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ABSTRACT   
This paper describes the Intel® NetBurst™ 
microarchitecture of Intel’s new flagship Pentium® 4 
processor.  This microarchitecture is the basis of a new 
family of processors from Intel starting with the Pentium 
4 processor.  The Pentium 4 processor provides a 
substantial performance gain for many key application 
areas where the end user can truly appreciate the 
difference. 

In this paper we describe the main features and functions 
of the NetBurst microarchitecture.  We present the front-
end of the machine, including its new form of instruction 
cache called the Execution Trace Cache.  We also 
describe the out-of-order execution engine, including the 
extremely low latency double-pumped Arithmetic Logic 
Unit (ALU) that runs at 3GHz.  We also discuss the 
memory subsystem, including the very low latency Level 
1 data cache that is accessed in just two clock cycles.  We 
then touch on some of the key features that allow the 
Pentium 4 processor to have outstanding floating-point 
and multi-media performance.  We provide some key 
performance numbers for this processor, comparing it to 
the Pentium® III processor. 

INTRODUCTION 
The Pentium 4 processor is Intel’s new flagship 
microprocessor that was introduced at 1.5GHz in 
November of 2000.  It implements the new Intel NetBurst  
microarchitecture that features significantly higher clock 
rates and world-class performance.  It includes several 
important new features and innovations that will allow the 
Intel Pentium 4 processor to deliver industry-leading 
performance for the next several years.  This paper 

provides an in-depth examination of the features and 
functions of the Intel NetBurst microarchitecture. 

The Pentium 4 processor is designed to deliver 
performance across applications where end users can truly 
appreciate and experience its performance.  For example, 
it allows a much better user experience in areas such as 
Internet audio and streaming video, image processing, 
video content creation, speech recognition, 3D 
applications and games, multi-media, and multi-tasking 
user environments.  The Pentium 4 processor enables real-
time MPEG2 video encoding and near real-time MPEG4 
encoding, allowing efficient video editing and video 
conferencing.  It delivers world-class performance on 3D 
applications and games, such as Quake 3∗ , enabling a new 
level of realism and visual quality to 3D applications.  

The Pentium 4 processor has 42 million transistors 
implemented on Intel’s 0.18u CMOS process, with six 
levels of aluminum interconnect.  It has a die size of 217 
mm2 and it consumes 55 watts of power at 1.5GHz.  Its 
3.2 GB/second system bus helps provide the high data 
bandwidths needed to supply data to today’s and 
tomorrow’s demanding applications.  It adds 144 new 
128-bit Single Instruction Multiple Data (SIMD) 
instructions called SSE2 (Streaming SIMD Extension 2) 
that improve performance for multi-media, content 
creation, scientific, and engineering applications. 

                                                           
∗ Other brands and names are the property of their 
respective owners.  
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OVERVIEW OF THE NETBURST™ 
MICROARCHITECTURE  
A fast processor requires balancing and tuning of many 
microarchitectural features that compete for processor die 
cost and for design and validation efforts.  Figure 1 shows 
the basic Intel NetBurst microarchitecture of the Pentium 
4 processor.  As you can see, there are four main sections: 
the in-order front end, the out-of-order execution engine, 
the integer and floating-point execution units, and the 
memory subsystem. 
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Figure 1: Basic block diagram 

In-Order Front End 
The in-order front end is the part of the machine that 
fetches the instructions to be executed next in the program 
and prepares them to be used later in the machine 
pipeline.  Its job is to supply a high-bandwidth stream of 
decoded instructions to the out-of-order execution core, 
which will do the actual completion of the instructions.  
The front end has highly accurate branch prediction logic 
that uses the past history of program execution to 
speculate where the program is going to execute next.  
The predicted instruction address, from this front-end 
branch prediction logic, is used to fetch instruction bytes 
from the Level 2 (L2) cache.  These IA-32 instruction 
bytes are then decoded into basic operations called uops 
(micro-operations) that the execution core is able to 
execute. 

The NetBurst microarchitecture has an advanced form of 
a Level 1 (L1) instruction cache called the Execution 
Trace Cache.  Unlike conventional instruction caches, the 
Trace Cache sits between the instruction decode logic and 
the execution core as shown in Figure 1.  In this location 
the Trace Cache is able to store the already decoded IA-
32 instructions or uops.  Storing already decoded 
instructions removes the IA-32 decoding from the main 
execution loop.  Typically the instructions are decoded 

once and placed in the Trace Cache and then used 
repeatedly from there like a normal instruction cache on 
previous machines.  The IA-32 instruction decoder is only 
used when the machine misses the Trace Cache and needs 
to go to the L2 cache to get and decode new IA-32 
instruction bytes. 

Out-of-Order Execution Logic 
The out-of-order execution engine is where the 
instructions are prepared for execution.  The out-of-order 
execution logic has several buffers that it uses to smooth 
and re-order the flow of instructions to optimize 
performance as they go down the pipeline and get 
scheduled for execution.  Instructions are aggressively re-
ordered to allow them to execute as quickly as their input 
operands are ready.  This out-of-order execution allows 
instructions in the program following delayed instructions 
to proceed around them as long as they do not depend on 
those delayed instructions.  Out-of-order execution allows 
the execution resources such as the ALUs and the cache 
to be kept as busy as possible executing independent 
instructions that are ready to execute.  

