is guided by the branch
prediction logic (branch history table and branch target
buffer listed here as the front-end BTB) to know what to
fetch next. Branch prediction allows the processor to
begin fetching and executing instructions long before the
previous branch outcomes are certain. The front-end
branch predictor is quite large–4K branch target entries–to
capture most of the branch history information for the
program. If a branch is not found in the BTB, the branch
prediction hardware statically predicts the outcome of the
branch based on the direction of the branch displacement
(forward or backward). Backward branches are assumed

Intel Technology Journal Q1, 2001

The Microarchitecture of the Pentium 4 Processor 6

to be taken and forward branches are assumed to not be
taken.

IA-32 Instruction Decoder
The instruction decoder receives IA-32 instruction bytes
from the L2 cache 64-bits at a time and decodes them into
primitives, called uops, that the machine knows how to
execute. This single instruction decoder can decode at a
maximum rate of one IA-32 instruction per clock cycle.
Many IA-32 instructions are converted into a single uop,
and others need several uops to complete the full
operation. If more than four uops are needed to complete
an IA-32 instruction, the decoder sends the machine into
the microcode ROM to do the instruction. Most
instructions do not need to jump to the microcode ROM
to complete. An example of a many-uop instruction is
string move, which could have thousands of uops.

Out-of-Order Execution Logic
The out-of-order execution engine consists of the
allocation, renaming, and scheduling functions. This part
of the machine re-orders instructions to allow them to
execute as quickly as their input operands are ready.

The processor attempts to find as many instructions as
possible to execute each clock cycle. The out-of-order
execution engine will execute as many ready instructions
as possible each clock cycle, even if they are not in the
original program order. By looking at a larger number of
instructions from the program at once, the out-of-order
execution engine can usually find more ready-to-execute,
independent instructions to begin. The NetBurst
microarchitecture has much deeper buffering than the P6
microarchitecture to allow this. It can have up to 126
instructions in flight at a time and have up to 48 loads and
24 stores allocated in the machine at a time.

The Allocator
The out-of-order execution engine has several buffers to
perform its re-ordering, tracking, and sequencing
operations. The Allocator logic allocates many of the key
machine buffers needed by each uop to execute. If a
needed resource, such as a register file entry, is
unavailable for one of the three uops coming to the
Allocator this clock cycle, the Allocator will stall this part
of the machine. When the resources become available the
Allocator assigns them to the requesting uops and allows
these satisfied uops to flow down the pipeline to be
executed. The Allocator allocates a Reorder Buffer

(ROB) entry, which tracks the completion status of one of
the 126 uops that could be in flight simultaneously in the
machine. The Allocator also allocates one of the 128
integer or floating-point register entries for the result data
value of the uop, and possibly a load or store buffer used
to track one of the 48 loads or 24 stores in the machine
pipeline. In addition, the Allocator allocates an entry in
one of the two uop queues in front of the instruction
schedulers.

Register Renaming
The register renaming logic renames the logical IA-32
registers such as EAX onto the processors 128-entry
physical register file. This allows the small, 8-entry,
architecturally defined IA-32 register file to be
dynamically expanded to use the 128 physical registers in
the Pentium 4 processor. This renaming process removes
false conflicts caused by multiple instructions creating
their simultaneous but unique versions of a register such
as EAX. There could be dozens of unique instances of
EAX in the machine pipeline at one time. The renaming
logic remembers the most current version of each register,
such as EAX, in the Register Alias Table (RAT) so that a
new instruction coming down the pipeline can know
where to get the correct current instance of each of its
input operand registers.

As shown in Figure 5 the NetBurst microarchitecture
allocates and renames the registers somewhat differently
than the P6 microarchitecture. On the left of Figure 5, the
P6 scheme is shown. It allocates the data result registers
and the ROB entries as a single, wide entity with a data
and a status field. The ROB data field is used to store the
data result value of the uop, and the ROB status field is
used to track the status of the uop as it is executing in the
machine. These ROB entries are allocated and
deallocated sequentially and are pointed to by a sequence
number that indicates the relative age of these entries.
Upon retirement, the result data is physically copied from
the ROB data result field into the separate Retirement
Register File (RRF). The RAT points to the current
version of each of the architectural registers such as EAX.
This current register could be in the ROB or in the RRF.

