

Proposal of test-bench for the x86 instruction set
(16 bits subset)

Technical Report TR-UAH-AUT-GAP-2005-21-en

Rafael Rico

Department of Computer Engineering, Universidad de Alcalá, Spain

November 2005

Versión en español:

Propuesta de banco de pruebas para el repertorio de instrucciones x86
(subconjunto de 16 bits)

Informe técnico TR-UAH-AUT-GAP-2005-21-es

Rafael Rico
Departamento de Automática, Universidad de Alcalá, España

Abstract:

With the purpose of evaluating the instruction set architecture impact on the superscalar processing,
applying a mathematical method derived from the graph theory, a set of programs is proposed as test-bench.

The application corresponds to the integer processing. The instruction set selected is the x86 one due to its
peculiar characteristics with respect to instruction level parallelism.

The methodology of obtaining of execution traces is presented and the work load of each one of the selected
programs.

Finally, a characterization of each program is made on the basis of his functionality and to the counts of
operations and operands.

Index words: Evaluation of computer architectures, instruction level parallelism, instruction set architecture.

Resumen:

Con el fin de evaluar el impacto de la arquitectura de repertorios de instrucciones sobre el procesamiento
superescalar, aplicando un método matemático derivado de la teoría de grafos, se propone un conjunto de
programas como banco de pruebas.

El ámbito de aplicación corresponde al procesamiento de números enteros. El repertorio de instrucciones
seleccionado es el x86 debido a sus peculiares características respecto al paralelismo a nivel de instrucción.

Se presenta la metodología de obtención de trazas de ejecución y la carga de trabajo de cada uno de los
programas seleccionados.

Finalmente, se realiza una caracterización de cada programa en base a su funcionalidad y a los recuentos de
operaciones y operandos.

Palabras clave: Evaluación de arquitecturas de computadores, paralelismo a nivel de instrucción, arquitectura
del repertorio de instrucciones.

2

 Technical Report TR-UAH-AUT-GAP-2005-21-en

 3

1. Necessity and purpose

The instruction sets architectures can be adapted
to a variety of specifications with the purpose of
optimizing its performance with respect to some
aspect. Throughout the history of computation
different criteria have prevailed: to minimize the space
of representation with the purpose of generating
smaller programs, diminishing the semantic gap
between the assembler and the high-level languages to
facilitate the work of the compilers, to reduce the
compile time, to extend the instruction set life span, to
reduce the power consumption, etc.

At the present time, the study of the instruction
sets architectures behavior on superscalar processing,
universally adopted by the general propose processors,
receives great relevance.

On the other hand, the quantitative evaluation is a
crucial point in the computer architecture research. The
simulation has become the first evaluation tool but the
construction of good simulators and the selection of
suitable workloads are very delicate tasks [4].
Alternatively, we propose the mathematical analysis
of execution traces based on the adaptation of the
graph theory to the instruction level parallelism [5, 6].

Therefore, with the purpose of tackling the study
of instruction sets architectures impact on the
superscalar processing applying our mathematical
analysis on execution traces, it is necessary the
selection of:

• an instruction set;
• a method of obtaining traces; and
• the definition of a representative test-bench.

2. The x86 instruction set

In superscalar processing the more remarkable
losses of performance are due to data dependences
between instructions. These data dependences can be
inherent from the algorithm that process the
information or to other characteristics such as the
resources limitation or to the instruction set
architecture itself.

Some of those characteristics of the instruction
set that cause additional dependences are the dedicated
use of registers, the implicit operands (those that
depend on the operation and are not specified by the
programmer), the registers used for the memory
address computation, the condition codes, etc.

The instruction set architecture of the family x86
is an example of all of these characteristics.

With the purpose of preserving the binary
compatibility with previous processors, which has
yielded undeniable benefits, the x86 instruction set has
inherited design characteristics adapted to the past but
clearly unfit for superscalar processing requirements.
The original instruction set design persecuted two
masterful lines: to minimize the space of
representation of the instructions and to shorten the
gap between the high-level languages and the machine

language to ease the compilation process. Nowadays,
these requirements are not important and, on the other
hand, the limitations imposed by this architecture to
the ILP are well known.

The x86 instruction set is the first candidate to
attempt this study because to analyze its behaviour in
the superscalar setting is extremely interesting.

In view of the results obtained by Huang and
Peng, for DOS as well as for Windows95 [3], and
considering the extra difficulty of the 32 bits
environment due to the great variety of operands, a
decision has made to restrict the analysis to 16 bits
DOS real mode applications, and to defer the study of
32 bits operands for later work.

3. Execution traces generation

Execution traces generation is based on step-by-
step execution mode and the modification of interrupt-
service-routine 1 with the purpose of saving the binary
format of the instruction in course. For each
instruction, the maximum number of bytes that can
occupy is saved, concretely 6 bytes for the 16 bits
subset of x86 instruction set1. In many cases, to save
the potential maxima length of instruction format
supposes to keep much more information from the
necessary one but it simplifies the tracing procedure
and it can be used later to analyze other events, like
for example, if the jumps are taken or not.

It is not necessary that the programs that are
selected to comprise the test-bench have available
their source code since we have constructed the tools
necessary to be able to work from binary programs.
When the source code is not available, the binary
image of the program can be “injected” with a virus
that causes the step-by-step execution mode before
beginning the program itself.

We want to point out that the traces contain the
complete sequence of execution for a specific
workload, that is, the traced sequences are not partial
but correspond to the complete program execution.
The objective is not to work with partial mixes of
instructions that do not represent the program real
behaviour. Nevertheless, the traces do not include the
instructions processed in the calls to the system.

4. Test-bench programs and workload

The programs of the test-bench are focused in the
integer numbers processing. Real applications that
execute the most representative possible variety of
functions of the integer numbers processing have been
chosen.