The retirement logic is what reorders the instructions, 
executed in an out-of-order manner, back to the original 
program order.  This retirement logic receives the 
completion status of the executed instructions from the 
execution units and processes the results so that the proper 
architectural state is committed (or retired) according to 
the program order.  The Pentium 4 processor can retire up 
to three uops per clock cycle.  This retirement logic 
ensures that exceptions occur only if the operation 
causing the exception is the oldest, non-retired operation 
in the machine.  This logic also reports branch history 
information to the branch predictors at the front end of the 
machine so they can train with the latest known-good 
branch-history information. 

Integer and Floating-Point Execution Units 
The execution units are where the instructions are actually 
executed.  This section includes the register files that store 
the integer and floating-point data operand values that the 
instructions need to execute.  The execution units include 
several types of integer and floating-point execution units 
that compute the results and also the L1 data cache that is 
used for most load and store operations. 

Memory Subsystem 
Figure 1 also shows the memory subsystem.  This 
includes the L2 cache and the system bus.  The L2 cache 
stores both instructions and data that cannot fit in the 
Execution Trace Cache and the L1 data cache.  The 
external system bus is connected to the backside of the 
second-level cache and is used to access main memory 
when the L2 cache has a cache miss, and to access the 
system I/O resources. 
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CLOCK RATES 
Processor microarchitectures can be pipelined to different 
degrees.  The degree of pipelining is a microarchitectural 
decision.  The final frequency of a specific processor 
pipeline on a given silicon process technology depends 
heavily on how deeply the processor is pipelined.  When 
designing a new processor, a key design decision is the 
target design frequency of operation.  The frequency 
target determines how many gates of logic can be 
included per pipeline stage in the design.  This then helps 
determine how many pipeline stages there are in the 
machine. 

There are tradeoffs when designing for higher clock rates.  
Higher clock rates need deeper pipelines so the efficiency 
at the same clock rate goes down.  Deeper pipelines make 
many things take more clock cycles, such as mispredicted 
branches and cache misses, but usually more than make 
up for the lower per-clock efficiency by allowing the 
design to run at a much higher clock rate.  For example, a 
50% increase in frequency might buy only a 30% increase 
in net performance, but this frequency increase still 
provides a significant overall performance increase.  
High-frequency design also depends heavily on circuit 
design techniques, design methodology, design tools, 
silicon process technology, power and thermal 
constraints, etc. At higher frequencies, clock skew and 
jitter and latch delay become a much bigger percentage of 
the clock cycle, reducing the percentage of the clock cycle 
usable by actual logic.  The deeper pipelines make the 
machine more complicated and require it to have deeper 
buffering to cover the longer pipelines. 

Historical Trend of Processor Frequencies 
Figure 2 shows the relative clock frequency of Intel’s last 
six processor cores.  The vertical axis shows the relative 
clock frequency, and the horizontal axis shows the various 
processors relative to each other.   
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Figure 2: Relative frequencies of Intel’s processors 

Figure 2 shows that the 286, Intel386™, Intel486™ and 
Pentium® (P5) processors had similar pipeline depths–
they would run at similar clock rates if they were all 
implemented on the same silicon process technology.  
They all have a similar number of gates of logic per clock 
cycle.  The P6 microarchitecture lengthened the processor 
pipelines, allowing fewer gates of logic per pipeline stage, 
which delivered significantly higher frequency and 
performance.  The P6 microarchitecture approximately 
doubled the number of pipeline stages compared to the 
earlier processors and was able to achieve about a 1.5 
times higher frequency on the same process technology.   

The NetBurst microarchitecture was designed to have an 
even deeper pipeline (about two times the P6 
microarchitecture) with even fewer gates of logic per 
clock cycle to allow an industry-leading clock rate. 
Compared to the P6 family of processors, the Pentium 4 
processor was designed with a greater than 1.6 times 
higher frequency target for its main clock rate, on the 
same process technology.  This allows it to operate at a 
much higher frequency than the P6 family of processors 
on the same silicon process technology.  At its 
introduction in November 2000, the Pentium 4 processor 
was at 1.5 times the frequency of the Pentium III 
processor.  Over time this frequency delta will increase as 
the Pentium 4 processor design matures. 

Different parts of the Pentium 4 processor run at different 
clock frequencies.  The frequency of each section of logic 
is set to be appropriate for the performance it needs to 
achieve.  The highest frequency section (fast clock) was 
set equal to the speed of the critical ALU-bypass 
execution loop that is used for most instructions in integer 
programs.  Most other parts of the chip run at half of the 
3GHz fast clock since this makes these parts much easier 
to design.  A few sections of the chip run at a quarter of 
this fast-clock frequency making them also easier to 
design. The bus logic runs at 100MHz, to match the 
system bus needs.  

