
Computer Science

Introduction to the C programming language

2

Introduction to C programming language

Introduction

Main features

Functions

Variables

Compilation

Libraries and linkage

Examples

3

Introduction

 Developed in the 70's by Dennis Ritchie for a PDP-11
computer running with Unix

 Although developed in Unix is not linked to any OS and
works with all of them

 For long the standard version, developed by Rirtchie and
Kernighan, was delivered with version 5 of Unix

 Proliferation of different versions forced the creation of a
standard one: ANSI C (American National Standard
Institute)

4

 C Language main Features (I)

 It was very succesful since its creation:

 Compact

 Structured

 Portable

 Flexible

 Medium tipe

 Very popular

5

 C Language main Features (II)

COMPACT

 Just 32 reserved words in ANSI standard:

auto double int struct

break else long switch

case enum register typedef

char extern return union

const float short unsigned

continue for signed void

default goto sizeof volatile

do if static while

 It allows all algebraic and logic operations in conventionals maths
 Any program could be written just with the reserved words and

operators (difficult though).

6

 C Language main Features (III)

STRUCTURED

 The structural basic component is the function

 Does not allow to write functions inside other functions

 It allows independent code parts with their own data: functions
that can be used by other programs

 It allows code blocks: statements and propositions grouped
inside brakets «{ }» forming a logical unit

 Different conditional and iteration sentences

 goto exists but strongly NOT recommended.

7

 C Language main Features (IV)

PORTABLE

 Executables are independent from hardware if standard
libraries are used, ie,

 Same source code can be compiled in different architectures
 C is relatively simple
 There are compilers for all systems

FLEXIBLE

 Created and tested by professional programmers, so it has
few restrictions and gives the programmer a lot of control
 Advantage for advanced programmers, disadvantage for

begginers...
 It allows different data types, conversions among them and

creation of new types.

8

 C Language main Features (V)

MEDIUM TYPE

 It combines elements of high level languages with elements
of low level ones:
 Powerful sentences (high level)
 Bit-level operations, register, ports and memory

managment (low level)

VERY POPULAR

 C compilers are relatively simple, so they are the first to be
developed when a new system is launched

 Very used among professional and amateur programmers
 Very used to program OS, interpreters, compilers,

assemblers, drivers....
 Poweful extensions: C++

9

Functions in C

 Functions are the primary programming objects in C: it is
where the program activity occurs

 Each function contains an independent and portable code
block

 Generic form:

return-type function-name(Parameter list)

{ /* Function beginning*/

declarations

... /* Función body */

statements

} /* Funtion end */

10

Variables in C

 Variables in C are memory parts with a name
 Are used to store values that can be modified by the program
 They must be declared before use

 Declaration sets the data type it will contain
 C supports all basic variable types (character, int, float, etc.)

and allows to:
 Modify defined types
 Create new types

11

Identifiers

 Identifiers are the names to identify
 Variables
 Constants
 Functions

 Features:

 Must start with alphabetic character and can contain

alphanumeric characters and underscore «_»

 Reserved words are forbidden
 Upper case and lower case letters are DifFEreNT

 Recommendations
 Functions created by the programmer starts with upper case
 Identifiers of definded or symbolic constants are written with

upper case.

12

Statements in C
 Situated in any position in the line (no fields established as columns)
 Always end with «;»
 Indent is optional but recommended

 Hierarchical
 Facilitates understanding
 Ignored by compiler

 Statesmen blocks
 Statement groups between brackets «{}» forming a unit

 Comments
 Recommended but optional explanatory text
 Starts with «//» until end of line (no ANSI standard)
 Between «/* */» symbols in any number of lines

 Preprocessor directives
 Special orders for the compiler that are not part of the C language (but included

in all compilers)
 Always start with «#»
 Facilitate programming

 Examples: #include, #define

13

Libraries and Linkage

 Along with the compiler, function libraries containing
basic function are neccessary:
 They can be used in any statement
 ANSI specifies a minimal set of functions: the standard

library
 Compilers usually include many more
 User can create its own function libraries

 The linker merges user code with neccessary libraries to
create the executable machine code.