Specifically, the test-bench consists in 9
programs. Several operating system utilities from MS-
DOS 5.0 (comp, find and debug) as well as

1 This can cause some sporadic error in the situation of an instruction of 6

bytes with prefix. In that case, 7 bytes would be needed to save the
complete instruction.

Rafael Rico

4

applications of common use have been selected: a
compressing-decompressing utility (rar version 1.52)
and a C language compiler (tcc version 1.0). Also one
of the programs of the SPEC95int95 suite has been
used, because having the source code in C language,
with the intention to be able to make a comparative
with binary images compiled under different
optimizations.

The workload of these programs has been
selected to obtain a reduced instruction count, in order
for the trace files to be manageable. In spite of this,
traces represent almost 190 million instructions.

Some recent works notice that metric and
workload used to evaluate performance can affect the
results since they are susceptible to interact [2]. That
is, the methodology itself can affect the quantification.

In our case, the merely requirement for the
workloads is that they do not generate too long
processing. The fact of tracing the complete execution
and that the selected programs cover a wide range of
fan computational tasks integer numbers assures to
dispose a quite real sampling. As far as the metric is
concern, we can be sure of its rigor since it consists in
applying a mathematical method over the data
dependences found in the traces. In no case it interacts
with the workloads.

Next, the traced programs and the workloads
which they have been put under are described:

i. COMP. This utility of the Operating System MS-
DOS (version 5.0) serves to compare the contents of
two files searching differences. If the files have
different size the comparison aborts since evidently
they are different. If they have equal size it compares
character to character writing down the differences in
stdout.

The workload consists of the comparison of two
files of 35Kbytes between which 10 differences have
been prepared:

C:\>COMP file1.txt file2.txt /A

ii. DEBUG. It is a debugger of programs that allow
assembling and disassembling code, dumping memory
content, watching the processor registers, finding
strings, executing code in step-by-step mode, etc.

The workload that has been attempted to obtain
the trace consists of passing to the application a
program and demanding, later in command line, to
disassemble 32Kbytes of code:

C:\>debug file.exe
-u cs:0 l7fff
0D45:0000 BA9718 MOV DX, 1897
0D45:0003 8EC2 MOV ES, DX
0D45:0005 FA CLI
0D45:0006 8ED2 MOV SS, DX
0D45:0008 BC109E MOV SP, 9E10
0D45:000B FB STI
0D45:000C B87822 MOV AX, 2278
...

iii. FIND. It is an operating system utility from MS-
DOS that scans for a string in a file and displays in

stdout the lines in which the string has been found. It
stands for an integer comparison task.

The trace corresponds to the execution of the
utility scanning for a short string (only 4 characters)
on a text file of 108,725 bytes:

C:\>FIND /N “data” file.txt

iv. GO T. It is the program GO, from the SPECint95
suite. It executes the game “go” against itself. The
processing has a great part of pattern searching as well
as look ahead logic. This type of programs usually
consume even a third of its run time in data handling
routines, as A. Fernández verifies in his work [7].

Since in this case the source code is available,
two compilations with optimizations totally opposed
have been made with the purpose of evaluating the
possible impact of the compilation process: an
optimization in size and another one in speed.

A compiler has been used which is not
specifically designed for superscalar code generation:
Borland C++ version 4.0. An image for platform MS-
DOS with the opportune optimizations and without
debugging information is generated. The floating
point operations are emulated, that means, all the
execution code involves integer operations.

The present one is an optimization in size
(compilation flags - O1 - Os - G).

It has been attained that the trace was not
excessively long as a longer trace does not contribute
to a different instruction mix but just a greater run
time. The long traces cause excessively heavy analysis
and the files that contain them difficult to handle. For
that reason arguments that generate few move steps
have been chosen. Specifically argument “30 4” give
rise to 11 steps (moves) before leaving the program.

C:\>go 30 4
1 B B4
2 W D3
3 B A2
4 W C2
5 B B3
6 W C1
7 B D2
8 W C3
9 B C4
10 W pass
11 B pass
Game over

v. GO V. Is the trace corresponding to the same
previous source code with the same workload but the
compilation has been optimized in speed (compilation
flags - O2 - Ot - Ox - G).

vi. RAR C. Is the 1.52 version of August of 1994 of
a compressing/decompressing utility that can work in
command line or under a complete window shell
designed in text video mode.

The trace has been generated working as
compressing utility.

C:\>rar a –m5 –std file.rar @list

 Technical Report TR-UAH-AUT-GAP-2005-21-en

 5

The files compressed are indicated in the
argument file called “list” sending messages to stdout
(switch - std) and with the maximum compression
level (switch - m5). The list contains 17 files with a
total of 543,437 bytes.

vii. RAR D. It corresponds to same previous program
but working as decompressing utility.

The trace has been generated from the archive
that was compressed previously (file.rar) and that
occupies 147,489 bytes. The command line is:

C:\>rar e –std file.rar

viii. SORT. It is an operating system utility from MS-
DOS that sorts the input information sending it to
stdout, to a file or to a device. The input information
can be a file or a command output. It represents a
comparison task between integers within a sorting
algorithm.

In our case, the input is a text file with a relation
of names organized in columns separated by
tabulators. The output is sent to a text file organized in
the same way but in ascending order:

C:\>SORT <list.txt >sort.txt

ix. TCC. This program is the command line compiler
of TURBO C++ 1.0 developing tools, of 1990.

A simple source file has been compiled with
default options:

#include <stdio.h>

int main(void)
{

char ch;

printf("Input a character:");
ch = getc(stdin);
printf("The character input was: '%c'\n", ch);
return 0;

}

C:\>Tcc example.c

5. Test-bench characterization

The test-bench characterization is based on the
count of operations, operands, addressing modes, etc.
Specifically have been made the following counts:

• distribution of operations;
• distribution of addressing modes;
• registers use;
• memory accesses;
• use of implicit operands;
• procedures calls;
• distribution of jumps; and
• stack traffic.