As an example of the pipelining differences, Figure 3 
shows a key pipeline in both the P6 and the Pentium 4 
processors: the mispredicted branch pipeline. This 
pipeline covers the cycles it takes a processor to recover 
from a branch that went a different direction than the 
early fetch hardware predicted at the beginning of the 
machine pipeline.  As shown, the Pentium 4 processor has 
a 20-stage misprediction pipeline while the P6 
microarchitecture has a 10-stage misprediction pipeline.  
By dividing the pipeline into smaller pieces, doing less 
work during each pipeline stage (fewer gates of logic), the 
clock rate can be a lot higher. 
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Figure 3: Misprediction Pipeline 
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Figure 4: Pentium® 4 processor microarchitecture

NETBURST MICROARCHITECTURE 
Figure 4 shows a more detailed block diagram of the 
NetBurst microarchitecture of the Pentium 4 processor.  
The top-left portion of the diagram shows the front end of 
the machine.  The middle of the diagram illustrates the 
out-of-order buffering logic, and the bottom of the 
diagram shows the integer and floating-point execution 
units and the L1 data cache.  On the right of the diagram 
is the memory subsystem. 

Front End 
The front end of the Pentium 4 processor consists of 
several units as shown in the upper part of Figure 4.  It 
has the Instruction TLB (ITLB), the front-end branch 
predictor (labeled here Front-End BTB), the IA-32 
Instruction Decoder, the Trace Cache, and the Microcode 
ROM. 
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Trace Cache 
The Trace Cache is the primary or Level 1 (L1) 
instruction cache of the Pentium 4 processor and delivers 
up to three uops per clock to the out-of-order execution 
logic.  Most instructions in a program are fetched and 
executed from the Trace Cache.  Only when there is a 
Trace Cache miss does the NetBurst microarchitecture 
fetch and decode instructions from the Level 2 (L2) 
cache.  This occurs about as often as previous processors 
miss their L1 instruction cache.  The Trace Cache has a 
capacity to hold up to 12K uops.  It has a similar hit rate 
to an 8K to 16K byte conventional instruction cache. 

IA-32 instructions are cumbersome to decode.  The 
instructions have a variable number of bytes and have 
many different options.  The instruction decoding logic 
needs to sort this all out and convert these complex 
instructions into simple uops that the machine knows how 
to execute.  This decoding is especially difficult when 
trying to decode several IA-32 instructions each clock 
cycle when running at the high clock frequency of the 
Pentium 4 processor.  A high-bandwidth IA-32 decoder, 
that is capable of decoding several instructions per clock 
cycle, takes several pipeline stages to do its work.  When 
a branch is mispredicted, the recovery time is much 
shorter if the machine does not have to re-decode the IA-
32 instructions needed to resume execution at the 
corrected branch target location.  By caching the uops of 
the previously decoded instructions in the Trace Cache, 
the NetBurst microarchitecture bypasses the instruction 
decoder most of the time thereby reducing misprediction 
latency and allowing the decoder to be simplified: it only 
needs to decode one IA-32 instruction per clock cycle.  

The Execution Trace Cache takes the already-decoded 
uops from the IA-32 Instruction Decoder and assembles 
or builds them into program-ordered sequences of uops 
called traces.  It packs the uops into groups of six uops per 
trace line.  There can be many trace lines in a single trace.  
These traces consist of uops running sequentially down 
the predicted path of the IA-32 program execution.  This 
allows the target of a branch to be included in the same 
trace cache line as the branch itself even if the branch and 
its target instructions are thousands of bytes apart in the 
program.  

Conventional instruction caches typically provide 
instructions up to and including a taken branch instruction 
but none after it during that clock cycle.  If the branch is 
the first instruction in a cache line, only the single branch 
instruction is delivered that clock cycle.  Conventional 
instruction caches also often add a clock delay getting to 
the target of the taken branch, due to delays getting 
through the branch predictor and then accessing the new 
location in the instruction cache.  The Trace Cache avoids 
both aspects of this instruction delivery delay for 
programs that fit well in the Trace Cache. 

The Trace Cache has its own branch predictor that directs 
where instruction fetching needs to go next in the Trace 
Cache.  This Trace Cache predictor (labeled Trace BTB in 
Figure 4) is smaller than the front-end predictor, since its 
main purpose is to predict the branches in the subset of 
the program that is currently in the Trace Cache.  The 
branch prediction logic includes a 16-entry return address 
stack to efficiently predict return addresses, because often 
the same procedure is called from several different call 
sites.  The Trace-Cache BTB, together with the front-end 
BTB, use a highly advanced branch prediction algorithm 
that reduces the branch misprediction rate by about 1/3 
compared to the predictor in the P6 microarchitecture.  

Microcode ROM 
Near the Trace Cache is the microcode ROM.  This ROM 
is used for complex IA-32 instructions, such as string 
move, and for fault and interrupt handling.  When a 
complex instruction is encountered, the Trace Cache 
jumps into the microcode ROM which then issues the 
uops needed to complete the operation.  After the 
microcode ROM finishes sequencing uops for the current 
IA-32 instruction, the front end of the machine resumes 
fetching uops from the Trace Cache. 

