
 
 
 
 
 

Analysis of x86 Data Usage (16 bits subset) 
 

Technical Report TR-UAH-AUT-GAP-2005-22-en 
 

Rafael Rico 
 

Department of Computer Engineering, Universidad de Alcalá, Spain 
 

December 2005 
 
 
 

Versión en español: 
 

Análisis del uso de datos en el repertorio x86 (subconjunto de 16 bits) 
Informe técnico TR-UAH-AUT-GAP-2005-22-es 

 
Rafael Rico 

Departamento de Automática, Universidad de Alcalá, España 

 
 

Abstract: 
 

To study the behavior of instruction sets in the superscalar setting to analyze the data usage is necessary 
because the main limiting factor to parallel execution is the data dependences among instructions. 

This technical report shows the data usage distribution for x86 instruction set, 16 bits subset. The work has 
been done with a predefined test-bench. 

The detailed study of data access has been organized as follows. First of all, the explicit register usage is 
analyzed, next the implicit usage and finally, the status flag usage is studied. 

From usage distributions for each group, quantitative results about the most important sources of potential 
data dependences are obtained. 
 
 

Index words: Evaluation of computer architectures, instruction level parallelism, instruction set architecture. 
 
 

Resumen: 
 

Para estudiar el comportamiento de los repertorios de instrucciones en el entorno de procesamiento 
superescalar es necesario analizar el uso que se hace de los datos ya que el factor limitante más importante de la 
ejecución paralela son las dependencias de datos. 

El presente informe técnico muestra la distribución del uso de los datos para el repertorio x86, subconjunto 
de 16 bits. El trabajo se ha realizado a partir de un banco de pruebas predefinido. 

El estudio detallado del acceso a datos se ha organizado como sigue. Primero se analiza el uso explícito de 
registros, a continuación el uso implícito y finalmente se estudia el uso de las banderas de estado. 

A partir de las distribuciones de uso de cada grupo se obtienen resultados cualitativos acerca de las fuentes 
más importantes de potenciales dependencias de datos. 
 
 

Palabras clave: Evaluación de arquitecturas de computadores, paralelismo a nivel de instrucción, arquitectura 
del repertorio de instrucciones. 
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1. Introduction 
 

When it is intended to study the instruction sets 
behaviour in the superscalar processing setting to 
analyze the data usage is necessary. 

The present technical report shows the data usage 
distribution for the x86 instruction set, 16 bits subset. 
The work has been made from a test-bench which in 
depth description can be known in previous report TR-
UAH-AUT-GAP-21, titled “Proposal of test-bench for 
the x86 instruction set (16 bits subset)” [5]. 
 
 

2. Instruction frequency of use 
 

Although it is not the aim of this report, a study 
has been performed on the frequency of use of the 
instructions, grouping them by their mnemonics. We 
are going to present our results comparing them with 
the obtained ones in 1989 by Adams and Zimmerman 
[1]. As these authors assure that, still nowadays, there 
are very few studies on dynamic traces of x86 
instruction set. In this report, 190 million instructions 
have been traced in opposition to 18 million that they 
traced. Table 1 shows the top 25 more used 
instructions in average according to both studies. 

At first sight, it is clear that both sets of 
instructions are similar. In the data of 1989, the 6 
instructions that have left the table respect our study 
have been highlighted on grey. The leaving of the list 
of LOOP was awaited since, as explains Randall Hyde 
in the last version of their book on the assembly 
language [3], the compilers has yielded use this 
instruction due to the dedicated employ that imposes 
through counter register CX: when several loops are 
nested it is necessary to perform a continuous data 
movement with the stack to save the index coherence. 
Only 3 test-bench applications use LOOP and they do 
it with a weight around to 1.5%: RAR decompressing, 
SORT and TCC (see table 2 with the top 25 more used 
instructions for each one of the traces). 

The instructions LES and LDS also leave the top 
list possibly because our test-bench does not count on great 
excessively programs nor on very large areas of data. 

The rest of leaving instructions has more to do 
with the profile of the traced programs that with 
compilation criteria. 