The NetBurst microarchitecture allocation scheme is
shown on the right of Figure 5. It allocates the ROB
entries and the result data Register File (RF) entries
separately.

Intel Technology Journal Q1, 2001

The Microarchitecture of the Pentium 4 Processor 7

Pentium III N etBurst

R A T
EAX

EBP
ESP
EDI
ESI
EDX
ECX
EBX

R R F

R O B
D ata Status

Frontend R A T
EAX

EBP
ESP
EDI
ESI
EDX
ECX
EBX

R etirem ent R A T
EAX

EBP
ESP
EDI
ESI
EDX
ECX
EBX

R O B
Status

R F
D ata

Figure 5: Pentium® III vs. Pentium® 4 processor register allocation

The ROB entries, which track uop status, consist only of
the status field and are allocated and deallocated
sequentially. A sequence number assigned to each uop
indicates its relative age. The sequence number points to
the uop’s entry in the ROB array, which is similar to the
P6 microarchitecture. The Register File entry is allocated
from a list of available registers in the 128-entry RF–not
sequentially like the ROB entries. Upon retirement, no
result data values are actually moved from one physical
structure to another.

Uop Scheduling
The uop schedulers determine when a uop is ready to
execute by tracking its input register operands. This is the
heart of the out-of-order execution engine. The uop
schedulers are what allow the instructions to be reordered
to execute as soon as they are ready, while still
maintaining the correct dependencies from the original
program. The NetBurst microarchitecture has two sets of
structures to aid in uop scheduling: the uop queues and
the actual uop schedulers.

There are two uop queues–one for memory operations
(loads and stores) and one for non-memory operations.
Each of these queues stores the uops in strict FIFO (first-
in, first-out) order with respect to the uops in its own
queue, but each queue is allowed to be read out-of-order
with respect to the other queue. This allows the dynamic
out-of-order scheduling window to be larger than just
having the uop schedulers do all the reordering work.

There are several individual uop schedulers that are used
to schedule different types of uops for the various
execution units on the Pentium 4 processor as shown in
Figure 6. These schedulers determine when uops are
ready to execute based on the readiness of their dependent
input register operand sources and the availability of the
execution resources the uops need to complete their
operation.

These schedulers are tied to four different dispatch ports.
There are two execution unit dispatch ports labeled port 0
and port 1 in Figure 6. These ports are fast: they can
dispatch up to two operations each main processor clock
cycle. Multiple schedulers share each of these two
dispatch ports. The fast ALU schedulers can schedule on
each half of the main clock cycle while the other
schedulers can only schedule once per main processor
clock cycle. They arbitrate for the dispatch port when
multiple schedulers have ready operations at once. There
is also a load and a store dispatch port that can dispatch a
ready load and store each clock cycle. Collectively, these
uop dispatch ports can dispatch up to six uops each main
clock cycle. This dispatch bandwidth exceeds the front-
end and retirement bandwidth, of three uops per clock, to
allow for peak bursts of greater than 3 uops per clock and
to allow higher flexibility in issuing uops to different
dispatch ports. Figure 6 also shows the types of
operations that can be dispatched to each port each clock
cycle.

Intel Technology Journal Q1, 2001

The Microarchitecture of the Pentium 4 Processor 8

Exec
Port 0

Exec
Port 1

Load Port Store Port

ALU
(Double
Speed)

FP Move
Memory

Load
Memory

Store
FP

execute
Integer

Operation

ALU
(Double
Speed)

Add/Sub
Logic
Store Data
Branches

FP/SSE Move
FP/SSE Store
FXCH

Add/Sub Shift/rotate FP/SSE-Add
FP/SSE-Mul
FP/SSE-Div
MMX

All loads
LEA
SW prefetch

Store Address

Figure 6: Dispatch ports in the Pentium® 4 processor

Integer and Floating-Point Execution Units
The execution units are where the instructions are actually
executed. The execution units are designed to optimize
overall performance by handling the most common cases
as fast as possible. There are several different execution
units in the NetBurst microarchitecture. The units used to
execute integer operations include the low-latency integer
ALUs, the complex integer instruction unit, the load and
store address generation units, and the L1 data cache.