The uops that come from the Trace Cache and the 
microcode ROM are buffered in a simple, in-order uop 
queue that helps smooth the flow of uops going to the out-
of-order execution engine.  

ITLB and Front-End BTB 
The IA-32 Instruction TLB and front-end BTB, shown at 
the top of Figure 4, steer the front end when the machine 
misses the Trace Cache.  The ITLB translates the linear 
instruction pointer addresses given to it into physical 
addresses needed to access the L2 cache.  The ITLB also 
performs page-level protection checking.  

Hardware instruction prefetching logic associated with the 
front-end BTB fetches IA-32 instruction bytes from the 
L2 cache that are predicted to be executed next.  The fetch 
logic attempts to keep the instruction decoder fed with the 
next IA-32 instructions the program needs to execute. 
This instruction prefetcher is guided by the branch 
prediction logic (branch history table and branch target 
buffer listed here as the front-end BTB) to know what to 
fetch next.  Branch prediction allows the processor to 
begin fetching and executing instructions long before the 
previous branch outcomes are certain.  The front-end 
branch predictor is quite large–4K branch target entries–to 
capture most of the branch history information for the 
program.  If a branch is not found in the BTB, the branch 
prediction hardware statically predicts the outcome of the 
branch based on the direction of the branch displacement 
(forward or backward).  Backward branches are assumed 
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to be taken and forward branches are assumed to not be 
taken.  

IA-32 Instruction Decoder 
The instruction decoder receives IA-32 instruction bytes 
from the L2 cache 64-bits at a time and decodes them into 
primitives, called uops, that the machine knows how to 
execute.  This single instruction decoder can decode at a 
maximum rate of one IA-32 instruction per clock cycle. 
Many IA-32 instructions are converted into a single uop, 
and others need several uops to complete the full 
operation.  If more than four uops are needed to complete 
an IA-32 instruction, the decoder sends the machine into 
the microcode ROM to do the instruction.  Most 
instructions do not need to jump to the microcode ROM 
to complete.  An example of a many-uop instruction is 
string move, which could have thousands of uops. 

Out-of-Order Execution Logic 
The out-of-order execution engine consists of the 
allocation, renaming, and scheduling functions.  This part 
of the machine re-orders instructions to allow them to 
execute as quickly as their input operands are ready. 

The processor attempts to find as many instructions as 
possible to execute each clock cycle.  The out-of-order 
execution engine will execute as many ready instructions 
as possible each clock cycle, even if they are not in the 
original program order.  By looking at a larger number of 
instructions from the program at once, the out-of-order 
execution engine can usually find more ready-to-execute, 
independent instructions to begin.  The NetBurst 
microarchitecture has much deeper buffering than the P6 
microarchitecture to allow this.  It can have up to 126 
instructions in flight at a time and have up to 48 loads and 
24 stores allocated in the machine at a time. 

The Allocator 
The out-of-order execution engine has several buffers to 
perform its re-ordering, tracking, and sequencing 
operations.  The Allocator logic allocates many of the key 
machine buffers needed by each uop to execute.  If a 
needed resource, such as a register file entry, is 
unavailable for one of the three uops coming to the 
Allocator this clock cycle, the Allocator will stall this part 
of the machine.  When the resources become available the 
Allocator assigns them to the requesting uops and allows 
these satisfied uops to flow down the pipeline to be 
executed.  The Allocator allocates a Reorder Buffer 

(ROB) entry, which tracks the completion status of one of 
the 126 uops that could be in flight simultaneously in the 
machine.  The Allocator also allocates one of the 128 
integer or floating-point register entries for the result data 
value of the uop, and possibly a load or store buffer used 
to track one of the 48 loads or 24 stores in the machine 
pipeline.  In addition, the Allocator allocates an entry in 
one of the two uop queues in front of the instruction 
schedulers.   

Register Renaming 
The register renaming logic renames the logical IA-32 
registers such as EAX onto the processors 128-entry 
physical register file.  This allows the small, 8-entry, 
architecturally defined IA-32 register file to be 
dynamically expanded to use the 128 physical registers in 
the Pentium 4 processor.  This renaming process removes 
false conflicts caused by multiple instructions creating 
their simultaneous but unique versions of a register such 
as EAX.  There could be dozens of unique instances of 
EAX in the machine pipeline at one time.  The renaming 
logic remembers the most current version of each register, 
such as EAX, in the Register Alias Table (RAT) so that a 
new instruction coming down the pipeline can know 
where to get the correct current instance of each of its 
input operand registers. 

As shown in Figure 5 the NetBurst microarchitecture 
allocates and renames the registers somewhat differently 
than the P6 microarchitecture.  On the left of Figure 5, the 
P6 scheme is shown.  It allocates the data result registers 
and the ROB entries as a single, wide entity with a data 
and a status field.  The ROB data field is used to store the 
data result value of the uop, and the ROB status field is 
used to track the status of the uop as it is executing in the 
machine.  These ROB entries are allocated and 
deallocated sequentially and are pointed to by a sequence 
number that indicates the relative age of these entries.  
Upon retirement, the result data is physically copied from 
the ROB data result field into the separate Retirement 
Register File (RRF).  The RAT points to the current 
version of each of the architectural registers such as EAX.  
This current register could be in the ROB or in the RRF. 