In our table, we see that instructions MOVS, 
JB/JNAE, AND, SCAS, STOS and CLC have entered. 
Among the three string instructions enclosed (MOVS, 
SCAS and STOS), the first is due to the SORT trace 
whereas the other two have a very irregular use in the rest 
of traces. Notice that we have counted all the occurrences 
of strings operations whereas the authors of cited 
previous work only counted them once (discarding the 
repetition prefix) measuring the string length with the 
aim of calculating the average string length. Logically, 
our counts are much greater when the lengths of the 
strings are large. This metric diversity affects 
something to the percentage of use of operations. 

In many cases the percentage of use are similar 
(MOV, CMP, JNE/JNZ, SHL/SAL, SUB, XOR, DEC, 
OR) since they correspond to basic instructions of the 

instruction set. Otherwise, it is significant that PUSH 
and POP has diminished in percentage and 
simultaneously they have approximated their values. 
The explanation can be in an optimized compilation to 
diminish the transferences with memory through the 
stack and in a better use of the available registers1. 

It is necessary to emphasize that MOV is the 
most frequently used operation with great difference. 
Among all traces only two do not have it in first 
position: DEBUG, in favour of the conditional 
branches, and SORT, in favour of string movement. 

The second operation in top 25 list is CMP, an 
arithmetical operation (subtraction) that does not write 
results. This behaviour has great importance because 
not writing in destination operand does not generate 
dependences by explicit data2, although it does 
generate through implicit data3. The resulting 
information of the comparison is used to update the 
status register writing in the flags. It is there where the 
possible dependence settles down. Usually, it forms 
pair with a conditional branch, reason because 
between it and the bifurcation usually is not any other 
instruction that modifies the status register. 

As far as the conditional branches are concern, 
we see that only there are four different ones that are 
complementary two to two. Consequently, we can say 
that among the 16 operation codes corresponding to 
conditional branches in this instruction set, many of 
them could not exist. Something similar happens with 
other instructions: BCD adjust operations, XCHG or 
the already commented case of LOOP. 

In the end of list we find SHR, which do not 
leave the list thanks to the use that gives it program 
RAR, and CLC, which inclusion is due to FIND. 

Below, we can glimpse a series of comparative 
graphs throughout all the test-bench about the 
following aspects: transferences with the stack, 
procedure calls, sequential run times and basic block 
sizes. In all the graphs the average value has been 
plotted. 
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Fig. 1. Stack traffic comparative. 
 

                                                 
1 In many occasions an optimal allocation of registers produces the same 

result that to count on a larger number of registers. 
2 Explicit data is considered which appears in the instruction. 
3 Implicit data is considered which does not appear in the instruction format 

since it is associated to operation code. 



Rafael Rico 

4 

 

Table 1. Listing of the top 25 more frequently used operations in average: to the left according to the article of
Adams and Zimmerman [1] and to the right according to the counts obtained in this report. 

 MEDIA (trabajo previo) 
 operación % acumulado 

1 MOV 29,95 29,95 
2 PUSH 9,25 39,2 
3 CMP 7,94 47,14 
4 POP 6,22 53,36 
5 JNE/JNZ 4,52 57,88 
6 JE/JZ 3,63 61,51 
7 ADD 3,47 64,98 
8 CALL 3,29 68,27 
9 RET 3,17 71,44 

10 JMP 2,3 73,74 
11 LOOP 1,96 75,7 
12 INC 1,95 77,65 
13 OR 1,84 79,49 
14 SUB 1,74 81,23 
15 SHL/SAL 1,38 82,61 
16 XOR 1,17 83,78 
17 DEC 1,17 84,95 
18 LES 1,13 86,08 
19 TEST 1,04 87,12 
20 JNB/JAE 0,84 87,96 
21 LDS 0,74 88,7 
22 SHR 0,75 89,45 
23 RCR 0,72 90,17 
24 RETF 0,69 90,86 
25 JNBE 0,66 91,52  

 MEDIA (resultados actuales) 
 operación % acumulado 

1 MOV 30,36 30,36 
2 CMP 8,31 38,67 
3 JE/JZ 5,85 44,52 
4 MOVS 5,45 49,97 
5 PUSH 5,10 55,07 
6 ADD 4,71 59,77 
7 INC 4,24 64,01 
8 POP 4,12 68,13 
9 JNE/JNZ 3,53 71,66 