Floating-Point (x87), MMX, SSE (Streaming SIMD
Extension), and SSE2 (Streaming SIMD Extension 2)
operations are executed by the two floating-point
execution blocks. MMX instructions are 64-bit packed
integer SIMD operations that operate on 8, 16, or 32-bit
operands. The SSE instructions are 128-bit packed IEEE
single-precision floating-point operations. The Pentium 4
processor adds new forms of 128-bit SIMD instructions
called SSE2. The SSE2 instructions support 128-bit
packed IEEE double-precision SIMD floating-point
operations and 128-bit packed integer SIMD operations.
The packed integer operations support 8, 16, 32, and 64-
bit operands. See IA-32 Intel Architecture Software
Developer’s Manual Volume 1: Basic Architecture [3] for
more detail on these SIMD operations.

The Integer and floating-point register files sit between
the schedulers and the execution units. There is a separate
128-entry register file for both the integer and the
floating-point/SSE operations. Each register file also has
a multi-clock bypass network that bypasses or forwards
just-completed results, which have not yet been written
into the register file, to the new dependent uops. This
multi-clock bypass network is needed because of the very
high frequency of the design.

Low Latency Integer ALU
The Pentium 4 processor execution units are designed to
optimize overall performance by handling the most
common cases as fast as possible. The Pentium 4
processor can do fully dependent ALU operations at twice
the main clock rate. The ALU-bypass loop is a key
closed loop in the processor pipeline. Approximately 60-
70% of all uops in typical integer programs use this key
integer ALU loop. Executing these operations at ½ the
latency of the main clock helps speed up program
execution for most programs. Doing the ALU operations
in one half a clock cycle does not buy a 2x performance
increase, but it does improve the performance for most
integer applications.

This high-speed ALU core is kept as small as possible to
minimize the metal length and loading. Only the essential
hardware necessary to perform the frequent ALU
operations is included in this high-speed ALU execution
loop. Functions that are not used very frequently, for
most integer programs, are not put in this key low-latency
ALU loop but are put elsewhere. Some examples of
integer execution hardware put elsewhere are the
multiplier, shifts, flag logic, and branch processing.

The processor does ALU operations with an effective
latency of one-half of a clock cycle. It does this operation
in a sequence of three fast clock cycles (the fast clock
runs at 2x the main clock rate) as shown in Figure 7. In
the first fast clock cycle, the low order 16-bits are
computed and are immediately available to feed the low
16-bits of a dependent operation the very next fast clock
cycle. The high-order 16 bits are processed in the next
fast cycle, using the carry out just generated by the low
16-bit operation. This upper 16-bit result will be
available to the next dependent operation exactly when
needed. This is called a staggered add. The ALU flags

Intel Technology Journal Q1, 2001

The Microarchitecture of the Pentium 4 Processor 9

are processed in the third fast cycle. This staggered add
means that only a 16-bit adder and its input muxes need to
be completed in a fast clock cycle. The low order 16 bits
are needed at one time in order to begin the access of the
L1 data cache when used as an address input.

Bits <15:0>

Bits <31:16>

Flags

Figure 7: Staggered ALU add

Complex Integer Operations
The simple, very frequent ALU operations go to the high-
speed integer ALU execution units described above.
Integer operations that are more complex go to separate
hardware for completion. Most integer shift or rotate
operations go to the complex integer dispatch port. These
shift operations have a latency of four clocks. Integer
multiply and divide operations also have a long latency.
Typical forms of multiply and divide have a latency of
about 14 and 60 clocks, respectively.

Low Latency Level 1 (L1) Data Cache
The Level 1 (LI) data cache is an 8K-byte cache that is
used for both integer and floating-point/SSE loads and
stores. It is organized as a 4-way set-associative cache
that has 64 bytes per cache line. It is a write-through
cache, which means that writes to it are always copied
into the L2 cache. It can do one load and one store per
clock cycle.

