

Analysis of x86 Data Usage (16 bits subset)

Technical Report TR-UAH-AUT-GAP-2005-22-en

Rafael Rico

Department of Computer Engineering, Universidad de Alcalá, Spain

December 2005

Versión en español:

Análisis del uso de datos en el repertorio x86 (subconjunto de 16 bits)
Informe técnico TR-UAH-AUT-GAP-2005-22-es

Rafael Rico

Departamento de Automática, Universidad de Alcalá, España

Abstract:

To study the behavior of instruction sets in the superscalar setting to analyze the data usage is necessary
because the main limiting factor to parallel execution is the data dependences among instructions.

This technical report shows the data usage distribution for x86 instruction set, 16 bits subset. The work has
been done with a predefined test-bench.

The detailed study of data access has been organized as follows. First of all, the explicit register usage is
analyzed, next the implicit usage and finally, the status flag usage is studied.

From usage distributions for each group, quantitative results about the most important sources of potential
data dependences are obtained.

Index words: Evaluation of computer architectures, instruction level parallelism, instruction set architecture.

Resumen:

Para estudiar el comportamiento de los repertorios de instrucciones en el entorno de procesamiento
superescalar es necesario analizar el uso que se hace de los datos ya que el factor limitante más importante de la
ejecución paralela son las dependencias de datos.

El presente informe técnico muestra la distribución del uso de los datos para el repertorio x86, subconjunto
de 16 bits. El trabajo se ha realizado a partir de un banco de pruebas predefinido.

El estudio detallado del acceso a datos se ha organizado como sigue. Primero se analiza el uso explícito de
registros, a continuación el uso implícito y finalmente se estudia el uso de las banderas de estado.

A partir de las distribuciones de uso de cada grupo se obtienen resultados cualitativos acerca de las fuentes
más importantes de potenciales dependencias de datos.

Palabras clave: Evaluación de arquitecturas de computadores, paralelismo a nivel de instrucción, arquitectura
del repertorio de instrucciones.

2

 Technical Report TR-UAH-AUT-GAP-2005-22-en

 3

1. Introduction

When it is intended to study the instruction sets
behaviour in the superscalar processing setting to
analyze the data usage is necessary.

The present technical report shows the data usage
distribution for the x86 instruction set, 16 bits subset.
The work has been made from a test-bench which in
depth description can be known in previous report TR-
UAH-AUT-GAP-21, titled “Proposal of test-bench for
the x86 instruction set (16 bits subset)” [5].

2. Instruction frequency of use

Although it is not the aim of this report, a study
has been performed on the frequency of use of the
instructions, grouping them by their mnemonics. We
are going to present our results comparing them with
the obtained ones in 1989 by Adams and Zimmerman
[1]. As these authors assure that, still nowadays, there
are very few studies on dynamic traces of x86
instruction set. In this report, 190 million instructions
have been traced in opposition to 18 million that they
traced. Table 1 shows the top 25 more used
instructions in average according to both studies.

At first sight, it is clear that both sets of
instructions are similar. In the data of 1989, the 6
instructions that have left the table respect our study
have been highlighted on grey. The leaving of the list
of LOOP was awaited since, as explains Randall Hyde
in the last version of their book on the assembly
language [3], the compilers has yielded use this
instruction due to the dedicated employ that imposes
through counter register CX: when several loops are
nested it is necessary to perform a continuous data
movement with the stack to save the index coherence.
Only 3 test-bench applications use LOOP and they do
it with a weight around to 1.5%: RAR decompressing,
SORT and TCC (see table 2 with the top 25 more used
instructions for each one of the traces).

The instructions LES and LDS also leave the top
list possibly because our test-bench does not count on great
excessively programs nor on very large areas of data.

The rest of leaving instructions has more to do
with the profile of the traced programs that with
compilation criteria.

In our table, we see that instructions MOVS,
JB/JNAE, AND, SCAS, STOS and CLC have entered.
Among the three string instructions enclosed (MOVS,
SCAS and STOS), the first is due to the SORT trace
whereas the other two have a very irregular use in the rest
of traces. Notice that we have counted all the occurrences
of strings operations whereas the authors of cited
previous work only counted them once (discarding the
repetition prefix) measuring the string length with the
aim of calculating the average string length. Logically,
our counts are much greater when the lengths of the
strings are large. This metric diversity affects
something to the percentage of use of operations.

In many cases the percentage of use are similar
(MOV, CMP, JNE/JNZ, SHL/SAL, SUB, XOR, DEC,
OR) since they correspond to basic instructions of the

instruction set. Otherwise, it is significant that PUSH
and POP has diminished in percentage and
simultaneously they have approximated their values.
The explanation can be in an optimized compilation to
diminish the transferences with memory through the
stack and in a better use of the available registers1.

