
Serbia & Montenegro, Belgrade, November 22-24, 2005

Quantification of ISA Impact on

Superscalar Processing

Rau'l Durain, Rafael Rico, Afiliate Computer Society, IEEE

Abstract-The differences found between the supersealar
performance in x86 and non-x86 processors and the peculiar
characteristics of the x86 ISA recommend to carry out a
thorough analysis of the available parallelism at the machine
language layer. However, computer architecture evaluation
requires new tools that complement the customary
simulations and, in this sense, the traditional graph theory
can help to create a new frame for fine-grain parallelism
analysis.
We construct the matrix representation associated to the

data dependence graph of execution traces. In this paper, we
explain how this matrix characterizes the corresponding code
in a mathematical manner, fulfills a number of properties
and restrictions, and provides information about the ability
of the code to be processed concurrently. Besides, we also
show how different data dependence sources can be
composed, thus providing a mechanism to explore their final
influence on the parallelism degree. These techniques are
applied to an example from which some conclusions are
derived.

Keywords-Instruction set design, graph theory.

I. INTRODUCTION: NEW CHALLENGES IN COMPUTER
ARCHITECTURE EVALUATION

Quantitative evaluation is a crucial point in the
computer architecture research. The simulation has
become the first evaluation tool both in industry and
research [21]. Unfortunately, the construction of good
simulators and the selection of appropriate workloads have
become appalling tasks. This scenario has driven the
research to just those fields where quality proven tools are
available, thus preempting other important research topics.

As is common in other research fields, the
mathematical formalization facilitates the description of
phenomena, allows predicting behaviors, supports
reproductibility and simplifies the knowledge transference.
However, in ILP research, the simulation is the most
frequently used evaluation technique.

Here we propose and verify an analytical model for
the quantitative evaluation of ILP that permits to study the
behavior of architectural proposals in the superscalar
setting. Besides, our analytical model could shed light on
other aspects not covered by simulation.

This work was supported in part by the Vicerrectorado de
Investigaci6n de la Universidad de Alcala under Grant UAH P12005/072.

The authors are with the Department of Computer Engineering,
Universidad de Alcala, 28871 Alcala de Henares, Spain.
E-mail: {raul.duran, rafael.rico}@uah.es.

A. Applying graph theory to fine-grain parallelism
analysis

Graph theory provides an efficient mathematical
formalization that promises to be very useful for the
analytical modeling of ILP. Moreover, graphs have
already been successfully applied to the study of other
aspects of computation: medium- and coarse-grain
parallelism extracted by compilers [3, 17, 28], data
structures [2, 3, 7], software description [8, 9], and so on.

B. ILP difference between x86 and non-x86processors
The quantification of ILP is one of the most popular

subjects in computer architecture. In the literature,
numerous studies can be found identifying limiting factors,
quantifying their effects, providing possible solutions and
evaluating the results [18, 19, 25, 26, 27]. All these works
have in common that they present non-x86processors and
the reported IPC average results are in the range 2.5-15,
peaking around 30 IPC.

Works using x86 instruction set processors are less
frequent. In those cases, the reported parallelism is not so
good. In [5] the CPI for SPECint95 is in the range 0.75 to
1.6. And in [16, 23] IPC values are in the range 0.5 - 3.5 in
the best situations.

This led us to conjecture that the instruction set
architecture (ISA) itself may impose an important limiting
factor on the available fine-grain parallelism.

C. The x86 ISA and the superscalar model
For the sake of binary compatibility with previous

processors the x86 ISA has inherited design characteristic
suitable to older requirements but clearly harmful in the
scope of superscalar processing, such as dedicated register
usage, implicit operands, condition codes and so on (see
reference [20] for an in-depth explanation).

The effect of these undesirable characteristics
becomes apparent in the over-ordering of the code,
imposed by the machine language layer through data
dependences, and not strictly necessary to preserve the
computational meaning of the compiled task. As a result,
the instructions appear at the physical layer more coupled
than one should expect just observing the corresponding
high level program.

The ISA has a significant impact in the availability of
fine-grain parallelism before reaching the physical layer,
which can reduce exploitable parallelism degree at run
time.

D. Metrics
IPC is by far the metric most often employed in

parallelism quantification at the instruction level.