The latency of load operations is a key aspect of processor
performance. This is especially true for IA-32 programs
that have a lot of loads and stores because of the limited
number of registers in the instruction set. The NetBurst
microarchitecture optimizes for the lowest overall load-
access latency with a small, very low latency 8K byte
cache backed up by a large, high-bandwidth second-level
cache with medium latency. For most IA-32 programs
this configuration of a small, but very low latency, L1
data cache followed by a large medium-latency L2 cache

gives lower net load-access latency and therefore higher
performance than a bigger, slower L1 cache. The L1 data
cache operates with a 2-clock load-use latency for integer
loads and a 6-clock load-use latency for floating-
point/SSE loads.

This 2-clock load latency is hard to achieve with the very
high clock rates of the Pentium 4 processor. This cache
uses new access algorithms to enable this very low load-
access latency. The new algorithm leverages the fact that
almost all accesses hit the first-level data cache and the
data TLB (DTLB).

At this high frequency and with this deep machine
pipeline, the distance in clocks, from the load scheduler to
execution, is longer than the load execution latency itself.
The uop schedulers dispatch dependent operations before
the parent load has finished executing. In most cases, the
scheduler assumes that the load will hit the L1 data cache.
If the load misses the L1 data cache, there will be
dependent operations in flight in the pipeline. These
dependent operations that have left the scheduler will get
temporarily incorrect data. This is a form of data
speculation. Using a mechanism known as replay, logic
tracks and re-executes instructions that use incorrect data.
Only the dependent operations are replayed: the
independent ones are allowed to complete.

There can be up to four outstanding load misses from the
L1 data cache pending at any one time in the memory
subsystem.

Store-to-Load Forwarding
In an out-of-order-execution processor, stores are not
allowed to be committed to permanent machine state (the
L1 data cache, etc.) until after the store has retired.
Waiting until retirement means that all other preceding
operations have completely finished. All faults,
interrupts, mispredicted branches, etc. must have been
signaled beforehand to make sure this store is safe to
perform. With the very deep pipeline of the Pentium 4
processor it takes many clock cycles for a store to make it
to retirement. Also, stores that are at retirement often
have to wait for previous stores to complete their update
of the data cache. This machine can have up to 24 stores
in the pipeline at a time. Sometimes many of them have
retired but have not yet committed their state into the L1
data cache. Other stores may have completed, but have
not yet retired, so their results are also not yet in the L1
data cache. Often loads must use the result of one of
these pending stores, especially for IA-32 programs, due
to the limited number of registers available. To enable
this use of pending stores, modern out-of-order execution
processors have a pending store buffer that allows loads to
use the pending store results before the stores have been

Intel Technology Journal Q1, 2001

The Microarchitecture of the Pentium 4 Processor 10

written into the L1 data cache. This process is called
store-to-load forwarding.

To make this store-to-load-forwarding process efficient,
this pending store buffer is optimized to allow efficient
and quick forwarding of data to dependent loads from the
pending stores. The Pentium 4 processor has a 24-entry
store-forwarding buffer to match the number of stores that
can be in flight at once. This forwarding is allowed if a
load hits the same address as a proceeding, completed,
pending store that is still in the store-forwarding buffer.
The load must also be the same size or smaller than the
pending store and have the same beginning physical
address as the store, for the forwarding to take place. This
is by far the most common forwarding case. If the bytes
requested by a load only partially overlap a pending store
or need to have some bytes come simultaneously from
more than one pending store, this store-to-load forwarding
is not allowed. The load must get its data from the cache
and cannot complete until the store has committed its state
to the cache.

This disallowed store-to-load forwarding case can be
quite costly, in terms of performance loss, if it happens
very often. When it occurs, it tends to happen on older
P5-core optimized applications that have not been
optimized for modern, out-of-order execution
microarchitectures. The newer versions of the IA-32
compilers remove most or all of these bad store-to-load
forwarding cases but they are still found in many old
legacy P5 optimized applications and benchmarks. This
bad store-forwarding case is a big performance issue for
P6-based processors and other modern processors, but due
to the even deeper pipeline of the Pentium 4 processor,
these cases are even more costly in performance.