It is necessary to emphasize that MOV is the
most frequently used operation with great difference.
Among all traces only two do not have it in first
position: DEBUG, in favour of the conditional
branches, and SORT, in favour of string movement.

The second operation in top 25 list is CMP, an
arithmetical operation (subtraction) that does not write
results. This behaviour has great importance because
not writing in destination operand does not generate
dependences by explicit data2, although it does
generate through implicit data3. The resulting
information of the comparison is used to update the
status register writing in the flags. It is there where the
possible dependence settles down. Usually, it forms
pair with a conditional branch, reason because
between it and the bifurcation usually is not any other
instruction that modifies the status register.

As far as the conditional branches are concern,
we see that only there are four different ones that are
complementary two to two. Consequently, we can say
that among the 16 operation codes corresponding to
conditional branches in this instruction set, many of
them could not exist. Something similar happens with
other instructions: BCD adjust operations, XCHG or
the already commented case of LOOP.

In the end of list we find SHR, which do not
leave the list thanks to the use that gives it program
RAR, and CLC, which inclusion is due to FIND.

Below, we can glimpse a series of comparative
graphs throughout all the test-bench about the
following aspects: transferences with the stack,
procedure calls, sequential run times and basic block
sizes. In all the graphs the average value has been
plotted.

PUSH

0%
2%
4%
6%
8%

10%
12%
14%
16%

COMP DEBUG FIND GO T GO V RAR C RAR D SORT TCC

 POP

0%
2%
4%
6%
8%

10%
12%
14%
16%

COMP DEBUG FIND GO T GO V RAR C RAR D SORT TCC

Fig. 1. Stack traffic comparative.

1 In many occasions an optimal allocation of registers produces the same

result that to count on a larger number of registers.
2 Explicit data is considered which appears in the instruction.
3 Implicit data is considered which does not appear in the instruction format

since it is associated to operation code.

Rafael Rico

4

Table 1. Listing of the top 25 more frequently used operations in average: to the left according to the article of
Adams and Zimmerman [1] and to the right according to the counts obtained in this report.

 MEDIA (trabajo previo)
 operación % acumulado

1 MOV 29,95 29,95
2 PUSH 9,25 39,2
3 CMP 7,94 47,14
4 POP 6,22 53,36
5 JNE/JNZ 4,52 57,88
6 JE/JZ 3,63 61,51
7 ADD 3,47 64,98
8 CALL 3,29 68,27
9 RET 3,17 71,44

10 JMP 2,3 73,74
11 LOOP 1,96 75,7
12 INC 1,95 77,65
13 OR 1,84 79,49
14 SUB 1,74 81,23
15 SHL/SAL 1,38 82,61
16 XOR 1,17 83,78
17 DEC 1,17 84,95
18 LES 1,13 86,08
19 TEST 1,04 87,12
20 JNB/JAE 0,84 87,96
21 LDS 0,74 88,7
22 SHR 0,75 89,45
23 RCR 0,72 90,17
24 RETF 0,69 90,86
25 JNBE 0,66 91,52

 MEDIA (resultados actuales)
 operación % acumulado

1 MOV 30,36 30,36
2 CMP 8,31 38,67
3 JE/JZ 5,85 44,52
4 MOVS 5,45 49,97
5 PUSH 5,10 55,07
6 ADD 4,71 59,77
7 INC 4,24 64,01
8 POP 4,12 68,13
9 JNE/JNZ 3,53 71,66

10 JMP 3,17 74,83
11 JNB/JAE 2,28 77,11
12 SHL/SAL 1,99 79,10
13 SUB 1,97 81,07
14 XOR 1,77 82,83
15 DEC 1,47 84,30
16 JB/JNAE 1,36 85,67
17 CALL 1,22 86,89
18 OR 1,19 88,08
19 AND 1,01 89,09
20 SCAS 1,01 90,09
21 STOS 1,00 91,09
22 TEST 0,98 92,07
23 RET 0,87 92,94
24 SHR 0,66 93,60
25 CLC 0,59 94,19

As far as the transferences with the stack are
concern, we see how FIND stands up by amount and
TCC by the disparity between PUSH and POP
operations. The case of FIND denotes limited
temporary storage resources which imply saving in the
stack temporary data with the aim to change their use.
This agrees with the dedicated use of the registers that
in later sections is described. With respect to TCC, the
difference of percentage between PUSH and POP is
justified in attention to two diverse uses. The
percentage of POP use and the equivalent one of
PUSH make reference to a limited register file. The
excess of use of PUSH with respect to POP points the
arguments passing to procedures through the stack
which does not have pair in returns with POP.

 llamadas a subrutinas

0%
1%
2%
3%
4%
5%
6%

COMP DEBUG FIND GO T GO V RAR C RAR D SORT TCC

 llamadas al sistema

0,00%
0,05%
0,10%
0,15%
0,20%

COMP DEBUG FIND GO T GO V RAR C RAR D SORT TCC

Fig. 2. Procedure calls comparative.