10 JMP 3,17 74,83 
11 JNB/JAE 2,28 77,11 
12 SHL/SAL 1,99 79,10 
13 SUB 1,97 81,07 
14 XOR 1,77 82,83 
15 DEC 1,47 84,30 
16 JB/JNAE 1,36 85,67 
17 CALL 1,22 86,89 
18 OR 1,19 88,08 
19 AND 1,01 89,09 
20 SCAS 1,01 90,09 
21 STOS 1,00 91,09 
22 TEST 0,98 92,07 
23 RET 0,87 92,94 
24 SHR 0,66 93,60 
25 CLC 0,59 94,19  

 
 

As far as the transferences with the stack are 
concern, we see how FIND stands up by amount and 
TCC by the disparity between PUSH and POP 
operations. The case of FIND denotes limited 
temporary storage resources which imply saving in the 
stack temporary data with the aim to change their use. 
This agrees with the dedicated use of the registers that 
in later sections is described. With respect to TCC, the 
difference of percentage between PUSH and POP is 
justified in attention to two diverse uses. The 
percentage of POP use and the equivalent one of 
PUSH make reference to a limited register file. The 
excess of use of PUSH with respect to POP points the 
arguments passing to procedures through the stack 
which does not have pair in returns with POP. 
 
 llamadas a subrutinas 

0% 
1% 
2% 
3% 
4% 
5% 
6% 

COMP DEBUG FIND GO T GO V RAR C RAR D SORT TCC  

 llamadas al sistema 

0,00% 
0,05% 
0,10% 
0,15% 
0,20% 

COMP DEBUG FIND GO T GO V RAR C RAR D SORT TCC

Fig. 2. Procedure calls comparative. 
 

As far as the procedure calls, we observed an 
absolutely heterogeneous behaviour and the anomaly 
of DEBUG in the system calls. 

The program that more procedure calls performs 
is FIND although that does not go with an important 
argument passing, whereas TCC passes an important 
amount of arguments and COMP even larger. Later, 
when we talk about the “explicit use of registers”, we 
will have occasion to describe this aspect detailed. 

The amount of system calls that DEBUG makes 
justifies by the fact that it is the program which more 
data display in the screen. 

Finally, two more graphs plot the results of 
sequential performance and basic block size. We can 
advance to a correlation between CPI and memory 
accesses (they represent a bottle-neck) so that the 
worse CPI, the one of COMP, corresponds with the 
greater percentage of memory accesses, especially 
over the average. 
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Fig. 3. Sequential CPI performance comparative. 
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Fig. 4. Basic block comparative. 
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% 

33,87
10,64

7,29
5,78
3,99
3,79
3,66
3,47
2,30
2,10
1,74
1,63
1,59
1,57
1,53
1,41
1,37
1,31
1,18
1,08
0,99
0,90
0,86
0,86
0,55

TCC 

operación 

MOV 
PUSH 
CMP 
POP 
JE/JZ 
JNE/JNZ 
INC 
JMP 
CALL 
OR 
RETF 
ADD 
DEC 
SCAS 
SUB 
LES 
STOS 
JB/JNAE 
LOOP 
SHL/SAL 
XOR 
TEST 
CBW 
LODS 
RET 

% 

44,75
11,76

6,00
6,00
4,50
3,22
3,15
3,05
2,93
1,89
1,71
1,61
1,61
1,57
1,50
1,48
1,47
1,47
0,13
0,06
0,05
0,04
0,02
0,02
0,02

SORT 

operación 

MOVS 
MOV 
PUSH 
POP 
ADD 
XLAT 
CMP 
SUB 
JNBE/JA 
SCAS 
INC 
LODS 
LOOPZ 
JNE/JNZ 
JE/JZ 
OR 
JB/JNAE 
JNB/JAE 
JMP 
DEC 
STOS 
JCXZ 
CLD 
SHR 
STD 

% 

39,01
8,95
6,23
4,56
4,47
4,38
3,72
3,56
3,43
1,94
1,83
1,82
1,59
1,56
1,50
1,42
1,33
1,25
1,15
1,10
1,04
0,72
0,60
0,46
0,40

RAR D 

operación 

MOV 
XOR 
SUB 
CMP 
ADD 
SHR 
STOS 
SHL/SAL 
MOVS 
JNB/JAE 
AND 
INC 
DEC 
JMP 
LOOP 
XCHG 
JNE/JNZ 
JNBE/JA 
JS 
JE/JZ 
SBB 
JB/JNAE 
ADC 
JBE/JNA 
PUSH 