FP/SSE Execution Units
The Floating-Point (FP) execution cluster of the Pentium
4 processor is where the floating-point, MMX, SSE, and
SSE2 instructions are executed. These instructions
typically have operands from 64 to 128 bits in width. The
FP/SSE register file has 128 entries and each register is
128 bits wide. This execution cluster has two 128-bit
execution ports that can each begin a new operation every
clock cycle. One execution port is for 128-bit general
execution and one is for 128-bit register-to-register moves
and memory stores. The FP/SSE engine can also
complete a full 128-bit load each clock cycle.

Early in the development cycle of the Pentium 4
processor, we had two full FP/SSE execution units, but
this cost a lot of hardware and did not buy very much
performance for most FP/SSE applications. Instead, we
optimized the cost/performance tradeoff with a simple
second port that does FP/SSE moves and FP/SSE store
data primitives. This tradeoff was shown to buy most of

the performance of a second full-featured port with much
less die size and power cost.

Many FP/multi-media applications have a fairly balanced
set of multiplies and adds. The machine can usually keep
busy interleaving a multiply and an add every two clock
cycles at much less cost than fully pipelining all the
FP/SSE execution hardware. In the Pentium 4 processor,
the FP adder can execute one Extended-Precision (EP)
addition, one Double-Precision (DP) addition, or two
Single-Precision (SP) additions every clock cycle. This
allows it to complete a 128-bit SSE/SSE2 packed SP or
DP add uop every two clock cycles. The FP multiplier
can execute either one EP multiply every two clocks, or it
can execute one DP multiply or two SP multiplies every
clock. This allows it to complete a 128-bit IEEE
SSE/SSE2 packed SP or DP multiply uop every two clock
cycles giving a peak 6 GFLOPS for single precision or 3
GFLOPS for double precision floating-point at 1.5GHz.

Many multi-media applications interleave adds,
multiplies, and pack/unpack/shuffle operations. For
integer SIMD operations, which are the 64-bit wide MMX
or 128-bit wide SSE2 instructions, there are three
execution units that can run in parallel. The SIMD integer
ALU execution hardware can process 64 SIMD integer
bits per clock cycle. This allows the unit to do a new 128-
bit SSE2 packed integer add uop every two clock cycles.
A separate shuffle/unpack execution unit can also process
64 SIMD integer bits per clock cycle allowing it to do a
full 128-bit shuffle/unpack uop operation each two clock
cycles. MMX/SSE2 SIMD integer multiply instructions
use the FP multiply hardware mentioned above to also do
a 128-bit packed integer multiply uop every two clock
cycles.

The FP divider executes all divide, square root, and
remainder uops. It is based on a double-pumped SRT
radix-2 algorithm, producing two bits of quotient (or
square root) every clock cycle.

Achieving significantly higher floating-point and multi-
media performance requires much more than just fast
execution units. It requires a balanced set of capabilities
that work together. These programs often have many
long latency operations in their inner loops. The very
deep buffering of the Pentium 4 processor (126 uops and
48 loads in flight) allows the machine to examine a large
section of the program at once. The out-of-order-
execution hardware often unrolls the inner execution loop
of these programs numerous times in its execution
window. This dynamic unrolling allows the Pentium 4
processor to overlap the long-latency FP/SSE and
memory instructions by finding many independent
instructions to work on simultaneously. This deep
window buys a lot more performance for most FP/multi-
media applications than more execution units would.

Intel Technology Journal Q1, 2001

The Microarchitecture of the Pentium 4 Processor 11

FP/multi-media applications usually need a very high
bandwidth memory subsystem. Sometimes FP and multi-
media applications do not fit well in the L1 data cache but
do fit in the L2 cache. To optimize these applications the
Pentium 4 processor has a high bandwidth path from the
L2 data cache to the L1 data. Some FP/multi-media
applications stream data from memory–no practical cache
size will hold the data. They need a high bandwidth path
to main memory to perform well. The long 128-byte L2
cache lines together with the hardware prefetcher
described below help to prefetch the data that the
application will soon need, effectively hiding the long
memory latency. The high bandwidth system bus of the
Pentium 4 processor allows this prefetching to help keep
the execution engine well fed with streaming data.

Memory Subsystem
The Pentium 4 processor has a highly capable memory
subsystem to enable the new, emerging, high-bandwidth
stream-oriented applications such as 3D, video, and
content creation. The memory subsystem includes the
Level 2 (L2) cache and the system bus. The L2 cache
stores data that cannot fit in the Level 1 (L1) caches. The
external system bus is used to access main memory when
the L2 cache has a cache miss and also to access the
system I/O devices.