As far as the procedure calls, we observed an
absolutely heterogeneous behaviour and the anomaly
of DEBUG in the system calls.

The program that more procedure calls performs
is FIND although that does not go with an important
argument passing, whereas TCC passes an important
amount of arguments and COMP even larger. Later,
when we talk about the “explicit use of registers”, we
will have occasion to describe this aspect detailed.

The amount of system calls that DEBUG makes
justifies by the fact that it is the program which more
data display in the screen.

Finally, two more graphs plot the results of
sequential performance and basic block size. We can
advance to a correlation between CPI and memory
accesses (they represent a bottle-neck) so that the
worse CPI, the one of COMP, corresponds with the
greater percentage of memory accesses, especially
over the average.

 CPI secuencial

0

5

10

15

20

COMP DEBUG FIND GO T GO V RAR C RAR D SORT TCC

Fig. 3. Sequential CPI performance comparative.

 tamaño bloque básico

0

2

4

6

8

10

COMP DEBUG FIND GO T GO V RAR C RAR D SORT TCC

Fig. 4. Basic block comparative.

Technical Report TR-U
AH

-AU
T-G

AP-2005-22-en

5

%

33,87
10,64

7,29
5,78
3,99
3,79
3,66
3,47
2,30
2,10
1,74
1,63
1,59
1,57
1,53
1,41
1,37
1,31
1,18
1,08
0,99
0,90
0,86
0,86
0,55

TCC

operación

MOV
PUSH
CMP
POP
JE/JZ
JNE/JNZ
INC
JMP
CALL
OR
RETF
ADD
DEC
SCAS
SUB
LES
STOS
JB/JNAE
LOOP
SHL/SAL
XOR
TEST
CBW
LODS
RET

%

44,75
11,76

6,00
6,00
4,50
3,22
3,15
3,05
2,93
1,89
1,71
1,61
1,61
1,57
1,50
1,48
1,47
1,47
0,13
0,06
0,05
0,04
0,02
0,02
0,02

SORT

operación

MOVS
MOV
PUSH
POP
ADD
XLAT
CMP
SUB
JNBE/JA
SCAS
INC
LODS
LOOPZ
JNE/JNZ
JE/JZ
OR
JB/JNAE
JNB/JAE
JMP
DEC
STOS
JCXZ
CLD
SHR
STD

%

39,01
8,95
6,23
4,56
4,47
4,38
3,72
3,56
3,43
1,94
1,83
1,82
1,59
1,56
1,50
1,42
1,33
1,25
1,15
1,10
1,04
0,72
0,60
0,46
0,40

RAR D

operación

MOV
XOR
SUB
CMP
ADD
SHR
STOS
SHL/SAL
MOVS
JNB/JAE
AND
INC
DEC
JMP
LOOP
XCHG
JNE/JNZ
JNBE/JA
JS
JE/JZ
SBB
JB/JNAE
ADC
JBE/JNA
PUSH

%

21,71
19,90
12,72
10,23

5,77
3,73
3,49
2,45
2,33
2,23
2,17
2,00
1,75
1,56
1,21
0,86
0,80
0,67
0,62
0,60
0,33
0,32
0,32
0,32
0,31

RAR C

operación

MOV
JE/JZ
SHL/SAL
CMP
JB/JNAE
XOR
DEC
TEST
JNB/JAE
ADD
JNE/JNZ
CMPS
SUB
AND
SHR
JMP
INC
XCHG
LOOP
STOS
JLE/JNG
OR
NOT
LDS
JNBE/JA

%

49,38
12,56

8,80
4,77
3,98
2,97
2,49
2,07
2,05
1,94
1,77
0,90
0,85
0,77
0,72
0,65
0,65
0,58
0,54
0,35
0,24
0,23
0,22
0,21
0,17

GO V

operación

MOV
ADD
CMP
JNE/JNZ
PUSH
JMP
AND
JE/JZ
POP
INC
LES
JNLE/JG
OR
JL/JNGE
JNL/JGE
CALL
RETF
JLE/JNG
SUB
DEC
SHL/SAL
IMUL
LEA
XOR
TEST

%

49,66
12,20

9,34
4,14
3,87
2,88
2,80
2,50
2,46
1,88
1,46
0,91
0,87
0,86
0,64
0,64
0,58
0,56
0,35
0,25
0,24
0,22
0,17
0,16
0,16