% 

21,71
19,90
12,72
10,23

5,77
3,73
3,49
2,45
2,33
2,23
2,17
2,00
1,75
1,56
1,21
0,86
0,80
0,67
0,62
0,60
0,33
0,32
0,32
0,32
0,31

RAR C 

operación 

MOV 
JE/JZ 
SHL/SAL 
CMP 
JB/JNAE 
XOR 
DEC 
TEST 
JNB/JAE 
ADD 
JNE/JNZ 
CMPS 
SUB 
AND 
SHR 
JMP 
INC 
XCHG 
LOOP 
STOS 
JLE/JNG 
OR 
NOT 
LDS 
JNBE/JA 

% 

49,38
12,56

8,80
4,77
3,98
2,97
2,49
2,07
2,05
1,94
1,77
0,90
0,85
0,77
0,72
0,65
0,65
0,58
0,54
0,35
0,24
0,23
0,22
0,21
0,17

GO V 

operación 

MOV 
ADD 
CMP 
JNE/JNZ 
PUSH 
JMP 
AND 
JE/JZ 
POP 
INC 
LES 
JNLE/JG 
OR 
JL/JNGE 
JNL/JGE 
CALL 
RETF 
JLE/JNG 
SUB 
DEC 
SHL/SAL 
IMUL 
LEA 
XOR 
TEST 

% 

49,66
12,20

9,34
4,14
3,87
2,88
2,80
2,50
2,46
1,88
1,46
0,91
0,87
0,86
0,64
0,64
0,58
0,56
0,35
0,25
0,24
0,22
0,17
0,16
0,16

GO T 

operación 

MOV 
ADD 
CMP 
PUSH 
JNE/JNZ 
JE/JZ 
JMP 
POP 
AND 
INC 
LES 
JNLE/JG 
SUB 
JL/JNGE 
CALL 
RETF 
JNL/JGE 
JLE/JNG 
DEC 
LEA 
SHL/SAL 
IMUL 
XOR 
TEST 
OR 

% 

16,16
14,39
14,39

4,84
4,82
4,77
4,77
4,76
4,73
3,42
3,33
3,22
3,19
3,17
1,70
1,70
1,62
1,60
1,60
1,57
0,10
0,08
0,03
0,01
0,00

FIND 

operación 

MOV 
PUSH 
POP 
CMP 
JMP 
CALL 
RET 
INC 
CLC 
SCAS 
JNE/JNZ 
JE/JZ 
SUB 
JNB/JAE 
JCXZ 
DEC 
TEST 
JB/JNAE 
LODS 
ADD 
MOVS 
STOS 
STC 
LOOP 
XOR 

% 

12,33
10,49
10,38

9,45
6,60
5,80
5,72
5,62
5,28
3,91
3,49
3,06
2,50
2,42
2,30
1,84
1,46
1,35
0,92
0,56
0,53
0,32
0,30
0,29
0,28

DEBUG 

operación 

JE/JZ 
CMP 
JNE/JNZ 
MOV 
JMP 
PUSH 
INC 
POP 
OR 
DEC 
TEST 
ADD 
STOS 
CALL 
RET 
XOR 
SCAS 
JB/JNAE 
JNB/JAE 
XCHG 
CLC 
DIV 
STC 
SUB 
JBE/JNA 

% 

42,26
16,07
15,84
10,24

5,65
5,31
0,66
0,65
0,60
0,35
0,34
0,31
0,25
0,21
0,21
0,16
0,14
0,11
0,09
0,09
0,08
0,08
0,04
0,03
0,02

COMP 

operación 

MOV 
CMP 
INC 
JNB/JAE 
JE/JZ 
JMP 
SCAS 
STOS 
JNE/JNZ 
OR 
PUSH 
LODS 
SUB 
POP 
DEC 
LES 
ADD 
MOVS 
LOOP 
JS 
CALL 
RET 
XCHG 
CBW 
SHL/SAL 

Table 2. Listing of the 25 operations more frequently used by program. 
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a. Use of instructions outside the instruction set 
of microprocessor Intel 8086 

 
As the used programs to generate the traces have 

not been compiled (the case of GO is an exception) 
because the source code was not available, a count of 
instructions not including in the instruction set of 
microprocessor Intel 8086 has been made. 

The result is that none of the test-bench programs 
use later extensions excepting the compiler TCC 
which does it approximately in a 1% of occasions. 
This agrees with the same measurements made by 
Adams and Zimmerman [1] but remarking that our 
programs are more modern, as they correspond to later 
versions, and therefore more susceptible of having 
incorporated such extensions. 