Based on these counts, the following measures
have been evaluated:

• sequential run time;
• sequential CPI;
• so large means of the basic block, and
• average number of instructions by basic block

that modify the state register.

The obtained information is very abundant. Table
1 can give us an idea of its volume by the amount
traced instructions.

Table 1. Test-bench programs and its traces.

programs trace file trace file size # of processed
instructions

COMP comp.des 4,193,220 689,866
DEBUG debug.des 53,123,640 8,071,335
FIND find.des 39,226,350 6,119,641
GO T got.des 207,013,518 30,636,605
GO V gov.des 204,972,426 30,290,351
RAR C rar_c.des 735,383,556 98,244,064
RAR D rar_d.des 110,220,936 14,782,924
SORT sort.des 2,568,774 271,989
TCC tcc.des 6,828,900 1,010,078
TOTAL of processed instructions 190,116,853

For the sake of clarity in presentation of our

analysis we are going to show first the average results
of operations use of the entire test-bench. Next, we are
going to describe individually each one of the traced
applications based on its operations distributions
against the average values. A brief reference of
operands use will accomplish in this part.

A small explanation should be done. Since our
analysis deals with traces, every conditional branch is
already resolved when they are written in the trace
file. So the handling of traces assumes a perfect
branch prediction allowing code sequences as long as
we wish.

a. Average results

With aim to present data in the more organized
possible mode, we are going to classify the
instructions. The x86 instruction set can be organized
in the following categories:

• data movement operations: related to the
transference of data

• process operations: arithmetic and logic
operations

• control flow operation: instructions that alter the
execution sequence

• string operations: related to the management of
strings of characters

• control operations: remainder instructions (state
and control flags management, halt, etc.)
Next, we displayed the graph that illustrates how

the average operation distribution by categories is for
the complete test-bench.

Fig. 1. Average operations distribution by categories.

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

controlstring branch processmovement

Rafael Rico

6

The distribution is coherent with the results
exposed in the work of Adams and Zimmerman about
the instruction use in the 8086 processor [1].

The more used category is the data movement
operations with something more than 40%. The
predominant instruction in this group is MOV with
more than 30% of occurrences in average value.

The second group by use amount is the process
operations that include arithmetic and logic
instructions. CMP instruction highlights (8.31%)
followed by ADD (near 5%) and INC (4.21%). These
three accumulate more than half of whole occurrences
in the group. The execution of logic operations is less
frequently than arithmetic ones. Among them
SHL/SAL, OR and XOR highlight.

The control flow operations take 20% of every
operations being the equality (or zero) or its opposed
(inequality or not zero) the main evaluated condition.

Up to here the results are practically equal to the
mentioned work. Some differences about string
instructions can be appreciated. Its height is greater
than the presented in this article due to two aspects.
First, we have including in the test-bench a program
that makes an intensive use of this type of instructions
(SORT) and second, the metric we used with string
operations has been different. The string instructions
can be modified by a repetition prefix that provokes
its iterative execution until the end of the string as it
would be executed in a loop. Adams and Zimmerman
count just once the string operation while measure the
length of the string processed. Whereas, we counts
every execution occurrence of these instructions as we
would do if they belonged to a loop, without
determining the string size.

Finally, the control instructions have a very small
weight in the distribution.

For the sake of a deeper knowledge of each one
of the programs in the test-bench we are going to
present the operation distribution by categories for
each one of them.

0%

10%

20%

30%

40%

50%

60%

COMPDEBUGFIND GO T GO V RAR C RAR D SORT TCC
control string branch processmovement

Fig. 2. Operation distribution by categories for each program in
the test-bench.

At first sight, it is clear that the programs in the

test-bench are very heterogeneous. A common pattern
which the distributions adjust to is not found. The
following programs are obviously away from the
average distribution: SORT, by its excessive use of

string operations; RAR C, due to the predominance of
the process instructions; FIND, with a significant
percentage of branches; and DEBUG with a very
small number of data movement operations.

6. Individual characterization

Next, we are going to carry out a characterization
of each one of the programs used as test-bench to
lighting its future dynamic evaluation.

Specifically, the counts of instructions arranged
by categories are presented and the top 25 more used
are sorted in descendant order of percentage
frequency. The accumulated percentage is indicated
and the instructions responsible of the 90% executions
occurrences have been shaded. The more used
instructions of each category are plotted in a graph.

As a result of the count, the total number of
executed instructions, procedures, system calls, and
conditional branches are presented and the number of
basic blocks and its average size has been calculated.

As far as the operands are concern, certain
preliminary information, which will be completed and
discussed in later sections, is shown: register and
memory accesses as well as its percentage over the
total executed instructions. The register accesses are
understood as explicit, that is, the accesses associated
to the operation code and not indicated in the
instruction format are not considered. The registers
readings provoke by the effective memory addressing
calculation are also not included. In the accounting of
memory accesses the addressing modes has not been
distinguished.

The simulated trace execution allows obtaining
time measurement that are also presented, in this part,
merely for the sequential case, that is, the execution
time when just a functional unit is available. From this
time measurement and the instruction number we find
out the sequential CPI.

To carry out the individual characterization the
following scheme has been used:

• to describe what the program performs;
• to explain its operations profile related to the task

it performs;
• to determine where the data are located (registers,

memory);
• to count how many operations are made between

registers as normally they are the fastest ones;
• to observe the amount of data movement

operations with the stack as it escapes to memory
accesses counts2 and to try to decide if it
corresponds to arguments passing or constrains in
temporal register allocation;

• to pay attention to procedures calls both
subroutines3 and system calls4;

2 PUSH and POP instructions involve memory accesses in the same way

that a instruction with data located in memory but they are not counted
through the operands.