 Examples: stdio.h (input/output, printf()),
math.h (mathematical functions, sin(x)

14

C program full development

 Steps:
 Algorithm design

 Program creation and writing in a text file

 Compilation to obtain the object file

 Likage of the object file with the called libraries to obtain the

final machine code executable

 For big developments the program is divided in many

files that along with libraries form a project. Each part

can be compiled and tested separately and linked with

the rest at the final stage to produce the total executable

program (i.e, any OS like Linux or Windows).

15

Examples (I)

 The simplest program
 Notice

 Preprocessor directive
 Main function
 Comment
 Function call
 Character chain

#include <stdio.h>

main() /*main function */

{

printf(“hello, world \n”);

}

16

Examples (II)

 Program to convert a Fahrenheint temperature to Celsius

 Notice
 Variable declaration

 Asignment statements and arithmetic operations

 Data types

 Comments

 Printf() function

 Return

17

Examples (III)

/* Fahrenheit to celsius conversion */

#include <stdio.h>

main()

{

int fahren, celsius; /* Entire variables */

printf("Conversion ºF to ºC:\n");

fahren = 100; /* Farhenheit
temperature */

celsius = 5*(fahren-32)/9; /* Conversion formula */

printf("%d ºF = %d ºC\n",fahren, celsius); /* Result*/

return 0;

}

18

Examples (IV)

 Program to convert any Fahrenheint temperature to

Celsius

 Notice
 Reading input from keyboard

 Real numbers declaration

 Arithmetical operations with real numbers

19

Examples (V)

/* Fahrenheit-Celsius conversion with input introduced by the user
and with real numbers. */

#include <stdio.h>

main()

{

float fahren, celsius; /* Real variables */

printf("ºF to ºC conversion:\n");

printf("Introduce Fahrenheit temperature: ");

scanf("%f", &fahren); /* real data input */

celsius = (5.0/9.0)*(fahren-32); /* Formula */

printf("%f ºF = %f ºC\n",fahren, celsius); /* Result*/

return 0;

}

20

Examples (VI)

 Program to print a table of Fahrenheit temperatures and

their Celsius equivalent using “for” loop

 Notice:

 Different data types

 Indent

 for sencence

 Formats in printf()

21

Examples (VII)

/* Conversion table Fahrenheit-Celsius. */

/* With “for” loop */

#include <stdio.h>

main()

{

float fahren, celsius; /* Variables */

int liminfe, limsup, increm;

liminfe = 0; /* lower limit */

limsup = 100; /* Upper limit */

increm = 10; /* Step size */

printf(" ºF\t ºC\n"); /* Table header*/

printf("==============\n");

for (fahren=liminfe ; fahren<=limsup ; fahren=fahren+increm)

{

celsius = (5.0/9.0)*(fahren-32.0);

printf("%3.0f\t%6.1f\n",fahren, celsius);

}

return 0;

}

22

Examples (VIII)

 Program to print a table of Fahrenheit temperatures and

their Celsius equivalent using “while” loop

 Notice:

 #define symbolic constants

 System() call

 while sentence

 Comparation «<=» (lower or equal than)

23

Examples (IX)
/* Conversion table Fahrenheit-Celsius. */

/* With “while” loop and symbolic constants*/

#include <stdio.h>

#include <stdlib.h>

#define LIMINFE 0 /* Lower limit */

#define LIMSUP 100 /* Upper limit */

#define INCREM 10 /* Step size */

main()

{

float fahren, celsius; /* Variables */

fahren = LIMINFE; /* Loweimit */

system("clear"); /* Clear terminal (Linux) */

printf(" ºF\t ºC\n"); /* Table header */

printf("==============\n");

while (fahren <= LIMSUP)

{

celsius = (5.0/9.0)*(fahren-32.0);

printf("%3.0f\t%6.1f\n", fahren, celsius);

fahren = fahren + INCREM;

}

return 0;

}

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