1-4244-0049-X/05/$20.00 (C2005 IEEE

EUROCON 2005

701

A much less used metric consists of measuring the
critical path length of a code sequence. This has been
previously employed in several works: In [15] it is used at
the program layer and in [4, 18, 24] it is used to evaluate
characteristics of the physical layer.

We propose an alternate measurement method based
on the data dependence graphs (DDG). It consists of
building the DDG of a real machine code sequence.

It is interesting to remark that our proposal of DDG-
based parallelism quantification is independent of the
physical implementation, since it is located in a previous
step of the computation process, namely, in the machine
language layer.

II. REPRESENTATION OF INSTRUCTIONS SEQUENCES BY
GRAPHS.

We define the data dependence matrix D as:

d { 1, if i instruction depends onj; (1)iJ0, otherwise.

Let di be the vector carrying the data dependence
information for an instruction i. Then, the rows of the
matrix D are the vectors di of a code sequence.

Notice that the matrix D represents the direct data
dependence path or data dependence path of length 1, that
is, instruction i consumes a data processed directly by
instructionj with no interveners.

A. Topological properties andILP restrictionsforD
One of the aims of the graph theory algebra is to

precisely determine how the graphs properties are exposed
in the algebraic properties of their associated matrices. We
try to extract, in addition, information in the scope of
parallel instruction processing.
* The vertex labelling should not affect the properties
of D. The matrix D can be associated to a directed graph
with a vertex set V= {v0, vI, v2, ..., vn l} whose labelling is
arbitrary. Consequently, the properties of matrix D should
be invariant under permutations of rows and columns.

The natural vertex labelling of the graph is the one
induced by the strictly precedence order in which they are
written in the program (programmatic labelling).
* There must exist a precedence relation among the
data dependence graph vertices. Any computable task
entails some precedence relation or partial ordering among
the tasks (instructions) to perform, since it is a process
developed in an ordered and finite succession of steps.
* An instruction does not depend on itself. A data
cannot have the same instruction as source and as
destination. Consequently, the matrix D has null diagonal.
That is,

dii =0 0<i<n-1.
* The data dependences are not symmetrical. An
instruction cannot depend on another that depends at the
same time on it, since this situation does not establish a
precedence relation but a data dependence cycle.
Consequently, the matrix D is not symmetric.
Mathematically:

di .dji =1 0<i<n-1 O< j<n-1.
* There is a graph vertex labelling under which the
matrix D is lower triangular. Instructions only process

data given by instructions written above in the program
and, therefore, an instruction depends only on the
precedent ones (principle of causality). According to this,
the programmatic labelling generates a lower triangular
matrix D because du = 0 wheneverj > i. The matrix D will
be termed canonical when it is lower triangular and will be
denoted DC.
B. Code coupling

If an instruction consumes data coming from several
instructions it must stall its own execution till all these
data are available and therefore it is coupled to them. A
larger coupling implies a potentially greater partial
ordering of the code, since there are more precedence
relationships. We define coupling C as C = EnI n-I d .

When using this tool in automatic code analysis,
computational effort can be saved with the following
equivalent expressionC n- i 1 dc , which is basedq p C=~~~i=1Yk=0ik'
on the matrix DC.

The maximum number of data dependences in the
graph is given by all the possible ordered vertex pairs.
Hence, the coupling C is bounded by 0 < C < n

To obtain a coupling measurement independent of the
amount of instructions in the sequence, we define a
normalized coupling, CN, as the ratio C vs. the number of
instructions n in the code sequence 0 < CN< (n -1) / 2.

C. Data reuse

The life span of a data produced by instruction i and
consumed by any other instructionj must be at least equal
to the longest data dependence path between both
instructions. For that reason we talk about the minimum
life span t.i:

timi =max{0, kj:[DDk].0,[Dkj+]i=0} (2)

D. Data dependence paths oflength larger than]
A path of length I from vertex vi to Vj is a finite

sequence of I + 1 different vertices that begins in vi and
finishes in vj, such that two consecutive vertices are an arc
in the graph [6, 11].
* Di represents the data dependence path of length I
(arcs). The number of data dependence paths of length I
from vi to Vj is the (i, j) entry in the matrix D'.
* The n-th power ofD is null. The maximum length of a
data dependence path is n - 1 (arcs), n being the number
of instructions in the code sequence. Hence, Dn will be
necessarily null.
* There are no cycles of dependences. A graph
representing a code sequence must be acyclic, otherwise
an instruction would depend on itself through others and
the task would not have solution in a finite number of
steps. Algebraically, the diagonal of any power of the data
dependence matrix (D') must be null:

d'ii 0, 1 <I<n- 1 1<i<n.