Level 2 Instruction and Data Cache
The L2 cache is a 256K-byte cache that holds both
instructions that miss the Trace Cache and data that miss
the L1 data cache. The L2 cache is organized as an 8-way
set-associative cache with 128 bytes per cache line.
These 128-byte cache lines consist of two 64-byte sectors.
A miss in the L2 cache typically initiates two 64-byte
access requests to the system bus to fill both halves of the
cache line. The L2 cache is a write-back cache that
allocates new cache lines on load or store misses. It has a
net load-use access latency of seven clock cycles. A new
cache operation can begin every two processor clock
cycles for a peak bandwidth of 48Gbytes per second,
when running at 1.5GHz.

Associated with the L2 cache is a hardware prefetcher that
monitors data access patterns and prefetches data
automatically into the L2 cache. It attempts to stay 256
bytes ahead of the current data access locations. This
prefetcher remembers the history of cache misses to
detect concurrent, independent streams of data that it tries
to prefetch ahead of use in the program. The prefetcher
also tries to minimize prefetching unwanted data that can
cause over utilization of the memory system and delay the
real accesses the program needs.

400MHz System Bus
The Pentium 4 processor has a system bus with 3.2
Gbytes per second of bandwidth. This high bandwidth is
a key enabler for applications that stream data from
memory. This bandwidth is achieved with a 64-bit wide
bus capable of transferring data at a rate of 400MHz. It
uses a source-synchronous protocol that quad-pumps the
100MHz bus to give 400 million data transfers per
second. It has a split-transaction, deeply pipelined
protocol to allow the memory subsystem to overlap many
simultaneous requests to actually deliver high memory
bandwidths in a real system. The bus protocol has a 64-
byte access length.

PERFORMANCE
The Pentium 4 processor delivers the highest
SPECint_base performance of any processor in the world.
It also delivers world-class SPECfp2000 performance.
These are industry standard benchmarks that evaluate
general integer and floating-point application
performance.

Figure 8 shows the performance comparison of a Pentium
4 processor at 1.5GHz compared to a Pentium III
processor at 1GHz for various applications. The integer
applications are in the 15-20% performance gain while
the FP and multi-media applications are in the 30-70%
performance advantage range. For FSPEC 2000 the new
SSE/SSE2 instructions buy about 5% performance gain
compared to an x87-only version. As the compiler
improves over time the gain from these new instructions
will increase. Also, as the relative frequency of the
Pentium 4 processor increases over time (as its design
matures), all these performance deltas will increase.

1.20 1.13

1.75

1.47 1.43 1.38
1.25

0.0

0.5

1.0

1.5

2.0

ISP EC2000 Wins tone
2000 CC

FSP EC2000 Video
Enc oding

3D Gaming Video Editing MP 3
Enc oding

R
el

at
iv

e
P

er
fo

rm
an

ce

P3-1GHz
P4P-1.5GHz

Figure 8: Performance comparison

For a more complete performance brief covering many
application performance areas on the Pentium 4
processor, go to
http://www.intel.com/procs/perf/pentium4/.

CONCLUSION
The Pentium 4 processor is a new, state-of-the-art

Intel Technology Journal Q1, 2001

The Microarchitecture of the Pentium 4 Processor 12

processor microarchitecture and design. It is the
beginning of a new family of processors that utilize the
new Intel NetBurst microarchitecture. Its deeply
pipelined design delivers world-leading frequencies and
performance. It uses many novel microarchitectural ideas
including a Trace Cache, double-clocked ALU, new low-
latency L1 data cache algorithms, and a new high
bandwidth system bus. It delivers world-class
performance in the areas where added performance makes
a difference including media rich environments (video,
sound, and speech), 3D applications, workstation
applications, and content creation.

ACKNOWLEDGMENTS
The authors thank all the architects, designers, and
validators who contributed to making this processor into a
real product.

REFERENCES
1. D. Sager, G. Hinton, M. Upton, T. Chappell, T.

