
Computer Science

Data types in C

V1.1 2

Data in C language
! Introduction
! Basic data types and specifiers (or qualifiers, modifiers)
! Integer numbers
! Real numbers
! Size and range
! Other data types

" Derived
" User-defined

! Constants
" Integer constants
" Real constants
" Character constants
" Symbolic constants

! Variable declaration
" Local variables
" Global variables

! Variable initialization
! Other data type specifiers

" Acces specifiers
" Storage-class specifiers

V1.1 3

Introduction to data types in C

! Data are the objects that are processed in computer
programs

! In C, variables and constants must be declared before use
! Data declaration requires to specify:

" Data type
" Specifier (optional)
" Identifier

specifier datatype identifier;

Example: unsigned int age

V1.1 4

Basic data types and specifiers (I)

! When programming, the election of the data types to
use will establish their main features:
" Memory they occupy
" Range of values they can store
" How they are processed

! The required memory and the range for each data type
depend on:
" Compiler
" Operating system
" Computer

V1.1 5

Basic data types and specifiers (II)
! Reserved words in C for basic data types are:

" char Character
" int Integer
" float Real
" double Real in double precission
" void No data (for functions that return no value)
" enum Enumerated type, list of integers/names

! The specifiers that can be applied to these basic data
types are:
" signed
" unsigned
" long
" short

! Data are obtained combining basic types and specifiers.

V1.1 6

Integers (I)
! Type to store integer quantities

" char (signed char).
! Normally occupies a byte (to store one ASCII

character)
" int (signed int).

! Normally ocuppies 4 bytes
" short (signed short int).

! Normallly ocuppies 2 bytes
" long (signed long int).

! In 32 bits machines: 4 bytes; in 64 bits: 8 bytes
" enum. Enumerated type. Variable that can take as

argument a list of simbols

V1.1 7

Integers (II)
! Size relation is always: short ≤ int ≤ long

! Internal representation of integers
" Numbers without sign: pure binary
" Numbers with sign: 2'complement

! Examples:
" int cantidad;
" char letra
" Short age
" Long memoria
" Enum week = {Monday, Tuesday, Wednesday,
Thursday, Friday, Saturday, Sunday};

V1.1 8

Reals
! Numerical quantities in scientific notation and with higher

range
! Most extended format: IEEE754:
! Types

– float. Real with simple precission
– double. Real with double precission
– long double. Real with double precission long format

V1.1 9

Other data types
! Void

! Void indicates a non-defined data type
! It is used mainly for functions that don't return any value

! Derived
! Complex data types obtained from fundamental ones
! Arrays, function, pointers, structures and unions

! User definided
! Created by the user with their own name and definition

typedef datatype newname;
typedef unsigned long int mytype;

V1.1 10

Constants (I)
! Constants are fixed values that cannot be altered by the

program in execution

! They can be:
" Integer constants
" Real constants
" Character constants
" Symbolic constants

V1.1 11

Constants (II)
! Integer constants (I)

" The compiler chooses the smaller data type
compatible with the constant.

" They can be expresssed in
! Decimal: default option

• The most significant bit cannot be 0
• Just numerical values from 0 to 9 are valid

! Octal
• The most significant bit is always 0
• Just numerical values from 0 to 7 are valid

! Hexadecimal:
• They always start with 0x
• Values from 0 to 9 and letters A, B, C, D, E, F (upper and

lower case) are valid

V1.1 12

Constants (III)

! Integer constants (II)
" They have the following fields:

! Prefix 0x for hexadecimals or 0 for octals.
! Sign (optional for positives)
! Numerical value
! Optional suffix to fix the size that the compiler must assign

to it:
• U for unsigned
• L for long
• UL for unsigned long

" Examples: -23L, 010, 0xF

V1.1 13

Constants (IV)
! Real constants

" By default the compiler always create them double
" They have the following fields:

! Sign (optional for positives)
! Integer part before the decimal point «.»
! Fractional part after the point
! Scientific notation with «e» or «E»
! Optional suffix to fix the size that the compiler must assign to it:

• F for float
• L for long double

" Examples:

35.78 1.25E-12 45F 33L

V1.1 14

Constants (V)

! Character constants (I)
" One character constants are char type and are expressed

with with single quotation marks: ‘A’
" Back slash \ constant

! It allows to represent ASCII character by its number.
Use simple quotation marks: ‘\ASCIIcode’

• The code can be represented
In decimal up to 3 digits: ‘\ddd’
In octal with two dígits: ‘\0oo’
In hexadecimal with two dígits : ‘\0xhh’

V1.1 15

Constants (VI)
! Character constants (II)

" Example:
‘6’ /* Character 6, ASCII code 0x36 */
‘\12’ /* ASCII code 13 (carriage return) */
‘\0x20’ /* ASCII code 32 (space) */

" String constants
! They are not a data type
! The define a set of 1-byte characters stored consecutively
! Represented with double quotation marks:

“This is a string constant”

! The compiler stores the string and finish it with the null
character «’\0’» to represent the end of the chain.

V1.1 16

Constants (VII)

! Symbolic constants
! They are defined with the directive #define :

#define CONSTANTNAME Equivalence

! CONSTANTNAME is the identifier of the symbolic constat
(recommended in capitals)

! Equivalence are the symbols that CONSTANTNAME is going to
represent

! When CONSTANTNAME appears in the program the compiler will
substitute it with by Equivalence

" Example:
#define MAXIMUM 100 /* MAXIMUM takes de value 100 */
#define SENTENCE “press a key”

V1.1 17

Variables declaration (I)

! All variables must be declared before used so that the
compiler assigns the required memory to them

! A variable declaration is a statement
Datatype variablename;

! Examples:
char letra;
int actual, greater, lower;
float resultado;

V1.1 18

Variables declaration (II)

! Variables can be local, global or formal parameters.

! Local variables (also named automatic variables -auto)
" Are declared within a function
" Declaration must be at the beginning of the function
" They are just valid within the function
" They desappear when the function is executed
" If the function is called many times, local variables are created

and destroyed every time
" They are stored in a special part of the menory, the stack

memory (LIFO-Last Input First Output)

V1.1 19

Variables declaration (III)
! Global Variables

" Declared out of any function
" Active during all program execution
" Stored in a special part of the memory assigned by the compiler
" Can be used by any function without restriction
" Can be defined in another file (e,g, a header). In such a case

they must be defined with extern specifier in the file where
they are used.

" Compiler initializes them to 0 when defined
" Must be used with care:

! They make functions less portable
! They occupy memory during all program execution
! They can give rise to many mistakes

V1.1 20

Variables declaration(IV)

! Formal Parameters (or parameters)
" Are the variables that receive the values that are passed to the

function
" Always local to the function
" Declared in the same line than the function
" Example:

long int Myfunction(int base, int exponente)
{

/* function statements */
}

V1.1 21

Variables inicialization

! It is used to assign the variable’s first value
" By default:

! Global variables are initialized to 0
! Locals variables just take the value that was in the memory position

where that the compiler assign to them (rubbish in general)
" It can be done in the same declaration with an assignment

operator:
datatype variablename = initial value;

" Example:
unsigneg int age = 25;

V1.1 22

Other data specifiers (I)

! Access specifiers
" The modify the way a variable is accessed

! const. Set a variable as constant, i.e. it can be
changed during all program execution.

! volatile. Makes the variable posses special
properties related to optimization (just for advanced
programmers)

! Example
unsigned int const year = 2006;

V1.1 23

Other data specifiers (II)

! Storage-class specifiers
" Used to tell the compiler how the variable must be stored:

! extern. Declares a variable that has been defined in a different file
(they already have memory assigned)

! static. (Inside a function) Declares a local variable that keeps its
value among calls.

! static. (Outside a function) Declares a global variable to be
used just in the file where it is defined (private use)

! register. Tells the compiler taht the variable must be stored in a
register (fast access for heavily used variables)

! auto. Declares a variable local to a function (is the default option)