The NetBurst microarchitecture allocation scheme is 
shown on the right of Figure 5.  It allocates the ROB 
entries and the result data Register File (RF) entries 
separately.   
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Figure 5: Pentium® III vs. Pentium® 4 processor register allocation 

The ROB entries, which track uop status, consist only of 
the status field and are allocated and deallocated 
sequentially.  A sequence number assigned to each uop 
indicates its relative age.  The sequence number points to 
the uop’s entry in the ROB array, which is similar to the 
P6 microarchitecture.  The Register File entry is allocated 
from a list of available registers in the 128-entry RF–not 
sequentially like the ROB entries.  Upon retirement, no 
result data values are actually moved from one physical 
structure to another. 

Uop Scheduling 
The uop schedulers determine when a uop is ready to 
execute by tracking its input register operands.  This is the 
heart of the out-of-order execution engine.  The uop 
schedulers are what allow the instructions to be reordered 
to execute as soon as they are ready, while still 
maintaining the correct dependencies from the original 
program.  The NetBurst microarchitecture has two sets of 
structures to aid in uop scheduling: the uop queues and 
the actual uop schedulers. 

There are two uop queues–one for memory operations 
(loads and stores) and one for non-memory operations.  
Each of these queues stores the uops in strict FIFO (first-
in, first-out) order with respect to the uops in its own 
queue, but each queue is allowed to be read out-of-order 
with respect to the other queue.  This allows the dynamic 
out-of-order scheduling window to be larger than just 
having the uop schedulers do all the reordering work.   

There are several individual uop schedulers that are used 
to schedule different types of uops for the various 
execution units on the Pentium 4 processor as shown in 
Figure 6.  These schedulers determine when uops are 
ready to execute based on the readiness of their dependent 
input register operand sources and the availability of the 
execution resources the uops need to complete their 
operation.   

These schedulers are tied to four different dispatch ports.  
There are two execution unit dispatch ports labeled port 0 
and port 1 in Figure 6.  These ports are fast: they can 
dispatch up to two operations each main processor clock 
cycle.  Multiple schedulers share each of these two 
dispatch ports.  The fast ALU schedulers can schedule on 
each half of the main clock cycle while the other 
schedulers can only schedule once per main processor 
clock cycle.  They arbitrate for the dispatch port when 
multiple schedulers have ready operations at once.  There 
is also a load and a store dispatch port that can dispatch a 
ready load and store each clock cycle.  Collectively, these 
uop dispatch ports can dispatch up to six uops each main 
clock cycle.  This dispatch bandwidth exceeds the front-
end and retirement bandwidth, of three uops per clock, to 
allow for peak bursts of greater than 3 uops per clock and 
to allow higher flexibility in issuing uops to different 
dispatch ports.  Figure 6 also shows the types of 
operations that can be dispatched to each port each clock 
cycle.  
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Figure 6: Dispatch ports in the Pentium® 4 processor

Integer and Floating-Point Execution Units 
The execution units are where the instructions are actually 
executed.  The execution units are designed to optimize 
overall performance by handling the most common cases 
as fast as possible.  There are several different execution 
units in the NetBurst microarchitecture.  The units used to 
execute integer operations include the low-latency integer 
ALUs, the complex integer instruction unit, the load and 
store address generation units, and the L1 data cache.  

Floating-Point (x87), MMX, SSE (Streaming SIMD 
Extension), and SSE2 (Streaming SIMD Extension 2) 
operations are executed by the two floating-point 
execution blocks.  MMX instructions are 64-bit packed 
integer SIMD operations that operate on 8, 16, or 32-bit 
operands.  The SSE instructions are 128-bit packed IEEE 
single-precision floating-point operations.  The Pentium 4 
processor adds new forms of 128-bit SIMD instructions 
called SSE2.  The SSE2 instructions support 128-bit 
packed IEEE double-precision SIMD floating-point 
operations and 128-bit packed integer SIMD operations.  
The packed integer operations support 8, 16, 32, and 64-
bit operands. See  IA-32 Intel Architecture Software 
Developer’s Manual Volume 1: Basic Architecture [3] for 
more detail on these SIMD operations. 

The Integer and floating-point register files sit between 
the schedulers and the execution units.  There is a separate 
128-entry register file for both the integer and the 
floating-point/SSE operations.  Each register file also has 
a multi-clock bypass network that bypasses or forwards 
just-completed results, which have not yet been written 
into the register file, to the new dependent uops.  This 
multi-clock bypass network is needed because of the very 
high frequency of the design. 