E. Criticalpath length and degree ofparallelism
Given a code sequence, represented by its data

dependence matrix D, we define the critical path length L
as the length of the longest data dependence path.

702

The first power of D that is identically zero indicates
the length of the critical data path in computation steps:

L = I computation steps if and only ifD = 0. (3)

With this metric, L is bounded as 1 < L < n. We define
the normalized critical data path length, LN, as LN = L I n.

When LN approaches 1 there is no parallelism, and the
nearer to 0, the more the parallelism the code bears. It is
clear that LN E (0,1]. We define the parallelism degree,

Gp, as the reciprocal ofLN. Obviously, GP E [1, n].

III. DEPENDENCE SOURCES COMPOSITION

Given a code sequence we can consider several sources
of data dependences among its instructions. Each dependence
source gives rise to a data dependence matrix Ds.

We define the law of composition for the matrices Ds as:

D =D1 ORDS2 OR ... OR Dsn (4)

Obviously, the final dependence map represented by
D is the composition of all sources. We thus have a
method to study the impact superscalar setting of any
combination of different dependence sources.

All the properties and procedures proposed for the
matrix D can be applied to each of the matrices that
represent different data dependence sources (Dsn).

In particular we are going to study the critical path
length of the resulting matrix as a function of its
components. The following bound holds:

max{LSj } < L < min{ L5, n}. (5)

A. Illustrative example
The previous results provide valuable insight into the

ILP offered by an ISA and thus the suitability of the
processor to the task of superscalar processing.

In particular, an example is proposed based on an x86
code sequence from which useful information is derived.
Besides, the composition of the different data dependence
sources is illustrated.

In Table 1 we show an x86 code sequence that can
well represent a typical basic block. The 16 bits subset has
been used for the sake of simplicity. The operands used by
each operation are classified into two major sets: read
operands and written operands. Within each one of these
main sets, the operands are grouped by their functionality:
data mapped in registers or memory, registers used in the
calculation of effective memory addresses, registers
involved in stack accesses and state register. The explicit
operands are set apart from the implicit operands. Each
one of these categories represents a possible data
dependence source whose impact we can study separately.

Table 1. Code sequence and the operands used in each operation.
Read operands Written operands

code sequence explicit implicit explicit implicit
reg adr stack cc reg adr stack cc reg adrstackcc reg adrstack cc

°: MOV DX, 6B42 - DX
1: MOV CS: [BX], DX DX CS, BX MEM
2: SUB BX, AX AX, BX BX OF, SF, ZF, AF, PF, CF
3: MOV AH, 30 AH
4: INT 21 AX, CS, IP SS,SP F[as AX, BX, CX, CS, IP SP IF,TF
5: CLI IF
6: MOV BP, [BX] [SI] MEM BX, SI DS BP
7: MOV DS, DX DX DS
8: OR SS: [DI], AX AX, MEM SS, DI MEM OF, SF, ZF, AF, PF, CF
9: CWD AX __AX, DX

10: XOR CX, BX BX,CX CX OF,SF,ZF,AF,PF,CF
11: DEC DI DI DI OF, SF, ZF, AF, PF, CF
12: INC SI SI SI OF, SF, ZF, AF, PF, CF
13: MOV BL, ES: [SI] MEM ES,SI BL
14: TEST [BX] [DI], AT AL, MEM BX, DI DS-_OF, SF, ZF,AF, PF, CF
15: JNE/JNZ IP+F7 ZF PIP

From the information in Table 1 the data dependence
matrices D are built for each one of the selected sources
and for the three types of data dependences: true
dependences, antidependences and output dependences.