The conclusion is that the extensions added to the 
instruction ser of microprocessor 8086, specially to 
the 80386, are just applied to writing determined parts 
of the operating systems (virtual memory, memory 
protection, etc.) that are not in the ordinary 
applications. 
 
 
b. Use of prefix codes 
 

On the other hand, we are going to mention the 
use of prefix codes briefly. In the x86 instruction set 
we have prefix codes for string operation repetition, 
segment prefix codes of and LOCK prefix. 

The repetition prefix codes are used to modify the 
string instructions in the way they are repeated as if they 
were inside a loop. It would be a loop with a single 
instruction, the string operation4. The traces have an 
average of 2.62% with the exception of SORT that makes 
an intensive use of these prefixes reaching 46.68%. 

The segment prefix codes are used to modify the 
memory base register used by default to calculate the 
effective memory address. They concern, therefore, 
with the memory accesses. We notice that the base 
register establishes an additional dependence among 
instructions, which the prefix does not do more than to 
turn explicit. The segment prefixes are used with a 
frequency average of something more than 10% 
having distributed CS and ES the whole occurrences 
with a 4.25% and a 5.94% respectively. 

Each memory access implies the use of a 
segment register by default. The appearance of a 
segment prefix in the code does not alter this fact, 
only turns explicit what of natural way is implicit. 

The prefix LOCK, which function is to block the 
access to shared hardware resources by several 
processors, has not been found in any occasion. 
 
 

                                                 
4 The repetition prefix codes hold the same problem as the LOOP 

instruction: the counter register CX has a dedicated use. By its 
functionality, to nest a string instruction in other loop is not going to be 
habitual and then to make transferences with the stack to save the counter 
is not necessary… Nevertheless, in many occasions, to enclose inside a 
loop several string sentences would be more effective than repeat one after 
other but it is not possible. The use of these strings operations imposes the 
distribution of the process in several implicit loops, each one of them with 
its own repetition prefix. Notice that the repetition prefix code for string 
operations gives a basic block size one. 

3. Detailed study of data access 
 

In superscalar processing, the final performance 
depends on several aspects: the programmed 
algorithm, the compiler behaviour, the architecture 
limitations and, finally, the instruction mix which the 
application has been implemented with since limited 
concurrent execution is due, obviously, to data 
dependences among instructions. In this sense, it 
becomes interesting to learn how data are acceded to 
since it is going to provide us information about the 
limitations that the instruction set architecture 
imposes. 

Next, the addressing modes distribution in three 
different comparatives is shown graphically: data 
allocated in explicit registers, accesses to data located 
in memory and operations among registers. 

We see as the COMP trace has the larger 
percentage of memory accesses and the minor of 
operations among registers. Evidently its CPI is the 
worse one as consequence, by far, of the memory 
accesses latency. The best one is the RAR 
compressing, with a similar use of operations among 
registers and memory accesses. 
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0%
10%
20%
30%
40%
50%
60%
70%
80%

COMP DEBUG FIND GO T GO V RAR C RAR D SORT TCC

Fig. 5. Data allocation comparatives. 

 
We want to know how the registers are used 

under the direct addressing mode to register, also we 
want to know how the memory is acceded and how 
the effective addresses are calculated and, finally, we 
cannot forget that there is an implicit use of data what 
we want to evaluate its impact on the final 
performance of the machine since also it is responsible 
for data dependences. We go, then, to look at the 
problem counting explicit use of registers both in 
direct access and involved in memory addresses and, 
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afterwards, we will study the counts of implicit use of 
registers. 

This study is going to sketch the scene of the 
potential data dependences and, consequently, the 
disposition that we are going to have to take 
advantage of the concurrent processing. 
 
 
a. Explicit use of registers 
 

The register use has a double functionality: the 
data processing and the address computing. The 
address computing, both for data in memory or stack 

access, represents a computational load although it is 
not strictly associated to the programmed algorithm. 

Figure 6 illustrate the number of register accesses 
to. In light gray we have the amount of accesses in 
direct addressing mode to register, that is, those used 
for the data processing. In dark gray the accesses to 
registers for computing memory addresses (addressing 
modes relative to register) have been accumulatively 
represented. The readings have been presented. As the 
instruction set format comprises just two directions, 
the destination operand (written) is also read. We try 
to describe the map of accesses more than if they are 
used in reading or writing access. 
 