GO T

operación

MOV
ADD
CMP
PUSH
JNE/JNZ
JE/JZ
JMP
POP
AND
INC
LES
JNLE/JG
SUB
JL/JNGE
CALL
RETF
JNL/JGE
JLE/JNG
DEC
LEA
SHL/SAL
IMUL
XOR
TEST
OR

%

16,16
14,39
14,39

4,84
4,82
4,77
4,77
4,76
4,73
3,42
3,33
3,22
3,19
3,17
1,70
1,70
1,62
1,60
1,60
1,57
0,10
0,08
0,03
0,01
0,00

FIND

operación

MOV
PUSH
POP
CMP
JMP
CALL
RET
INC
CLC
SCAS
JNE/JNZ
JE/JZ
SUB
JNB/JAE
JCXZ
DEC
TEST
JB/JNAE
LODS
ADD
MOVS
STOS
STC
LOOP
XOR

%

12,33
10,49
10,38

9,45
6,60
5,80
5,72
5,62
5,28
3,91
3,49
3,06
2,50
2,42
2,30
1,84
1,46
1,35
0,92
0,56
0,53
0,32
0,30
0,29
0,28

DEBUG

operación

JE/JZ
CMP
JNE/JNZ
MOV
JMP
PUSH
INC
POP
OR
DEC
TEST
ADD
STOS
CALL
RET
XOR
SCAS
JB/JNAE
JNB/JAE
XCHG
CLC
DIV
STC
SUB
JBE/JNA

%

42,26
16,07
15,84
10,24

5,65
5,31
0,66
0,65
0,60
0,35
0,34
0,31
0,25
0,21
0,21
0,16
0,14
0,11
0,09
0,09
0,08
0,08
0,04
0,03
0,02

COMP

operación

MOV
CMP
INC
JNB/JAE
JE/JZ
JMP
SCAS
STOS
JNE/JNZ
OR
PUSH
LODS
SUB
POP
DEC
LES
ADD
MOVS
LOOP
JS
CALL
RET
XCHG
CBW
SHL/SAL

Table 2. Listing of the 25 operations more frequently used by program.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

Rafael Rico

6

a. Use of instructions outside the instruction set
of microprocessor Intel 8086

As the used programs to generate the traces have

not been compiled (the case of GO is an exception)
because the source code was not available, a count of
instructions not including in the instruction set of
microprocessor Intel 8086 has been made.

The result is that none of the test-bench programs
use later extensions excepting the compiler TCC
which does it approximately in a 1% of occasions.
This agrees with the same measurements made by
Adams and Zimmerman [1] but remarking that our
programs are more modern, as they correspond to later
versions, and therefore more susceptible of having
incorporated such extensions.

The conclusion is that the extensions added to the
instruction ser of microprocessor 8086, specially to
the 80386, are just applied to writing determined parts
of the operating systems (virtual memory, memory
protection, etc.) that are not in the ordinary
applications.

b. Use of prefix codes

On the other hand, we are going to mention the
use of prefix codes briefly. In the x86 instruction set
we have prefix codes for string operation repetition,
segment prefix codes of and LOCK prefix.

The repetition prefix codes are used to modify the
string instructions in the way they are repeated as if they
were inside a loop. It would be a loop with a single
instruction, the string operation4. The traces have an
average of 2.62% with the exception of SORT that makes
an intensive use of these prefixes reaching 46.68%.

The segment prefix codes are used to modify the
memory base register used by default to calculate the
effective memory address. They concern, therefore,
with the memory accesses. We notice that the base
register establishes an additional dependence among
instructions, which the prefix does not do more than to
turn explicit. The segment prefixes are used with a
frequency average of something more than 10%
having distributed CS and ES the whole occurrences
with a 4.25% and a 5.94% respectively.

Each memory access implies the use of a
segment register by default. The appearance of a
segment prefix in the code does not alter this fact,
only turns explicit what of natural way is implicit.

The prefix LOCK, which function is to block the
access to shared hardware resources by several
processors, has not been found in any occasion.

4 The repetition prefix codes hold the same problem as the LOOP

instruction: the counter register CX has a dedicated use. By its
functionality, to nest a string instruction in other loop is not going to be
habitual and then to make transferences with the stack to save the counter
is not necessary… Nevertheless, in many occasions, to enclose inside a
loop several string sentences would be more effective than repeat one after
other but it is not possible. The use of these strings operations imposes the
distribution of the process in several implicit loops, each one of them with
its own repetition prefix. Notice that the repetition prefix code for string
operations gives a basic block size one.

3. Detailed study of data access

In superscalar processing, the final performance
depends on several aspects: the programmed
algorithm, the compiler behaviour, the architecture
limitations and, finally, the instruction mix which the
application has been implemented with since limited
concurrent execution is due, obviously, to data
dependences among instructions. In this sense, it
becomes interesting to learn how data are acceded to
since it is going to provide us information about the
limitations that the instruction set architecture
imposes.