The critical path length L has been computed for each
matrix. The accumulative composition of each dependence
source has been evaluated. The successive compositions
follow this order: First true dependences, then the
antidependences, and then the output dependences. Within
each basic type, the composition begins with the
dependences due to explicit operands and then those due
to the implicit operands. Finally, for the operand
functionality: first, the dependences due to accesses to
operands with a greater computational meaning; next the
dependences due to memory address computation; next,
the dependences due to operands related to the stack
access; and last the dependences due to state register
accesses.

The results are plotted in Fig. 1. The light gray
columns show the critical path length for each dependence
source. The dark gray columns show the critical path
length of the composition of all dependence sources
located to the left.
14

10

8-

6 -

4l

2 a
0

ox E E E E x x)
O 0) -b -.e C-) 0) -bO 2 m 0 0 2 m-M o0 0 0 cn 0 0

0 < <

E E E
n-~

E C C

<C) C Cl)

ox E E E E

D)
CO

Fig. 1. Critical path length for both each data dependence source and for
the composition.

703

x x x
(1) (1) (1)
0) -b -.e
2 m 02cl cl

cl

x

n1

x
(1)
O
O
cl

x

CD

From the example some immediate consequences can
be extracted. As for the true dependences we find two
sources with remarkable impact on the parallelism
degradation:
* memory address computing; and
* condition codes.

As for the dependences due to physical resources
limitations, the most remarkable sources seem to be:
* explicit use registers in antidependences; and
* condition codes in output dependences.

For the considered example, the values for the
parameters defined in this paper are the following:

L = 13 computation steps
LN= 0.81 computation steps/instruction
Gv = 1.23 instructions/computation step

C= 38 CN= 2.37
The life span for each data dependence source is 1

except for the antidependences due to explicit data
registers (which is 1.33) and for the antidependences due
to implicit data registers (which is 1.4). However the life
span for the composition of all dependence sources shown
inD soars to 4.5.

IV. CONCLUSIONS AND FUTURE WORK

A model of analysis applicable to the computation
process has been proposed. When applied at the machine
language layer, it allows the quantitative evaluation of the
impact of both the ISA and the compilation procedure
itself on availability of instruction level parallelism.

The topological properties and restrictions that the
matrix D has to fullfil in the ILP scope have been
identified along with a method that uses the matrix D to
quantify the parallelism degree of code, the data reuse and
their life span. A metric to measure the available
parallelism degree has been defined as well.

It is showed how the different data dependence
sources can be composed, thus allowing a precise
knowledge of the impact of each one on the final
parallelism degree.

The proposed analytical model has been applied to the
evaluation of some aspects of the x86 ISA and valuable
information has been obtained.

In future works, the contribution of each one of the
dependence sources should be studied, analyzing its
behavior on a sufficiently large set of test programs. It
seems also possible to extend our development to also
model the specifications of the physical layer and the
processes of allocation-scheduling.

REFERENCES
[1] T. L. Adams and R. E. Zimmerman, "An analysis of 8086

instruction set usage in MS DOS programs," in Proceedings of the
Third International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS-III),
April 1989, pp. 152 - 160.

[2] A. V. Aho, J. E. Hopcroft, J. Ullman. Data Structures and
Algorithms. Addison-Wesley Publishing Co., 1983.

[3] A. V. Aho and J. Ullman. Foundations of Computer Science.
Computer Science Press, 1992.

[4] T. M. Austin and G. S. Sohi, "Dynamic Dependency Analysis of
Ordinary Programs," in Proceedings of the 19th International
Symposium on Computer Architecture, 1992, pp. 342-35 1.

[5] D. Bhandarkar and J. Ding, "Performance characterization of the
Pentium Pro processor," in Proceedings of the Third International
Symposium on High-Performance Computer Architecture, 1997, pp.
288 -297.

[6] N. L. Biggs, Algebraic Graph Theory (2nd edn.), ISBN: 0-521-
45897-8, Cambridge University Press, 1993.

[7] T. H. Cormen, C. E. Leiserson and R. L. Rivert. Introduction to
Algorithms. Mit Press, McGraw Hill, 1996.

[8] A. L. Davis and R. M. Keller, "Data flow program graphs," IEEE
Computer, vol. 15, 2, February, 1982.

[9] J. B. Dennis, "Concurrency in software systems," in Advanced Course
in Software Engineering, Springer-Verlag, pages 111-127, 1973.