 
 COMP 

0 
50 

100 
150 
200 
250 
300 
350 
400 
450 
500 

AL AH AX BL BH BX CL CH CX DL DH DX BP SP DI SI  

DEBUG

0

200

400

600

800

1.000

1.200

1.400

AL AH AX BL BH BX CL CH CX DL DH DX BP SP DI SI  
 FIND 

0 
200 
400 
600 
800 

1.000 
1.200 
1.400 
1.600 

AL AH AX BL BH BX CL CH CX DL DH DX BP SP DI SI  

 GO (optimizado en tamaño) 

0

2.000

4.000

6.000

8.000

10.000

12.000

14.000

AL AH AX BL BH BX CL CH CX DL DH DX BP SP DI SI  
 GO (optimizado en velocidad) 

0 
2.000 
4.000 
6.000 
8.000 

10.000 
12.000 
14.000 

AL AH AX BL BH BX CL CH CX DL DH DX BP SP DI SI  

RAR (comprimiendo) 

0

5.000

10.000

15.000

20.000

25.000

30.000

35.000

40.000

AL AH AX BL BH BX CL CH CX DL DH DX BP SP DI SI  
 RAR (descomprimiendo) 

0 
500 

1.000 
1.500 
2.000 
2.500 
3.000 
3.500 

AL AH AX BL BH BX CL CH CX DL DH DX BP SP DI SI  

SORT 

0

5

10

15

20

25

30

35

AL AH AX BL BH BX CL CH CX DL DH DX BP SP DI SI

TCC 

0 

50 

100 

150 

200 

250 

AL AH AX BL BH BX CL CH CX DL DH DX BP SP DI SI  
Fig. 6. Explicit access to registers in thousands of references. Dark gray for references used in memory addressing. 
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He is flashy to observe that the use of registers is 
concentrated in a few of then in the most cases, 
specially in COMP, FIND and the two versions of 
GO. This is more evident in the use of registers as 
memory pointers. We see that the variety of used 
registers to address computation is still smaller. This 
lack of versatility is clear in the grid of memory 
codification of addressing modes who we present 
next: 
 
Table 3. Effective memory addresses computation in the instruction 
format. 
 

r/m mod = 00 mod = 01 mod = 10 
000 
001 
010 
011 
100 
101 
110 
111 

[BX]+[SI] 
[BX]+[DI] 
[BP]+[SI] 
[BP]+[DI] 
[SI] 
[DI] 
dirección directa 
[BX] 

[BX]+[SI]+D8 
[BX]+[DI]+D8 
[BP]+[SI]+D8 
[BP]+[DI]+D8 
[SI]+D8 
[DI]+D8 
[BP]+D8 
[BX]+D8 

[BX]+[SI]+D16 
[BX]+[DI]+D16 
[BP]+[SI]+D16 
[BP]+[DI]+D16 
[SI]+D16 
[DI]+D16 
[BP]+D16 
[BX]+D16 

 
The fact that the previous table has three different 

columns with displacement 0, displacement of 8 bits 
and displacement of 16 bits is a consequence of 
instruction set design criterion: as it is tried to reduce 
the representation space and, therefore, the size of the 
formats is variable based on the amount of required 
information. In this case, the format codification must 
indicate the number of additional bytes that should be 
taken from the instruction flow to read the 
displacement. Thus we assured that small or null 
displacements do not occupy memory unnecessarily. 

Really, the previous table could be reduced to 
Table 4 except the case of the direct address to 
memory. The segment register used as base has been 
included in each case. 
 
Table 4. Registers evolved in memory addresses computation. The 
default segment register is enclosed. 
 

DSx16+[BX]+[SI] 
DSx16+ [BX]+[DI] 
SSx16+ [BP]+[SI] 
SSx16+ [BP]+[DI] 
DSx16+ [SI] 
DSx16+ [DI] 
SSx16+ [BP] 
DSx16+ [BX] 
 

Only four registers are used to address 
computation: BX, BP as bases and SI, DI as indexes, 
according to the terminology of the manufacturer. To 
these registers it is necessary to add the implicit use 
(unless a segment prefix is specified explicitly) of a 
segment register by defect: DS or SS depending on the 
base and the index. 