Low Latency Integer ALU 
The Pentium 4 processor execution units are designed to 
optimize overall performance by handling the most 
common cases as fast as possible.  The Pentium 4 
processor can do fully dependent ALU operations at twice 
the main clock rate.  The ALU-bypass loop is a key 
closed loop in the processor pipeline.  Approximately 60-
70% of all uops in typical integer programs use this key 
integer ALU loop.  Executing these operations at ½ the 
latency of the main clock helps speed up program 
execution for most programs.  Doing the ALU operations 
in one half a clock cycle does not buy a 2x performance 
increase, but it does improve the performance for most 
integer applications. 

This high-speed ALU core is kept as small as possible to 
minimize the metal length and loading.  Only the essential 
hardware necessary to perform the frequent ALU 
operations is included in this high-speed ALU execution 
loop.  Functions that are not used very frequently, for 
most integer programs, are not put in this key low-latency 
ALU loop but are put elsewhere.  Some examples of 
integer execution hardware put elsewhere are the 
multiplier, shifts, flag logic, and branch processing.   

The processor does ALU operations with an effective 
latency of one-half of a clock cycle.  It does this operation 
in a sequence of three fast clock cycles (the fast clock 
runs at 2x the main clock rate) as shown in Figure 7.  In 
the first fast clock cycle, the low order 16-bits are 
computed and are immediately available to feed the low 
16-bits of a dependent operation the very next fast clock 
cycle.  The high-order 16 bits are processed in the next 
fast cycle, using the carry out just generated by the low 
16-bit operation.  This upper 16-bit result will be 
available to the next dependent operation exactly when 
needed.  This is called a staggered add.  The ALU flags 
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are processed in the third fast cycle.  This staggered add 
means that only a 16-bit adder and its input muxes need to 
be completed in a fast clock cycle.  The low order 16 bits 
are needed at one time in order to begin the access of the 
L1 data cache when used as an address input.  

Bits <15:0>

Bits <31:16>

Flags

 

Figure 7: Staggered ALU add 

Complex Integer Operations 
The simple, very frequent ALU operations go to the high-
speed integer ALU execution units described above.  
Integer operations that are more complex go to separate 
hardware for completion.  Most integer shift or rotate 
operations go to the complex integer dispatch port.  These 
shift operations have a latency of four clocks.  Integer 
multiply and divide operations also have a long latency.  
Typical forms of multiply and divide have a latency of 
about 14 and 60 clocks, respectively. 

Low Latency Level 1 (L1) Data Cache 
The Level 1 (LI) data cache is an 8K-byte cache that is 
used for both integer and floating-point/SSE loads and 
stores.  It is organized as a 4-way set-associative cache 
that has 64 bytes per cache line.  It is a write-through 
cache, which means that writes to it are always copied 
into the L2 cache.  It can do one load and one store per 
clock cycle.   

The latency of load operations is a key aspect of processor 
performance.  This is especially true for IA-32 programs 
that have a lot of loads and stores because of the limited 
number of registers in the instruction set.  The NetBurst 
microarchitecture optimizes for the lowest overall load-
access latency with a small, very low latency 8K byte 
cache backed up by a large, high-bandwidth second-level 
cache with medium latency.  For most IA-32 programs 
this configuration of a small, but very low latency, L1 
data cache followed by a large medium-latency L2 cache 

gives lower net load-access latency and therefore higher 
performance than a bigger, slower L1 cache.  The L1 data 
cache operates with a 2-clock load-use latency for integer 
loads and a 6-clock load-use latency for floating-
point/SSE loads. 

This 2-clock load latency is hard to achieve with the very 
high clock rates of the Pentium 4 processor.  This cache 
uses new access algorithms to enable this very low load-
access latency.  The new algorithm leverages the fact that 
almost all accesses hit the first-level data cache and the 
data TLB (DTLB).   

At this high frequency and with this deep machine 
pipeline, the distance in clocks, from the load scheduler to 
execution, is longer than the load execution latency itself. 
The uop schedulers dispatch dependent operations before 
the parent load has finished executing.  In most cases, the 
scheduler assumes that the load will hit the L1 data cache.  
If the load misses the L1 data cache, there will be 
dependent operations in flight in the pipeline.  These 
dependent operations that have left the scheduler will get 
temporarily incorrect data.  This is a form of data 
speculation.  Using a mechanism known as replay, logic 
tracks and re-executes instructions that use incorrect data. 
Only the dependent operations are replayed: the 
independent ones are allowed to complete. 

There can be up to four outstanding load misses from the 
L1 data cache pending at any one time in the memory 
subsystem. 

Store-to-Load Forwarding 
In an out-of-order-execution processor, stores are not 
allowed to be committed to permanent machine state (the 
L1 data cache, etc.) until after the store has retired.  
Waiting until retirement means that all other preceding 
operations have completely finished.  All faults, 
interrupts, mispredicted branches, etc. must have been 
signaled beforehand to make sure this store is safe to 
perform.  With the very deep pipeline of the Pentium 4 
processor it takes many clock cycles for a store to make it 
to retirement.  Also, stores that are at retirement often 
have to wait for previous stores to complete their update 
of the data cache.  This machine can have up to 24 stores 
in the pipeline at a time.  Sometimes many of them have 
retired but have not yet committed their state into the L1 
data cache.  Other stores may have completed, but have 
not yet retired, so their results are also not yet in the L1 
data cache.  Often loads must use the result of one of 
these pending stores, especially for IA-32 programs, due 
to the limited number of registers available.  To enable 
this use of pending stores, modern out-of-order execution 
processors have a pending store buffer that allows loads to 
use the pending store results before the stores have been 
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written into the L1 data cache.  This process is called 
store-to-load forwarding. 