3 Count of occurrences of CALL instruction.
4 Count of occurrences of INT instruction.

 Technical Report TR-UAH-AUT-GAP-2005-21-en

 7

• to regard the size of the basic block5; and finally,
• to compare its performance vs. the sequential CPI.

With respect to the stack traffic it is necessary to
say that it has two sources: the argument passing to
the procedures and the limited temporary storage
(registers).

The C language programming model stores all
the processor registers in the stack in each procedure
call. It is a way of maintaining the coherence. It is
accomplish by means of PUSH instructions. Then it
passes the parameters, it performs the procedure, it
returns the return value if exits and, finally, it pops the
previously saved registers by means of POP
instructions.

The RET n instruction adjusts the stack pointer to
the place that indicates it (n) so that it is not used POP
instruction to remove arguments parameters or local
variables.

PUSH and POP also has a combined use in the
code sequence due to the in the register file of and to
the dedicated use of registers.

In summary, if the amount of executed PUSH
and POP is similar we can conclude that it must not to
be owed to argument passing but to limited temporary
storage.

a. COMP program

Dynamic evaluation
Instructions 689,866
Basic blocks 152,239
Procedures 565
System calls 39
Conditional branches 115,578
Register accesses 385,476
Memory accesses 506,830

Register accesses percentage 55.88%
Memory accesses percentage 73.47%
Instructions by basic block 4.53

Sequential execution time* (seg.) 0.124536660
Sequential CPI 18.05
* 8086 to 100MHz

Instruction distribution by categories

0%
5%

10%
15%
20%
25%
30%
35%
40%
45%
50%

movement process branch string others

category count %
data movement 296,796 43.02%
process 227,723 33.01%
branch 153,324 22.23%
 98.26%

5 By definition, a basic block is the instruction set that is executed in

sequence so that once executed the first, always all the others are
executed [7]. It is not necessary that all the basic blocks have a control
flow instruction at the end, but simply that the first instruction is the
destination of a branch. In this work, the number of basic blocks has
been consider equal to conditional branches (including loops) plus
unconditional ones since we do the count on execution traces.

string 11,955 1.73%
others 68 0.01%
 1.74%

operation % accumulated

1 MOV 42.26% 42.26%
2 CMP 16.07% 58.33%
3 INC 15.84% 74.17%
4 JNB/JAE 10.24% 84.40%
5 JE/JZ 5.65% 90.05%
6 JMP 5.31% 95.36%
7 SCAS 0.66% 96.03%
8 STOS 0.65% 96.67%
9 JNE/JNZ 0.60% 97.27%

10 OR 0.35% 97.63%
11 PUSH 0.34% 97.97%
12 LODS 0.31% 98.28%
13 SUB 0.25% 98.53%
14 POP 0.21% 98.74%
15 DEC 0.21% 98.94%
16 LES 0.16% 99.11%
17 ADD 0.14% 99.25%
18 MOVS 0.11% 99.36%
19 LOOP 0.09% 99.45%
20 JS 0.09% 99.54%
21 CALL 0.08% 99.62%
22 RET 0.08% 99.69%
23 XCHG 0.04% 99.73%
24 CBW 0.03% 99.76%
25 SHL/SAL 0.02% 99.78%
� the instructions responsible of 90% of executions

have been coloured

Instrucciones de transferencia

0%
10%
20%
30%
40%
50%

IN

LA
H

F

LD
S

LE
A

LE
S

M
O

V

O
U

T

PO
P

PO
PF

PU
SH

PU
SH

F

SA
H

F

XC
H

G

XL
AT

Instrucciones aritméticas

0%

5%
10%

15%

20%

AA
A

AA
M

AD
C

C
BW

C
W

D

D
AS D
IV

IM
U

L

M
U

L

SB
B

Instrucciones lógicas

0,00%
0,10%
0,20%
0,30%
0,40%

AN
D

N
O

T

O
R

R
C

L

R
C

R

R
O

L

R
O

R

SH
L/

SA
L

SA
R

SH
R

TE
ST

XO
R

Instrucciones de bifurcación

0%

5%

10%

15%

20%

llamadas a
subrutinas

retornos de
subrutinas

incondicionales condicionales

Fig. 3. COMP counts and statistics.

This program performs a character-by-character
comparison looking for differences. When it finds
differences shows them in screen. The program kernel
is compound of comparison and conditional branch.

Rafael Rico

8

The data movement operations are essential since the
x86 instruction set does not allow performing the
comparison between two values allocated in memory.
The index update is also going to have an important
weight in the execution.

The instruction distribution by categories is in the
test-bench average. 90% of the executed instructions
correspond just to 5 operations: 1 of data movement
(MOV with approximately 43%); 2 of process (INC.
CMP with something more than 30%); and 2
conditional branches (with almost 16%).

The size of the basic block is quite small. It is
logical. In fact, the program only performs
comparison and branch in a loop which is repeated as
many times as the size of the files to compare. The
rest of operations of the application, mainly the
reading of the files, are done by means of system calls
that are not traced.

The data memory accesses have a very high
percentage with respect to both the test-bench average
and the total number of data accesses in the program.
The explicit register accesses percentage is under the
average and the total of operations performed between
registers is practically nothing. The stack traffic is also
almost zero what gives idea that the program has not
appreciated limitations in temporal storage in
registers.

The procedure and system calls are extremely
few in relation to the number of processed
instructions.