Next, the addressing modes distribution in three
different comparatives is shown graphically: data
allocated in explicit registers, accesses to data located
in memory and operations among registers.

We see as the COMP trace has the larger
percentage of memory accesses and the minor of
operations among registers. Evidently its CPI is the
worse one as consequence, by far, of the memory
accesses latency. The best one is the RAR
compressing, with a similar use of operations among
registers and memory accesses.

 accesos explícitos a reg.

0%

20%

40%

60%

80%

100%

120%

COMP DEBUG FIND GO T GO V RAR C RAR D SORT TCC

 instrucciones reg-reg

0%

10%

20%

30%

40%

50%

COMP DEBUG FIND GO T GO V RAR C RAR D SORT TCC

accesos a memoria

0%
10%
20%
30%
40%
50%
60%
70%
80%

COMP DEBUG FIND GO T GO V RAR C RAR D SORT TCC

Fig. 5. Data allocation comparatives.

We want to know how the registers are used

under the direct addressing mode to register, also we
want to know how the memory is acceded and how
the effective addresses are calculated and, finally, we
cannot forget that there is an implicit use of data what
we want to evaluate its impact on the final
performance of the machine since also it is responsible
for data dependences. We go, then, to look at the
problem counting explicit use of registers both in
direct access and involved in memory addresses and,

 Technical Report TR-UAH-AUT-GAP-2005-22-en

 7

afterwards, we will study the counts of implicit use of
registers.

This study is going to sketch the scene of the
potential data dependences and, consequently, the
disposition that we are going to have to take
advantage of the concurrent processing.

a. Explicit use of registers

The register use has a double functionality: the
data processing and the address computing. The
address computing, both for data in memory or stack

access, represents a computational load although it is
not strictly associated to the programmed algorithm.

Figure 6 illustrate the number of register accesses
to. In light gray we have the amount of accesses in
direct addressing mode to register, that is, those used
for the data processing. In dark gray the accesses to
registers for computing memory addresses (addressing
modes relative to register) have been accumulatively
represented. The readings have been presented. As the
instruction set format comprises just two directions,
the destination operand (written) is also read. We try
to describe the map of accesses more than if they are
used in reading or writing access.

 COMP

0
50

100
150
200
250
300
350
400
450
500

AL AH AX BL BH BX CL CH CX DL DH DX BP SP DI SI

DEBUG

0

200

400

600

800

1.000

1.200

1.400

AL AH AX BL BH BX CL CH CX DL DH DX BP SP DI SI
 FIND

0
200
400
600
800

1.000
1.200
1.400
1.600

AL AH AX BL BH BX CL CH CX DL DH DX BP SP DI SI

 GO (optimizado en tamaño)

0

2.000

4.000

6.000

8.000

10.000

12.000

14.000

AL AH AX BL BH BX CL CH CX DL DH DX BP SP DI SI
 GO (optimizado en velocidad)

0
2.000
4.000
6.000
8.000

10.000
12.000
14.000

AL AH AX BL BH BX CL CH CX DL DH DX BP SP DI SI

RAR (comprimiendo)

0

5.000

10.000

15.000

20.000

25.000

30.000

35.000

40.000

AL AH AX BL BH BX CL CH CX DL DH DX BP SP DI SI
 RAR (descomprimiendo)

0
500

1.000
1.500
2.000
2.500
3.000
3.500

AL AH AX BL BH BX CL CH CX DL DH DX BP SP DI SI

SORT

0

5

10

15

20

25

30

35

AL AH AX BL BH BX CL CH CX DL DH DX BP SP DI SI

TCC

0

50

100

150

200

250

AL AH AX BL BH BX CL CH CX DL DH DX BP SP DI SI
Fig. 6. Explicit access to registers in thousands of references. Dark gray for references used in memory addressing.

Rafael Rico

8

He is flashy to observe that the use of registers is
concentrated in a few of then in the most cases,
specially in COMP, FIND and the two versions of
GO. This is more evident in the use of registers as
memory pointers. We see that the variety of used
registers to address computation is still smaller. This
lack of versatility is clear in the grid of memory
codification of addressing modes who we present
next:

Table 3. Effective memory addresses computation in the instruction
format.

r/m mod = 00 mod = 01 mod = 10
000
001
010
011
100
101
110
111

[BX]+[SI]
[BX]+[DI]
[BP]+[SI]
[BP]+[DI]
[SI]
[DI]
dirección directa
[BX]

[BX]+[SI]+D8
[BX]+[DI]+D8
[BP]+[SI]+D8
[BP]+[DI]+D8
[SI]+D8
[DI]+D8
[BP]+D8
[BX]+D8

[BX]+[SI]+D16
[BX]+[DI]+D16
[BP]+[SI]+D16
[BP]+[DI]+D16
[SI]+D16
[DI]+D16
[BP]+D16
[BX]+D16

The fact that the previous table has three different

columns with displacement 0, displacement of 8 bits
and displacement of 16 bits is a consequence of
instruction set design criterion: as it is tried to reduce
the representation space and, therefore, the size of the
formats is variable based on the amount of required
information. In this case, the format codification must
indicate the number of additional bytes that should be
taken from the instruction flow to read the
displacement. Thus we assured that small or null
displacements do not occupy memory unnecessarily.