To make this store-to-load-forwarding process efficient, 
this pending store buffer is optimized to allow efficient 
and quick forwarding of data to dependent loads from the 
pending stores.  The Pentium 4 processor has a 24-entry 
store-forwarding buffer to match the number of stores that 
can be in flight at once.  This forwarding is allowed if a 
load hits the same address as a proceeding, completed, 
pending store that is still in the store-forwarding buffer. 
The load must also be the same size or smaller than the 
pending store and have the same beginning physical 
address as the store, for the forwarding to take place.  This 
is by far the most common forwarding case.  If the bytes 
requested by a load only partially overlap a pending store 
or need to have some bytes come simultaneously from 
more than one pending store, this store-to-load forwarding 
is not allowed.  The load must get its data from the cache 
and cannot complete until the store has committed its state 
to the cache. 

This disallowed store-to-load forwarding case can be 
quite costly, in terms of performance loss, if it happens 
very often.  When it occurs, it tends to happen on older 
P5-core optimized applications that have not been 
optimized for modern, out-of-order execution 
microarchitectures.  The newer versions of the IA-32 
compilers remove most or all of these bad store-to-load 
forwarding cases but they are still found in many old 
legacy P5 optimized applications and benchmarks.  This 
bad store-forwarding case is a big performance issue for 
P6-based processors and other modern processors, but due 
to the even deeper pipeline of the Pentium 4 processor, 
these cases are even more costly in performance. 

FP/SSE Execution Units 
The Floating-Point (FP) execution cluster of the Pentium 
4 processor is where the floating-point, MMX, SSE, and 
SSE2 instructions are executed.  These instructions 
typically have operands from 64 to 128 bits in width.  The 
FP/SSE register file has 128 entries and each register is 
128 bits wide.  This execution cluster has two 128-bit 
execution ports that can each begin a new operation every 
clock cycle.  One execution port is for 128-bit general 
execution and one is for 128-bit register-to-register moves 
and memory stores.  The FP/SSE engine can also 
complete a full 128-bit load each clock cycle.   

Early in the development cycle of the Pentium 4 
processor, we had two full FP/SSE execution units, but 
this cost a lot of hardware and did not buy very much 
performance for most FP/SSE applications.  Instead, we 
optimized the cost/performance tradeoff with a simple 
second port that does FP/SSE moves and FP/SSE store 
data primitives.  This tradeoff was shown to buy most of 

the performance of a second full-featured port with much 
less die size and power cost.  

Many FP/multi-media applications have a fairly balanced 
set of multiplies and adds.  The machine can usually keep 
busy interleaving a multiply and an add every two clock 
cycles at much less cost than fully pipelining all the 
FP/SSE execution hardware.  In the Pentium 4 processor, 
the FP adder can execute one Extended-Precision (EP) 
addition, one Double-Precision (DP) addition, or two 
Single-Precision (SP) additions every clock cycle.  This 
allows it to complete a 128-bit SSE/SSE2 packed SP or 
DP add uop every two clock cycles.  The FP multiplier 
can execute either one EP multiply every two clocks, or it 
can execute one DP multiply or two SP multiplies every 
clock.  This allows it to complete a 128-bit IEEE 
SSE/SSE2 packed SP or DP multiply uop every two clock 
cycles giving a peak 6 GFLOPS for single precision or 3 
GFLOPS for double precision floating-point at 1.5GHz. 

Many multi-media applications interleave adds, 
multiplies, and pack/unpack/shuffle operations.  For 
integer SIMD operations, which are the 64-bit wide MMX 
or 128-bit wide SSE2 instructions, there are three 
execution units that can run in parallel.  The SIMD integer 
ALU execution hardware can process 64 SIMD integer 
bits per clock cycle.  This allows the unit to do a new 128-
bit SSE2 packed integer add uop every two clock cycles. 
A separate shuffle/unpack execution unit can also process 
64 SIMD integer bits per clock cycle allowing it to do a 
full 128-bit shuffle/unpack uop operation each two clock 
cycles.  MMX/SSE2 SIMD integer multiply instructions 
use the FP multiply hardware mentioned above to also do 
a 128-bit packed integer multiply uop every two clock 
cycles.  

The FP divider executes all divide, square root, and 
remainder uops.  It is based on a double-pumped SRT 
radix-2 algorithm, producing two bits of quotient (or 
square root) every clock cycle. 

