
© Autores V1.1

Informatics
Ingeniería en Electrónica y Automática Industrial

Control flow

Juan Ignacio Pérez

© Autores V1.1 2

Control Flow Statements in C language

 Introduction
 if-else

 switch

 while

 for

 do-while

 break

 continue

 return

 goto

© Autores V1.1 3

Introduction

 Control flow statements specify the order in which
computations are performed

 Different types

Conditionals: Take a decision among two or more options
depending on the evaluation of a condition.
 if else and switch

Loops: Iterations of operations (with condition evaluation)
 for, while and do-while

 Jump: They change unconditionally the order of execution.
 continue, break, return and goto

Labels: Used to identify lines in a program.
 case, default and «label:»

© Autores V1.1 4

if-else statement (I)

if (expr) stat1;

 else stat2;

 If expr is true then stat1 is processed

 If expr is false, stat2 is processed

expr is true if its value is different than cero

else stat2; is optional

© Autores V1.1 5

if-else statement (II)

 stat1 and stat2 can be blocks of sentences between brackets

if (expr)

{

 /* Block of sentences 1 */

}

else

{

 /* Block of sentences 2 */

}

 Different if-else blocks can be grouped with brackets

© Autores V1.1 6

if-else statement (III)

if (expr1)

{

 if (expr2)

 if (expr3) stat31;

 else stat32;

}

else stat2;

stat31 is processed if expr1, expr2 and expr3 are true

stat32 is processed if expr1, expr2 are true and expr3
is false

stat2 is processed if expr1 is false (without considering
expr2 and expr3)

© Autores V1.1 7

if-else statement (IV)

 Nested if-else statements

 Brackets determine priority among if and else

Without brackets

Each else is associated with the closest if

Each block of statements is processed independently

if (expr1) stat1;

else if (expr2) stat2;

else if (expr3) stat3;

...

else if (exprN) statN;

else statN+1;

 statN is processed just if exprN is true

 statN+1 is processed just if none of the previous statements
have been precessed

© Autores V1.1 8

switch statement (I)

switch (expr)

{

 case const-expr1:

 /* Statement block 1 */

 break;

 case const-expr2:

 /* Statement block 2 */

 break;

 ...

 case const-exprN:

 /* Statement block N */

 break;

 default:

 /* Statement block N+1 */

 break;

}

© Autores V1.1 9

switch statement (II)

 switch is a multi-way decision test whether an expression
matches a number of constant integers
 Brackets are needed

 case number is unlimited

 default is optional

 break causes an inmediate exit from the switch

 expr is evaluated and comparison with const-expr in
each case starts
 If any matches, all statements are executed until a break or the

end of the switch

 If none matches default statements are executed (if they exist)
until a break or the end of the switch

© Autores V1.1 10

switch statement (III)
#include <stdio.h>

int main ()

{

 char grade = 'B';

 switch(grade)

 {

 case 'A' :

 printf("Excellent!\n");

 break;

 case 'B' :

 case 'C' :

 printf("Well done\n");

 break;

 case 'D' :

 printf("You passed\n");

 break;

 case 'F' :

 printf("Better try again\n");

 break;

 default :

 printf("Invalid grade\n"); }

 return 0;

}

© Autores V1.1 11

while statement

while (expr) stat;

while (expr)

{

 stat; /* block of statements */

}

 If expr is true, stat is processed

 After execution expr is evaluated again

 If false, exit from the while

WARNING: if expr doesn’t change its value, an infinite loop
can be created

© Autores V1.1 12

for statement

for (init_expr; cond_expr; update_expr) statement;

for (init_expr; cond_expr; update_expr)

{

 statement; /* Statement block */

}

 init_expr is a expression that assign values to one or more
variables

 cond_expr evaluates an expresion: if true statement is
precessed. If false loop is finished

 update_expr are statements that are processed after
statement. Typically update the value of the control variable

Example: for (i=0; i<n; i++) printf(“i= %d”, i);

© Autores V1.1 13

do-while statement

do statement;

while (expr);

do

{

 statement ; /* Block of statements */

} while (expr);

 After executing statement, expr is evaluated, and, if true,
statement is executed again.

 If expr is false, exit from the loop.

WARING: If expr does not change its value within the loop, an
infinite loop can be created.

© Autores V1.1 14

break statement

 break allows to exit immediatly form the execution of
statement switch, while, do-while, for,
independently of any other condition.

 In nested loops, break exits just from the inner loop in
which is placed.

© Autores V1.1 15

continue statement

 continue forces a new iteration in the loop, ignoring the
following statements until the end of the loop

With while and do-while, jumps to condition evaluation

With for, jumps to update and condition

 In nested loops, continue exits just applies to the inner loop
where is placed

© Autores V1.1 16

return statement

 return ends a function, returning control to the point of the
program where it was called

 return expr

The value of expr will be returned to the program

 It must be of the type declared in the function

 Function end braket «}» is equivalent to return without
expr, and it is used with functions that does nor return any
value (equivalent to return 0)

© Autores V1.1 17

goto statement

 goto is an unconditional jump

 ABSOLUTELY NOT RECOMMENDED

 ...

 label:

 ...

 goto label;

 ...

 «label:» is a line identifier.

 It can be in any part of the program