The high record number involved in the address 
computation is a potential source of data dependences. 

In Fig. 7 is plotted the distribution of registers 
implied in the address computation over the total 
memory accesses for each test-bench program and the 
average on all of them in the rightmost column. 

It is possible to think that the normal is to use a 
register of the four. Nevertheless, program RAR, as 
much in compression as in decompression, uses two 

registers (one of bases and one of the indexes) in an 
important percentage of the accesses. This implies to 
increase the potential data dependences that, in the 
end, limit the parallelism degree and therefore the 
performance. Let observe that the graph makes 
reference to the registers used as displacement. It is 
necessary to add, in each case, the segment register 
that has been used as base. Really, it is necessary to 
count one more register in each case. 
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Fig. 7. Memory addressing modes distribution (considering just 
offset registers). 

 
At the same time, we must indicate that the 

combined accesses to registers in word size and byte 
size (AX, AL, AH, etc.) also are potential sources of 
data dependences since they represent the same 
physical resource. 

The trace of program COMP is the one that less 
registers uses: AX, BX and BP. The storage cell is 
used in direct address, register BP in addresses to 
memory (stack) and the BX is distributed for both 
functions. It is easy to conclude that the graph del the 
code is going to present/display many dependences 
through these three registers being limited the 
opportunities of concurrent execution. 

The dedicated use of registers and the high 
reusability of them imply a greater degree of 
dependences among data. In fact, it sketches a scene 
of lack of physical resources, although in absolute 
terms we pruned to count with an appreciable amount 
of temporary storage elements. In addition, as Adams 
and Zimmerman indicate [1], this limitation elevates 
the number of occurrences of instructions MOV, 
PUSH and POP. 

Some authors have pointed that the data 
dependences due to memory pointers are still more 
useless that the transformations of data resident in 
registers [4, 2]. The idea is that the second ones derive 
from the semantics of the program (what algorithm 
programmed performs) whereas first ones are 
artificial, they are due to the programming model, to 
the limitation in physical resources and, in addition, 
they generate double dependences: through the pointer 
registers and through the own memory considered as a 
solely resource. There is a load of programming, 
added to the own programmed algorithm task, that is 
in charge to execute code to properly update the 
memory pointers. 
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b. Implicit use of registers 
 

The x86 instruction set architecture works with 
implicit operands associate to the operation code that 
do not appear, therefore, in the format. It is, also, a 
way to save representation space. However, that the 
programmer (the compiler) does not express them 
does not mean that they do not generate data 
dependences. The implicit operands involve, in 
addition, a dedicated use of registers that can 
aggravate the problem to find independent operations 
to execute in concurrent environment. Also, it 
increases the amount of stack swapping. 

In Fig. 8 are presented the graphs that plot the 
distribution of the implicit use of registers for the 
different test-bench programs. 

The referenced implicit registers are always the 
same: accumulator (AX), counter (CX), SP, DI, SI and 
very sporadic occurrences on BX and DX. 

The number of implicit accesses surpasses in 
some occasions to explicit accesses. So it is the case 
of DEBUG, FIND and SORT. 

The accesses to the stack pointer (SP) come from 
instructions of stack managing: PUSH, POP, CALL, 
RET. The work of Postiff [4] identifies this fact and 
analyzes its consequences. 
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Fig. 8. Implicit use of registers expressed in thousands of references. Dark gray for writes and light gray for reads. 
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In the graphs, the segment registers, which 

always appear in the effective memory address 
computation, are not included. Its total amount is 
equal to the one of memory accesses and its 
distribution has to do with the default register given in 
Table 4 or specified by segment prefix, in its case, in a 
explicit way with the purpose of modifying the 
established one by default. However, in this work each 
occurrence has not been considered in detail. 

In general, the number of reads and writes is 
practically equal over all the registers with the 
exception of accumulator that usually has less writes 
than reads. This fact contributes to the appearance of 
long chains of dependences. 

The rest of registers used implicitly in our traces 
came mainly from strings operations. LOOP also 
generates implicit accesses to the counter register 
(CX) but the amount attributable to this instruction is 
very small since its use is very small and it is not 
among the top 25 more used in average. 