Achieving significantly higher floating-point and multi-
media performance requires much more than just fast 
execution units.  It requires a balanced set of capabilities 
that work together.  These programs often have many 
long latency operations in their inner loops.  The very 
deep buffering of the Pentium 4 processor (126 uops and 
48 loads in flight) allows the machine to examine a large 
section of the program at once.  The out-of-order-
execution hardware often unrolls the inner execution loop 
of these programs numerous times in its execution 
window.  This dynamic unrolling allows the Pentium 4 
processor to overlap the long-latency FP/SSE and 
memory instructions by finding many independent 
instructions to work on simultaneously.  This deep 
window buys a lot more performance for most FP/multi-
media applications than more execution units would.  
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FP/multi-media applications usually need a very high 
bandwidth memory subsystem.  Sometimes FP and multi-
media applications do not fit well in the L1 data cache but 
do fit in the L2 cache.  To optimize these applications the 
Pentium 4 processor has a high bandwidth path from the 
L2 data cache to the L1 data.  Some FP/multi-media 
applications stream data from memory–no practical cache 
size will hold the data.  They need a high bandwidth path 
to main memory to perform well.  The long 128-byte L2 
cache lines together with the hardware prefetcher 
described below help to prefetch the data that the 
application will soon need, effectively hiding the long 
memory latency.  The high bandwidth system bus of the 
Pentium 4 processor allows this prefetching to help keep 
the execution engine well fed with streaming data. 

Memory Subsystem 
The Pentium 4 processor has a highly capable memory 
subsystem to enable the new, emerging, high-bandwidth 
stream-oriented applications such as 3D, video, and 
content creation.  The memory subsystem includes the 
Level 2 (L2) cache and the system bus.  The L2 cache 
stores data that cannot fit in the Level 1 (L1) caches.  The 
external system bus is used to access main memory when 
the L2 cache has a cache miss and also to access the 
system I/O devices. 

Level 2 Instruction and Data Cache 
The L2 cache is a 256K-byte cache that holds both 
instructions that miss the Trace Cache and data that miss 
the L1 data cache.  The L2 cache is organized as an 8-way 
set-associative cache with 128 bytes per cache line.  
These 128-byte cache lines consist of two 64-byte sectors. 
A miss in the L2 cache typically initiates two 64-byte 
access requests to the system bus to fill both halves of the 
cache line.  The L2 cache is a write-back cache that 
allocates new cache lines on load or store misses.  It has a 
net load-use access latency of seven clock cycles.  A new 
cache operation can begin every two processor clock 
cycles for a peak bandwidth of 48Gbytes per second, 
when running at 1.5GHz.  

Associated with the L2 cache is a hardware prefetcher that 
monitors data access patterns and prefetches data 
automatically into the L2 cache.  It attempts to stay 256 
bytes ahead of the current data access locations.  This 
prefetcher remembers the history of cache misses to 
detect concurrent, independent streams of data that it tries 
to prefetch ahead of use in the program.  The prefetcher 
also tries to minimize prefetching unwanted data that can 
cause over utilization of the memory system and delay the 
real accesses the program needs. 

400MHz System Bus 
The Pentium 4 processor has a system bus with 3.2 
Gbytes per second of bandwidth.  This high bandwidth is 
a key enabler for applications that stream data from 
memory.  This bandwidth is achieved with a 64-bit wide 
bus capable of transferring data at a rate of 400MHz.  It 
uses a source-synchronous protocol that quad-pumps the 
100MHz bus to give 400 million data transfers per 
second.  It has a split-transaction, deeply pipelined 
protocol to allow the memory subsystem to overlap many 
simultaneous requests to actually deliver high memory 
bandwidths in a real system.  The bus protocol has a 64-
byte access length.  

PERFORMANCE 
The Pentium 4 processor delivers the highest 
SPECint_base performance of any processor in the world. 
It also delivers world-class SPECfp2000 performance.  
These are industry standard benchmarks that evaluate 
general integer and floating-point application 
performance. 

Figure 8 shows the performance comparison of a Pentium 
4 processor at 1.5GHz compared to a Pentium III 
processor at 1GHz for various applications.  The integer 
applications are in the 15-20% performance gain while 
the FP and multi-media applications are in the 30-70% 
performance advantage range.  For FSPEC 2000 the new 
SSE/SSE2 instructions buy about 5% performance gain 
compared to an x87-only version. As the compiler 
improves over time the gain from these new instructions 
will increase. Also, as the relative frequency of the 
Pentium 4 processor increases over time (as its design 
matures), all these performance deltas will increase.  
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Figure 8: Performance comparison 

For a more complete performance brief covering many 
application performance areas on the Pentium 4 
processor, go to 
http://www.intel.com/procs/perf/pentium4/.   

CONCLUSION 
The Pentium 4 processor is a new, state-of-the-art 
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processor microarchitecture and design.  It is the 
beginning of a new family of processors that utilize the 
new Intel NetBurst microarchitecture.  Its deeply 
pipelined design delivers world-leading frequencies and 
performance.  It uses many novel microarchitectural ideas 
including a Trace Cache, double-clocked ALU, new low-
latency L1 data cache algorithms, and a new high 
bandwidth system bus.  It delivers world-class 
performance in the areas where added performance makes 
a difference including media rich environments (video, 
sound, and speech), 3D applications, workstation 
applications, and content creation. 
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