The sequential CPI, that is, the average number
of cycles that takes executing an instruction when
there is just a functional unit, is the greatest of all the
test-bench programs and 6 cycles over the average that
is near 12 cycles. This result seems logical
considering the important memory traffic in data
access. On the other hand, the data life span average is
very short, as both items of the comparison change in
each step, doing difficult any performance
improvement.

b. DEBUG program

Dynamic evaluation
Instructions 8,071,335
Basic blocks 2,609,294
Procedures 195,159
System calls 13,148
Conditional branches 2,076,253
Register accesses 4,996,936
Memory accesses 1,221,895

Register accesses percentage 61.91%
Memory accesses percentage 15.14%
Instructions by basic block 3.09

Sequential execution time* (seg.) 0.802615270
Sequential CPI 9.94
* 8086 to 100MHz

Instruction distribution by categories

0%

5%

10%

15%
20%

25%

30%

35%

40%

movement process branch string others

category count %
data movement 1,771,125 21.94%
process 2,852,731 35.34%
branch 2,990,187 37.05%
 94.33%
string 357,946 4.43%
others 99,346 1.23%
 5.67%

operation % accumulated

1 JE/JZ 12.33% 12.33%
2 CMP 10.49% 22.82%
3 JNE/JNZ 10.38% 33.20%
4 MOV 9.45% 42.66%
5 JMP 6.60% 49.26%
6 PUSH 5.80% 55.06%
7 INC 5.72% 60.79%
8 POP 5.62% 66.41%
9 OR 5.28% 71.69%

10 DEC 3.91% 75.60%
11 TEST 3.49% 79.09%
12 ADD 3.06% 82.14%
13 STOS 2.50% 84.64%
14 CALL 2.42% 87.06%
15 RET 2.30% 89.36%
16 XOR 1.84% 91.20%
17 SCAS 1.46% 92.66%
18 JB/JNAE 1.35% 94.01%
19 JNB/JAE 0.92% 94.93%
20 XCHG 0.56% 95.48%
21 CLC 0.53% 96.02%
22 DIV 0.32% 96.34%
23 STC 0.30% 96.64%
24 SUB 0.29% 96.93%
25 JBE/JNA 0.28% 97.21%
� the instructions responsible of 90% of executions

have been coloured

Instrucciones de transferencia

0%

2%

4%
6%

8%

10%

IN

LA
H

F

LD
S

LE
A

LE
S

M
O

V

O
U

T

PO
P

PO
PF

PU
SH

PU
SH

F

SA
H

F

XC
H

G

XL
AT

Instrucciones aritméticas

0%
2%
4%
6%
8%

10%
12%

AA
A

AA
M

AD
C

C
BW

C
W

D

D
AS D
IV

IM
U

L

M
U

L

SB
B

Instrucciones lógicas

0%
1%
2%
3%
4%
5%
6%

AN
D

N
O

T

O
R

R
C

L

R
C

R

R
O

L

R
O

R

SH
L/

SA
L

SA
R

SH
R

TE
ST

XO
R

 Technical Report TR-UAH-AUT-GAP-2005-21-en

 9

Instrucciones de bifurcación

0%
5%

10%
15%
20%
25%
30%

llamadas a
subrutinas

retornos de
subrutinas

incondicionales condicionales

Fig. 4. DEBUG counts and statistics.

The workload has consisted in disassembling a
binary program. The process requires the comparison
of bit fields with patterns following different
itineraries based on the partial results.

The instruction distribution does not fit to the
test-bench average. The most used instructions are the
control flow ones. We need 16 instructions to reach a
90% of the total processed. The evaluation of zero
condition code and the opposite (non-zero) are the
main operations within this spreading instruction mix.
They sum more than 22%. The weight of the
unconditional branch (almost 7%) is important. This
corresponds to the switch-case structures used to
implement the pattern searching. The control flow
instructions are completed with the use of procedure
calls and returns. The total number of procedures
jumps is quite great in comparison with the rest of
programs. This can be justified because field decoding
of the instruction format is a modular and repetitive
process.

The process instructions are in the second
position. With a third of the total, CMP highlights,
used to search the decoding patterns. Other process
instructions very employ are INC (almost a 6%), OR
(slightly more than 5%) and DEC (approximately a
4%).

Finally, the data movement instructions are
dominated by MOV (9.45%), PUSH (5.8%) and POP
(5.62%). The stack traffic is considerable and gives
idea that the register file is not longer enough for the
necessities of temporary storage.

The percentage of data that reside in memory is
very small (approximately a 15% over the total of
instructions). Also, the percentage of data that reside
in registers and the operations that are performed
between registers are slightly below than average.

This program performs more system calls than
the rest in several orders of magnitude. It is necessary
to consider that displaying data in screen is a
fundamental part of the program which does not
happen in the rest of traced applications. Here, for
each disassembled instruction, its memory address in
base:displacement format, the hexadecimal machine
code and the assembly language string occupying
more than 40 characters are shown in stdout.

Notice that the basic block size is one of the
minors (3 instructions) and that the sequential CPI is
one of the best of the whole test-bench (9.94), due to
the small percentage of memory accesses.

c. FIND program

Dynamic evaluation
Instructions 6,119,641
Basic blocks 1,092,370
Procedures 291,984
System calls 151
Conditional branches 797,328
Register accesses 4,132,807
Memory accesses 979,543

Register accesses percentage 67.53%
Memory accesses percentage 16.01%
Instructions by basic block 5.60

Sequential execution time* (seg.) 0.691962840
Sequential CPI 11.31
* 8086 to 100MHz

Instruction distribution by categories

category count %
data movement 2,749,843 44.93%
process 1,083,367 17.70%
branch 1,676,339 27.39%
 90.03%
string 318,271 5.20%
others 291,821 4.77%
 9.97%

operation % accumulated

1 MOV 16.16% 16.16%
2 PUSH 14.39% 30.55%
3 POP 14.39% 44.93%
4 CMP 4.84% 49.77%
5 JMP 4.82% 54.59%
6 CALL 4.77% 59.36%
7 RET 4.77% 64.14%
8 INC 4.76% 68.90%
9 CLC 4.73% 73.63%