The SORT trace highlights because the implicit 
accesses are far beyond the explicit ones (1,150,000 as 
opposed to approximately 130,000) due to the 
significant use of instructions of strings managing. 
Employing these operation codes, that in fact 
correspond to loop primitives, prevents to carry out 
optimizations with the purpose of taking advantage of 
potential parallel resources. 
 
 
c. Implicit use of status flags 
 

This instruction set is a clear representative of the 
architectures based on status register. In them, the 
conditional branches are evaluated based on the value 
that contains a special register constituted by a series 
of fields that store information on different situations. 
These fields are updated by some instructions in a 
implicit and unconditional way. 

Figure 9 shows the distribution use of status flags 
by traces. The reads and writes of the bits 
corresponding to which Intel calls status flags have 
been indicated. The manufacturer distinguishes in this 
register between status flags, updated by process 
instructions, and control flags, governed by the 
programmer to settle down different operation modes. 
We are interested in the first ones as they straight 
depend on the execution of certain operation codes. 

The write access to the status flags is specially 
important in the case of the process instructions 
whereas the read access usually correspond to the 
conditional branch instructions. Some process 
instructions read the flags as a more data input. 

From the graphs plotted next, it is clear that the 
writes become in block whereas the reads are made 
over specific fields (bits). For example, the COMP 
trace only reads the ZF and CF flags whereas it writes 
in block in all the status flags (with the exception of 
CF); DEBUG, FIND, RAR and TCC behave of 

similar way. The two traces of GO also adjust to the 
saying: they write in block but they only read OF, SF 
and the ZF flags. 

This way to operate is absolutely reasonable. The 
idea is that in each basic block we have a branch. This 
branch is mainly a conditional branch that evaluates a 
condition expressed by a status flag, sometimes a 
combination of two of them and very rare times three. 
Consequently, the execution of the bifurcation reads 
some specific flags, not the whole block. 
Nevertheless, the process instructions write the status 
modifying most of the status bits. 

Let notice another fact. The amount of writes 
surpasses, in most cases, to the reads. The trace of 
SORT, as result of using repetition prefix over string 
instruction, is the only one which leaves the rule 
 these instructions again take out this program to the 
average norm . 

There is, therefore, an imbalance between the 
generated information and the required information 
both in extension and in amount. There is a disparity 
in extension because the written flags are more than 
necessary. In amount because the status writes surpass 
three or four times to the reads. 

What is writes amount larger than read ones due 
to? Let us return to the basic block. In each one of 
them we have, in average, more than a process 
instruction (which write status in block) by a single 
conditional branch. The conditional branch only 
considers the last status update causing that the 
previous writes became absolutely useless. They not 
only are unproductive but generate data dependences. 
If the data dependences deal with each flag as an 
individual data symbol or resource, the resulting data 
dependence graph has many arcs (data dependences) 
and consequently is much coupled. 

A very large number of writes on the same 
resource entails a potential increase of the output 
dependences. It is truth that the output dependences, 
as well as the antidependences, are not of the “true 
ones”, those that have computational sense, but the 
renaming technique to avoid then supposes to have an 
additional status register file. 

We are going to examine our traces counting how 
many average process operations there are by basic 
block as a way to measure the degree of limitation to 
the parallelism imposed by the instruction set 
architecture and, therefore, no attributable to the 
program semantics. In the graph associate (Fig. 10) 
can be seen that the number of process operations and, 
therefore, the number of writes in the status register, 
by basic block surpasses to the read ones. This 
suggests us to think that many of them are 
superfluous. In that graph, SORT has not been plotted 
because, having a very high percentage of string 
instructions, cannot treat, with respect to the basic 
block, as to the rest of traces. 
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Fig. 9. Implicit use of status flags expressed in thousands of references. Dark gray for writes and light gray for reads. 
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Fig. 10. Distribution of status reads and process operations (status 
writes) by basic block. 

 
Let explain that all these dependences are not 

superfluous because they can be superposed to the real 
ones (semantic) generated by the data processing. 
Nevertheless, if we avoided them we can obtain the 
available parallelism upper bound. The degree of real 
parallelism will move between the present situation 
and the upper bound. 

The description done till here explains the degree 
of data dependences in a direct way. However, the 
complete effect can be diminished by means of 
disambiguating techniques: register renaming and 
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memory fundamentally [7, 6, 2, 4]. The application of 
these techniques is simpler in the case of the processor 
registers than in the case of the memory. Also, it is 
simpler in the case of the explicit registers that in the 
case of the implicit ones and it becomes very 
complicated in the case of the status register. 
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