Really, the previous table could be reduced to
Table 4 except the case of the direct address to
memory. The segment register used as base has been
included in each case.

Table 4. Registers evolved in memory addresses computation. The
default segment register is enclosed.

DSx16+[BX]+[SI]
DSx16+ [BX]+[DI]
SSx16+ [BP]+[SI]
SSx16+ [BP]+[DI]
DSx16+ [SI]
DSx16+ [DI]
SSx16+ [BP]
DSx16+ [BX]

Only four registers are used to address
computation: BX, BP as bases and SI, DI as indexes,
according to the terminology of the manufacturer. To
these registers it is necessary to add the implicit use
(unless a segment prefix is specified explicitly) of a
segment register by defect: DS or SS depending on the
base and the index.

The high record number involved in the address
computation is a potential source of data dependences.

In Fig. 7 is plotted the distribution of registers
implied in the address computation over the total
memory accesses for each test-bench program and the
average on all of them in the rightmost column.

It is possible to think that the normal is to use a
register of the four. Nevertheless, program RAR, as
much in compression as in decompression, uses two

registers (one of bases and one of the indexes) in an
important percentage of the accesses. This implies to
increase the potential data dependences that, in the
end, limit the parallelism degree and therefore the
performance. Let observe that the graph makes
reference to the registers used as displacement. It is
necessary to add, in each case, the segment register
that has been used as base. Really, it is necessary to
count one more register in each case.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

C
O

M
P

D
E

B
U

G

FI
N

D

G
O

 T

G
O

 V

R
A

R
 C

R
A

R
 D

S
O

R
T

TC
C

m
ed

ia

relativo a 1 registro relativo a 2 registros directo

Fig. 7. Memory addressing modes distribution (considering just
offset registers).

At the same time, we must indicate that the

combined accesses to registers in word size and byte
size (AX, AL, AH, etc.) also are potential sources of
data dependences since they represent the same
physical resource.

The trace of program COMP is the one that less
registers uses: AX, BX and BP. The storage cell is
used in direct address, register BP in addresses to
memory (stack) and the BX is distributed for both
functions. It is easy to conclude that the graph del the
code is going to present/display many dependences
through these three registers being limited the
opportunities of concurrent execution.

The dedicated use of registers and the high
reusability of them imply a greater degree of
dependences among data. In fact, it sketches a scene
of lack of physical resources, although in absolute
terms we pruned to count with an appreciable amount
of temporary storage elements. In addition, as Adams
and Zimmerman indicate [1], this limitation elevates
the number of occurrences of instructions MOV,
PUSH and POP.

Some authors have pointed that the data
dependences due to memory pointers are still more
useless that the transformations of data resident in
registers [4, 2]. The idea is that the second ones derive
from the semantics of the program (what algorithm
programmed performs) whereas first ones are
artificial, they are due to the programming model, to
the limitation in physical resources and, in addition,
they generate double dependences: through the pointer
registers and through the own memory considered as a
solely resource. There is a load of programming,
added to the own programmed algorithm task, that is
in charge to execute code to properly update the
memory pointers.

 Technical Report TR-UAH-AUT-GAP-2005-22-en

 9

b. Implicit use of registers

The x86 instruction set architecture works with
implicit operands associate to the operation code that
do not appear, therefore, in the format. It is, also, a
way to save representation space. However, that the
programmer (the compiler) does not express them
does not mean that they do not generate data
dependences. The implicit operands involve, in
addition, a dedicated use of registers that can
aggravate the problem to find independent operations
to execute in concurrent environment. Also, it
increases the amount of stack swapping.

In Fig. 8 are presented the graphs that plot the
distribution of the implicit use of registers for the
different test-bench programs.

The referenced implicit registers are always the
same: accumulator (AX), counter (CX), SP, DI, SI and
very sporadic occurrences on BX and DX.

The number of implicit accesses surpasses in
some occasions to explicit accesses. So it is the case
of DEBUG, FIND and SORT.

The accesses to the stack pointer (SP) come from
instructions of stack managing: PUSH, POP, CALL,
RET. The work of Postiff [4] identifies this fact and
analyzes its consequences.