10 SCAS 3.42% 77.05%
11 JNE/JNZ 3.33% 80.38%
12 JE/JZ 3.22% 83.60%
13 SUB 3.19% 86.79%
14 JNB/JAE 3.17% 89.95%
15 JCXZ 1.70% 91.66%
16 DEC 1.70% 93.36%
17 TEST 1.62% 94.98%
18 JB/JNAE 1.60% 96.59%
19 LODS 1.60% 98.19%
20 ADD 1.57% 99.76%
21 MOVS 0.10% 99.86%
22 STOS 0.08% 99.94%
23 STC 0.03% 99.98%
24 LOOP 0.01% 99.98%
25 XOR 0.00% 99.99%
� the instructions responsible of 90% of executions

have been coloured

50%

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

movement process branch string others

Rafael Rico

10

Instrucciones de transferencia

0%

5%

10%

15%

20%

IN

LA
H

F

LD
S

LE
A

LE
S

M
O

V

O
U

T

PO
P

PO
PF

PU
SH

PU
SH

F

SA
H

F

XC
H

G

XL
AT

Instrucciones aritméticas

0%
1%
2%
3%
4%
5%
6%

AA
A

AA
D

AA
M

AA
S

AD
C

AD
D

C
BW C
M

P

C
W

D

D
AA D
AS D
EC D
IV

ID
IV

IM
U

L

IN
C

M
U

L

N
EG

SB
B

SU
B

Instrucciones lógicas

0,0%

0,5%

1,0%

1,5%

2,0%

AN
D

N
O

T

O
R

R
C

L

R
C

R

R
O

L

R
O

R

SH
L/

SA
L

SA
R

SH
R

TE
ST

XO
R

Instrucciones de bifurcación

0%
2%
4%
6%
8%

10%
12%
14%

llamadas a
subrutinas

retornos de
subrutinas

incondicionales condicionales

Fig. 5. FIND counts and statistics.

The task traced by FIND utility corresponds to
the search of a short string of 4 characters in a text file
of 108,725 bytes. In this case, the comparison is made
with a pattern string. As soon as a difference takes
place, a new data set from the input file is read.

The instruction distribution does not adjust to the
test-bench average due to the bifurcation percentage.
Given the utility purpose, to find so many branch
operations is not strange.

The data movement instructions highlight among
top 25 more used instructions. MOV instruction is in
the first place with a 16%. However, it is more
interesting to see that the use of PUSH and POP
follow the MOV one, with an identical percentage in
both cases of 14.39%. Without any doubt it must be
due to the continuous data in and out to/from the
register file forced by limited temporary storage.

The process instructions almost give rise to 18%
of the executed operations just by three instructions:
CMP, logically due to the application nature, with a
5%, and INC and SUB with 5% and 3% respectively.

The rest of instructions, responsible of the 90%
of the work done by the processor, correspond to
control flow operations. There are a great number of
unconditional branches (almost a 5%) because the
comparisons with the pattern string usually are
aborted, in most of the cases, before reaching the end.
There are a great number of call/returns to/from
procedures (near 5%): quite superior to the rest of test-
bench programs. Finally, three kinds of conditional
branches take 9% of occurrences.

The data reside basically in registers, being those
data located in memory the smallest percentage of all
test-bench together with SORT. Nevertheless, it is
necessary to notice that the traffic with memory
through the stack (15%) is even greater than the
caused by the explicit data accesses to memory (13%).

The number of system calls is irrelevant. The
sequential CPI and the basic block size are in the
average of the test-bench.

d. GO program optimized for size

Dynamic evaluation
Instructions 30.636.605
Basic blocks 3.829.543
Procedures 197.427
System calls 32
Conditional branches 2.972.717
Register accesses 32.214.654
Memory accesses 10.300.772

Register accesses percentage 105.15%
Memory accesses percentage 33.62%
Instructions by basic block 8.00

Sequential execution time* (seg.) 3.782201650
Sequential CPI 12.35
* 8086 to 100MHz

Instruction distribution by categories

0%

10%

20%

30%

40%

50%

60%

70%

movement process branch string others

category count %
data movement 17.772.338 58.01%
process 8.610.893 28.11%
branch 4.224.388 13.79%
 99.91%
string 9.117 0.03%
others 19.869 0.06%
 0.09%

operation % accumulated

1 MOV 49.66% 49.66%
2 ADD 12.20% 61.86%
3 CMP 9.34% 71.20%
4 PUSH 4.14% 75.34%
5 JNE/JNZ 3.87% 79.22%
6 JE/JZ 2.88% 82.10%
7 JMP 2.80% 84.89%
8 POP 2.50% 87.39%
9 AND 2.46% 89.86%

10 INC 1.88% 91.74%
11 LES 1.46% 93.20%
12 JNLE/JG 0.91% 94.11%
13 SUB 0.87% 94.98%
14 JL/JNGE 0.86% 95.84%
15 CALL 0.64% 96.48%
16 RETF 0.64% 97.13%
17 JNL/JGE 0.58% 97.71%
18 JLE/JNG 0.56% 98.27%
19 DEC 0.35% 98.61%
20 LEA 0.25% 98.86%