[10] D. G. Feitelson. "Metric and Workload Effects on Computer
Systems Evaluation," IEEE Computer, vol. 36, 9, September, 2003.

[11] C. D. Godsil and G. F. Royle, Algebraic Graph Theory, ISBN: 0-
387-95220-9, Springer-Verlag, 2001.

[12] I. J. Huang and T. C. Peng, "Analysis of x86 Instruction Set Usage
for DOS/Windows Applications and Its Implication on Superscalar
Design," IEICE Transactions on Information and Systems, Vol.E85-
D, No. 6, pp. 929-939, June 2002. (SCI).

[13] I. J. Huang and P. H. Xie, "Application of Instruction
Analysis/Scheduling Techniques to Resource Allocation of
Superscalar Processors," IEEE Transactions on VLSI Systems, vol.
10, no. 1, pp. 44-54, February 2002.

[14] N. P. Jouppi and D. W. Wall, "Available Instruction-Level
Parallelism for Superscalar and Superpipelined Machines," in
Proceedings of the Third International Conference on Architectural
Support for Programming Languages and Operating Systems, pp.
272-282, April 1989.

[15] M. Kumar, "Measuring parallelism in computation intensive
scientific/engineering applications," IEEE Transactions on
Computers, 37(9), pp. 1088-1098, 1988.

[16] 0. Mutlu, J. Stark, Ch. Wilkerson and Y. N. Patt, "Runahead
Execution: An Alternative to Very Large Instruction Windows for
Out-of-order Processors," in Proceedings of the 9th International
Symposium on High-Performance Computer Architecture
(HPCA'03), 2003, pp. 129-140.

[17] D. A. Padua and M. J. Wolfe, "Advanced Compiler Optimizations
for Supercomputers," Communications of the ACM, 29(12), pages
1184-1201, December 1986.

[18] M. A. Postiff, D. A. Greene, G. S. Tyson and T. N. Mudge, "The
Limits of Instruction Level Parallelism in SPEC95 Applications," in
Proceedings of the 3rd Workshop on Interaction Between Compilers
and Computer Architecture, 1998.

[19] A. Ramirez, J. L. Larriba-Pey and M. Valero, "The effect of code
reordering on branch prediction," in Proceedings of the
International Conference on Parallel Architectures and
Compilation Techniques, pages 189-198, October 2000.

[20] R. Rico, J. I. Perez, J. A. Frutos. "The impact of x86 ISA on
superscalar processing," Journal ofSystems Architecture, vol. 51-1,
pages 63-77, January 2005.

[21] K. Skadron, M. Martonosi, D. I. August, M. D. Hill, D. J. Hill and
V. S. Pai. "Challenges in Computer Architecture Evaluation," IEEE
Computer, vol. 36, 8, August, 2003.

[22] J. E. Smith and G. S. Sohi, "The Microarchitecture of Superscalar
Processors," in Proceedings of the IEEE, 83(12), pp. 1609-1624,
December, 1995.

[23] J. Stark, M. D. Brown and Y. N. Patt. "On Pipelining Dynamic
Instruction Scheduling Logic," in Proceedings of the 33rd Annual
ACM/IEEE International Symposium on Microarchitecture, 2000,
pp. 57-66.

[24] D. Stefanovic and M. Martonosi, "Limits and Graph Structure of
Available Instruction-Level Parallelism," in Proceedings of the
European Conference on Parallel Computing (Euro-Par 2000), 2000.

[25] K. B. Theobald, G. R. Gao and L. J. Hendren, "On the Limits of
Program Parallelism and its Smoothability," in Proceedings ofthe 25th
Annual International Symposium on Microarchitecture, pp. 10-19, 1992.

[26] D. M. Tullsen, S. J. Eggers and H. M. Levy, "Simultaneous
multithreading: maximizing on-chip parallelism," in Proceedings oJ
the 22nd Annual International Symposium on Computer
Architecture, 1995, pp. 392-403.

[27] D. W. Wall, "Limits of instruction-level paralelism," in Proceedings
ofthe Fourth International Conference on Architectural Support for
Programming Languages and Operating Systems, pages 176-188,
April 1991.

[28] M. Wolfe. High Performance Compiler for Parallel Computing.
Addison-Wesley, CA, 1996.

704