 COMP

0
2
4
6
8

10
12

AL AH AX BL BH BX CL CH CX DL DH DX BP SP DI SI

DEBUG

0
200
400
600
800

1.000
1.200
1.400
1.600

AL AH AX BL BH BX CL CH CX DL DH DX BP SP DI SI
FIND

0
500

1.000
1.500
2.000
2.500

AL AH AX BL BH BX CL CH CX DL DH DX BP SP DI SI

GO (optimizado en tamaño)

0

500

1.000

1.500

2.000

2.500

3.000

AL AH AX BL BH BX CL CH CX DL DH DX BP SP DI SI
GO (optimizado en velocidad)

0
500

1.000
1.500
2.000
2.500

AL AH AX BL BH BX CL CH CX DL DH DX BP SP DI SI

RAR (comprimiendo)

0

500

1.000

1.500

2.000

2.500

3.000

3.500

AL AH AX BL BH BX CL CH CX DL DH DX BP SP DI SI
RAR (descomprimiendo)

0

200

400

600

800

1.000

1.200

AL AH AX BL BH BX CL CH CX DL DH DX BP SP DI SI

SORT

0

20
40

60

80

100
120

140

AL AH AX BL BH BX CL CH CX DL DH DX BP SP DI SI
TCC

0

50

100

150

200

250

AL AH AX BL BH BX CL CH CX DL DH DX BP SP DI SI

lecturas
escrituras

Fig. 8. Implicit use of registers expressed in thousands of references. Dark gray for writes and light gray for reads.

Rafael Rico

10

In the graphs, the segment registers, which

always appear in the effective memory address
computation, are not included. Its total amount is
equal to the one of memory accesses and its
distribution has to do with the default register given in
Table 4 or specified by segment prefix, in its case, in a
explicit way with the purpose of modifying the
established one by default. However, in this work each
occurrence has not been considered in detail.

In general, the number of reads and writes is
practically equal over all the registers with the
exception of accumulator that usually has less writes
than reads. This fact contributes to the appearance of
long chains of dependences.

The rest of registers used implicitly in our traces
came mainly from strings operations. LOOP also
generates implicit accesses to the counter register
(CX) but the amount attributable to this instruction is
very small since its use is very small and it is not
among the top 25 more used in average.

The SORT trace highlights because the implicit
accesses are far beyond the explicit ones (1,150,000 as
opposed to approximately 130,000) due to the
significant use of instructions of strings managing.
Employing these operation codes, that in fact
correspond to loop primitives, prevents to carry out
optimizations with the purpose of taking advantage of
potential parallel resources.

c. Implicit use of status flags

This instruction set is a clear representative of the
architectures based on status register. In them, the
conditional branches are evaluated based on the value
that contains a special register constituted by a series
of fields that store information on different situations.
These fields are updated by some instructions in a
implicit and unconditional way.

Figure 9 shows the distribution use of status flags
by traces. The reads and writes of the bits
corresponding to which Intel calls status flags have
been indicated. The manufacturer distinguishes in this
register between status flags, updated by process
instructions, and control flags, governed by the
programmer to settle down different operation modes.
We are interested in the first ones as they straight
depend on the execution of certain operation codes.

The write access to the status flags is specially
important in the case of the process instructions
whereas the read access usually correspond to the
conditional branch instructions. Some process
instructions read the flags as a more data input.

From the graphs plotted next, it is clear that the
writes become in block whereas the reads are made
over specific fields (bits). For example, the COMP
trace only reads the ZF and CF flags whereas it writes
in block in all the status flags (with the exception of
CF); DEBUG, FIND, RAR and TCC behave of

similar way. The two traces of GO also adjust to the
saying: they write in block but they only read OF, SF
and the ZF flags.

This way to operate is absolutely reasonable. The
idea is that in each basic block we have a branch. This
branch is mainly a conditional branch that evaluates a
condition expressed by a status flag, sometimes a
combination of two of them and very rare times three.
Consequently, the execution of the bifurcation reads
some specific flags, not the whole block.
Nevertheless, the process instructions write the status
modifying most of the status bits.

Let notice another fact. The amount of writes
surpasses, in most cases, to the reads. The trace of
SORT, as result of using repetition prefix over string
instruction, is the only one which leaves the rule
 these instructions again take out this program to the
average norm .

There is, therefore, an imbalance between the
generated information and the required information
both in extension and in amount. There is a disparity
in extension because the written flags are more than
necessary. In amount because the status writes surpass
three or four times to the reads.

What is writes amount larger than read ones due
to? Let us return to the basic block. In each one of
them we have, in average, more than a process
instruction (which write status in block) by a single
conditional branch. The conditional branch only
considers the last status update causing that the
previous writes became absolutely useless. They not
only are unproductive but generate data dependences.
If the data dependences deal with each flag as an
individual data symbol or resource, the resulting data
dependence graph has many arcs (data dependences)
and consequently is much coupled.