 Technical Report TR-UAH-AUT-GAP-2005-21-en

 11

21 SHL/SAL 0.24% 99.09%
22 IMUL 0.22% 99.32%
23 XOR 0.17% 99.49%
24 TEST 0.16% 99.65%
25 OR 0.16% 99.82%
� the instructions responsible of 90% of executions

have been coloured

Instrucciones de transferencia

0%
10%
20%
30%
40%
50%
60%

IN

LA
H

F

LD
S

LE
A

LE
S

M
O

V

O
U

T

PO
P

PO
PF

PU
SH

PU
SH

F

SA
H

F

XC
H

G

XL
AT

Instrucciones aritméticas

0%
2%
4%
6%
8%

10%
12%
14%

AA
A

AA
M

AD
C

C
BW

C
W

D

D
AS D
IV

IM
U

L

M
U

L

SB
B

Instrucciones lógicas

0,0%
0,5%
1,0%
1,5%
2,0%
2,5%
3,0%

AN
D

N
O

T

O
R

R
C

L

R
C

R

R
O

L

R
O

R

SH
L/

SA
L

SA
R

SH
R

TE
ST

XO
R

Instrucciones de bifurcación

0%
2%
4%
6%
8%

10%
12%

llamadas a
subrutinas

retornos de
subrutinas

incondicionales condicionales

Fig. 6. GO (optimized for size) counts and statistics.

The fourth trace corresponds to program GO
from SPECint95 suite compiled with the optimized for
size option (it refers to the program static image). It is
verified that it saves space: 596,602 bytes against
599,018 bytes of the same code compiled with the
optimization for speed, although the difference is
ridiculous (less than 3,000 bytes).

The frequency of use distribution by categories
adjusts to the test-bench average being despicable the
amount of string instructions and those of the class
‘others’. It is the program that uses more data
movement instructions reaching almost 60%. Only 10
instructions take 90% of the executed ones and among
them, the use of MOV emphasizes with a 50%. The
accesses to the stack, with PUSH and POP, increase a
7% the frequency of the transferences.

The process instructions append slightly more
than 28% thanks to the execution of ADD (12.20%),
CMP (9.34%), AND (2.46%) and INC (almost 2%).

The branch instructions are represented by the
evaluation of zero and non-zero conditional codes and
by the unconditional jump.

The accesses to data in memory are in the
average although it is necessary to emphasize the

stack traffic due to PUSH and POP. The use of
operands located in registers is quite over the average
being important the amount of instructions that
operate between registers. Everything indicates that
the architecture with more general propose registers,
capable to save temporary data without transferring
them to memory, would optimize the program
performance.

The number of procedure calls is not great and
the system calls are despicable against the executed
instructions. The sequential CPI is in the average and
the size basic block is over the average.

The obtained results are consistent with those
presented in the work of Agustín Fernández [7] in
which it makes a review of the SPEC95 programs
executed on an Alpha architecture:

Table 2. Comparative of GO on two architectures.

8086 concept Alpha [7]
58.01% data movement instructions 50.42%
28.11% process operations 37.58%
13.79% control flow operations 12.00%

12.0% basic blocks (over operations) 14.0%
0.64% procedures (over operations) 0.86%

8.0 operations by basic block 6.9
MOV
ADD
CMP
JNE

 more used operation
codes 

LDx/STx
ADDx
CMP
BNE

e. GO program optimized for speed

Dynamic evaluation
Instructions 30,290,351
Basic blocks 3,881,186
Procedures 197,032
System calls 21
Conditional branches 2,982,710
Register accesses 33,017,158
Memory accesses 8,995,946

Register accesses percentage 109.00%
Memory accesses percentage 29.70%
Instructions by basic block 7.80

Sequential execution time* (seg.) 3.478782710
Sequential CPI 11.48
* 8086 to 100MHz

Instruction distribution by categories

0%

10%

20%

30%

40%

50%

60%

70%

movement process branch string others

category count %
data movement 17,390,698 57.41%
process 8,604,322 28.41%
branch 4,275,243 14.11%
 99.93%
string 280 0.00%
others 19,808 0.07%
 0.07%

Rafael Rico

12

 operation % accumulated
1 MOV 49.38% 49.38%
2 ADD 12.56% 61.94%
3 CMP 8.80% 70.74%
4 JNE/JNZ 4.77% 75.51%
5 PUSH 3.98% 79.49%
6 JMP 2.97% 82.46%
7 AND 2.49% 84.95%
8 JE/JZ 2.07% 87.01%
9 POP 2.05% 89.06%

10 INC 1.94% 91.00%
11 LES 1.77% 92.78%
12 JNLE/JG 0.90% 93.68%
13 OR 0.85% 94.53%
14 JL/JNGE 0.77% 95.30%
15 JNL/JGE 0.72% 96.02%
16 CALL 0.65% 96.67%
17 RETF 0.65% 97.32%
18 JLE/JNG 0.58% 97.90%
19 SUB 0.54% 98.44%
20 DEC 0.35% 98.79%
21 SHL/SAL 0.24% 99.03%
22 IMUL 0.23% 99.25%
23 LEA 0.22% 99.48%
24 XOR 0.21% 99.68%
25 TEST 0.17% 99.85%
� the instructions responsible of 90% of executions

have been coloured

Instrucciones de transferencia

0%
10%
20%
30%
40%
50%
60%

IN

LA
H

F

LD
S

LE
A

LE
S

M
O

V

O
U

T

PO
P

PO
PF

PU
SH

PU
SH

F

SA
H

F

XC
H

G

XL
AT

Instrucciones aritméticas

0%
2%
4%
6%
8%

10%
12%
14%

AA
A

AA
D

AA
M

AA
S

AD
C

AD
D

C
BW C
M

P

C
W

D

D
AA D
AS D
EC D
IV

ID
IV

IM
U

L

IN
C

M
U

L

N
EG

SB
B

SU
B

Instrucciones lógicas

0,0%
0,5%
1,0%
1,5%
2,0%
2,5%
3,0%

AN
D

N
O

T

O
R

R
C

L

R
C

R

R
O

L

R
O

R

SH
L/

SA
L

SA
R

SH
R

TE
ST

XO
R

Instrucciones de bifurcación

0%
2%
4%
6%
8%

10%
12%

llamadas a
subrutinas

retornos de
subrutinas

incondicionales condicionales

Fig. 7. GO (optimized for speed) counts and statistics.