Fletcher, S. Samaan, and R. Murray, “A 0.18um
CMOS IA32 Microprocessor with a 4GHz Integer
Execution Unit,” International Solid State Circuits
Conference, Feb 2001.

2. Doug Carmean, “Inside the High-Performance Intel®
Pentium® 4 Processor Micro-architecture” Intel
Developer Forum, Fall 2000 at
ftp://download.intel.com/design/idf/fall2000/presenta
tions/pda/pda_s01_cd.pdf

3. IA-32 Intel Architecture Software Developer’s
Manual Volume 1: Basic Architecture at
http://developer.intel.com/design/pentium4/manuals/
245470.htm.

4. Intel® Pentium® 4 Processor Optimization Reference
Manual at
http://developer.intel.com/design/pentium4/manuals/
248966.htm.

AUTHORS’ BIOGRAPHIES
Glenn Hinton is an Intel Fellow and Director of IA-32
Microarchitecture Development in the Intel Architecture
Group. Hinton joined Intel in 1983. He was one of three
senior architects in 1990 responsible for the P6 processor
microarchitecture, which became the Pentium® Pro,
Pentium® II, Pentium® III, and Celeron™ processors. He
was responsible for the microarchitecture development of
the Pentium® 4 processor. Hinton received a master's
degree in Electrical Engineering from Brigham Young
University in 1983. His e-mail address is
glenn.hinton@intel.com.

Dave Sager is a Principal Engineer/Architect in Intel’s
Desktop Platforms Group, and is one of the overall

architects of the Intel® Pentium 4 processor. He joined
Intel in 1995. Dave also worked for 17 years at Digital
Equipment Corporation in their processor research labs.
He graduated from Princeton University with a Ph.D. in
Physics in 1973. His e-mail address is
dave.sager@intel.com.

Michael Upton is a Principal Engineer/Architect in Intel's
Desktop Platforms Group, and is one of the architects of
the Intel® Pentium 4 processor. He completed B.S. and
M.S. degrees in Electrical Engineering from the
University of Washington in 1985 and 1990. After a
number of years in IC design and CAD tool development,
he entered the University of Michigan to study computer
architecture. Upon completion of his Ph.D degree in 1994,
he joined Intel to work on the Pentium® Pro and Pentium
4 processors. His e-mail address is
mike.upton@intel.com.

Darrell Boggs is a Principal Engineer/Architect with Intel
Corporation and has been working as a microarchitect for
nearly 10 years. He graduated from Brigham Young
University with a M.S. in Electrical Engineering. Darrell
played a key role on the Pentium® Pro Processor design,
and was one of the key architects of the Pentium 4
Processor. Darrell holds many patents in the areas of
register renaming; instruction decoding; events and state
recovery mechanisms. His e-mail address is
darrell.boggs@intel.com.

Douglas M. Carmean is a Principal Engineer/Architect
with Intel's Desktop Products Group in Oregon. Doug
was one of the key architects, responsible for definition of
the Intel Pentium® 4 processor. He has been with Intel for
12 years, working on IA-32 processors from the 80486 to
the Intel Pentium 4 processor and beyond. Prior to
joining Intel, Doug worked at ROSS Technology, Sun
Microsystems, Cypress Semiconductor and Lattice
Semiconductor. Doug enjoys fast cars and scary, Italian
motorcycles. His e-mail address is
douglas.m.carmean@intel.com.

Patrice Roussel graduated from the University of Rennes
in 1980 and L'Ecole Superieure d'Electricite in 1982 with
a M.S. degree in signal processing and VLSI design.
Upon graduation, he worked at Cimatel, an Intel/Matra
Harris joint design center. He moved to the USA in 1988
to join Intel in Arizona and worked on the 960CA chip. In
late 1991, he moved to Intel in Oregon to work on the P6
processors. Since 1995, he has been the floating-point
architect of the Pentium® 4 processor. His e-mail address
is patrice.roussel@intel.com.

Copyright © Intel Corporation 2001. This publication
was downloaded from http://developer.intel.com/.

Legal notices at
http://developer.intel.com/sites/developer/tradmarx.htm

Intel Technology Journal Q1, 2001

The Microarchitecture of the Pentium 4 Processor 13