A very large number of writes on the same
resource entails a potential increase of the output
dependences. It is truth that the output dependences,
as well as the antidependences, are not of the “true
ones”, those that have computational sense, but the
renaming technique to avoid then supposes to have an
additional status register file.

We are going to examine our traces counting how
many average process operations there are by basic
block as a way to measure the degree of limitation to
the parallelism imposed by the instruction set
architecture and, therefore, no attributable to the
program semantics. In the graph associate (Fig. 10)
can be seen that the number of process operations and,
therefore, the number of writes in the status register,
by basic block surpasses to the read ones. This
suggests us to think that many of them are
superfluous. In that graph, SORT has not been plotted
because, having a very high percentage of string
instructions, cannot treat, with respect to the basic
block, as to the rest of traces.

 Technical Report TR-UAH-AUT-GAP-2005-22-en

 11

COMP

0

50

100

150

200

250

OF SF ZF AF PF CF

 DEBUG

0

500

1.000

1.500

2.000

2.500

3.000

3.500

OF SF ZF AF PF CF
FIND

0

200

400

600

800

1.000

1.200

1.400

OF SF ZF AF PF CF

 GO (optimizado en tamaño)

0

2.000

4.000

6.000

8.000

10.000

OF SF ZF AF PF CF
GO (optimizado en velocidad)

0

2.000

4.000

6.000

8.000

10.000

OF SF ZF AF PF CF

RAR (comprimiendo)

0
5.000

10.000
15.000
20.000
25.000
30.000
35.000
40.000
45.000

OF SF ZF AF PF CF
 RAR (descomprimiendo)

0

1.000

2.000

3.000

4.000

5.000

6.000

7.000

OF SF ZF AF PF CF

 SORT

0
20
40
60
80

100
120
140
160

OF SF ZF AF PF CF
 TCC

0

50

100

150

200

250

OF SF ZF AF PF CF

lecturas
escrituras

Fig. 9. Implicit use of status flags expressed in thousands of references. Dark gray for writes and light gray for reads.

0,00

0,50

1,00

1,50

2,00

2,50

3,00

3,50

4,00

COMP DEBUG FIND GO T GO V RAR C RAR D TCC

lecturas de estado por BB operaciones de proceso por BB

Fig. 10. Distribution of status reads and process operations (status
writes) by basic block.

Let explain that all these dependences are not

superfluous because they can be superposed to the real
ones (semantic) generated by the data processing.
Nevertheless, if we avoided them we can obtain the
available parallelism upper bound. The degree of real
parallelism will move between the present situation
and the upper bound.

The description done till here explains the degree
of data dependences in a direct way. However, the
complete effect can be diminished by means of
disambiguating techniques: register renaming and

Rafael Rico

12

memory fundamentally [7, 6, 2, 4]. The application of
these techniques is simpler in the case of the processor
registers than in the case of the memory. Also, it is
simpler in the case of the explicit registers that in the
case of the implicit ones and it becomes very
complicated in the case of the status register.

4. References

[1] T. L. Adams and R. E. Zimmerman, “An analysis of 8086

instruction set usage in MS DOS programs,” in Proceedings of
the Third International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS-
III), April 1989, pp. 152 - 160.

[2] T. M. Austin and G. S. Sohi, “Dynamic Dependency Analysis
of Ordinary Programs,” in Proceedings of the 19th International
Symposium on Computer Architecture, 1992, pp. 342-351.

[3] R. Hyde. The Art of Assembly Language Programming. Versión
borrador. 2001. Available at: http://webster.cs.ucr.edu

[4] M. A. Postiff, D. A. Greene, G. S. Tyson and T. N. Mudge,
“The Limits of Instruction Level Parallelism in SPEC95
Applications,” in Proceedings of the 3rd Workshop on
Interaction Between Compilers and Computer Architecture,
1998.

[5] R. Rico, “Proposal of test-bench for the x86 instruction set (16
bits subset),” Technical Report TR-UAH-AUT-GAP-2005-21-en,
November 2005.
Available at: http://atc2.aut.uah.es/~gap/

[6] K. B. Theobald, G. R. Gao and L. J. Hendren, “On the Limits of
Program Parallelism and its Smoothability,” in Proceedings of
the 25th Annual International Symposium on Microarchitecture,
pp. 10-19, 1992.

[7] D. W. Wall, “Limits of instruction-level paralelism,” in
Proceedings of the Fourth International Conference on
Architectural Support for Programming Languages and
Operating Systems, pages 176-188, April 1991.
Also as:
W.R.L. Research Report 93/06. Digital Equipment Corporation.
Palo Alto, CA. 1993. Available at:
http://www.research.compaq.com/wrl/techreports/index.html