This trace corresponds to the execution of the
same source code that in the previous case but
compiled with the optimized for speed option. It is
obvious that the optimization has been doubly
effective since it executed less instructions (around a
1% less) and the sequential CPI has been reduced in
almost a cycle with respect to the previous version
(11.48 in place of 12.35). The binary image of the
program is something larger than the previous one.

This demonstrates that a static saving of memory does
not bring any advantage in run time. The optimized
for size option is inherited of past requirements, when
the memory was a small and expensive recourse, but
now it does not imply a performance improvement.

The commentaries that can be done are very
similar to those of the previous trace: the frequency of
use is practically equal to the previous program, the
instructions responsible for the 90% of the executions
are the same ones, etc. Perhaps, we can talk of subtle
differences.

It is observed that the use of CMP instruction has
descended half a point in percentage, that is, the
program makes less comparison. Also, slightly smaller
stack traffic is performed. The use of data in registers
and operations between registers grows and
diminishes the data memory accesses. Really, the
performance has improved minimizing the
comparison and the transferences with memory.

The size of the basic block is something smaller
than in previous trace as the total of branches is
similar but the number of instructions processed is
smaller.

f. RAR programa compressing

Dynamic evaluation
Instructions 98,244,064
Basic blocks 32,234,587
Procedures 18,127
System calls 751
Conditional branches 31,391,554
Register accesses 71,641,112
Memory accesses 30,680,803

Register accesses percentage 72.92%
Memory accesses percentage 31.23%
Instructions by basic block 3.05

Sequential execution time* (seg.) 9.347562283
Sequential CPI 9.51
* 8086 to 100MHz

Instruction distribution by categories

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

movement process branch string others

category count %
data movement 22,649,984 23.05%
process 40,437,561 41.16%
branch 32,270,837 32.85%
 97.06%
string 2,730,412 2.78%
others 155,270 0.16%
 2.94%

operation % accumulated

1 MOV 21.71% 21.71%
2 JE/JZ 19.90% 41.61%
3 SHL/SAL 12.72% 54.33%
4 CMP 10.23% 64.56%

 Technical Report TR-UAH-AUT-GAP-2005-21-en

 13

5 JB/JNAE 5.77% 70.33%
6 XOR 3.73% 74.06%
7 DEC 3.49% 77.55%
8 TEST 2.45% 80.01%
9 JNB/JAE 2.33% 82.33%

10 ADD 2.23% 84.57%
11 JNE/JNZ 2.17% 86.74%
12 CMPS 2.00% 88.73%
13 SUB 1.75% 90.48%
14 AND 1.56% 92.04%
15 SHR 1.21% 93.25%
16 JMP 0.86% 94.11%
17 INC 0.80% 94.91%
18 XCHG 0.67% 95.58%
19 LOOP 0.62% 96.19%
20 STOS 0.60% 96.79%
21 JLE/JNG 0.33% 97.12%
22 OR 0.32% 97.44%
23 NOT 0.32% 97.77%
24 LDS 0.32% 98.09%
25 JNBE/JA 0.31% 98.40%
� the instructions responsible of 90% of executions

have been coloured

Instrucciones de transferencia

0%
5%

10%
15%
20%
25%

IN

LA
H

F

LD
S

LE
A

LE
S

M
O

V

O
U

T

PO
P

PO
PF

PU
SH

PU
SH

F

SA
H

F

XC
H

G

XL
AT

Instrucciones aritméticas

0%
2%
4%
6%
8%

10%
12%

AA
A

AA
D

AA
M

AA
S

AD
C

AD
D

C
BW C
M

P

C
W

D

D
AA D
AS D
EC D
IV

ID
IV

IM
U

L

IN
C

M
U

L

N
EG

SB
B

SU
B

Instrucciones lógicas

0%
2%
4%
6%
8%

10%
12%
14%

AN
D

N
O

T

O
R

R
C

L

R
C

R

R
O

L

R
O

R

SH
L/

SA
L

SA
R

SH
R

TE
ST

XO
R

Instrucciones de bifurcación

0%
5%

10%
15%
20%
25%
30%
35%

llamadas a
subrutinas

retornos de
subrutinas

incondicionales condicionales

Fig. 8. RAR (compressing) counts and statistics.

This trace corresponds to the execution of RAR
as compressing utility.

The instructions distribution does not adjust to
the average since the process and control flow ones
prevail over the data movement. The 90% of the
processed operations is supported by 13 instructions
and among them the first is MOV that compiles
practically all the transferences (near 22%). The stack
is not used as temporary storage since PUSH and POP
have a despicable percentage of use.

The process operations are represented mainly by
the left logic displacement (SAL) with almost a 13%
and the comparisons with more than a 10%. Other

arithmetical instructions or logics are: XOR (3.73%),
DEC (3.49%), TEST (2.45%), ADD (2.23%) and SUB
(1.75%).

The branch instructions are represented by 4
different types of conditional branches, occupying the
branch if-zero the second place among the more used
instructions with almost a 20%.

The use of operands in memory is in the average
whereas the use of operands in registers is below the
average. Nevertheless, the percentage of operations
between registers is especially elevated.

The system calls and subroutines are practically
void.

The sequential CPI is the best of the entire test-
bench proposed in this research with 9.51. Surely, this
is due to the great amount of operations between
registers, those that consume less cycles in this
architecture, and to the reduced stack traffic.

The basic block size is also the minor among the
whole test-bench.

g. RAR program decompressing

Dynamic evaluation
Instructions 14,782,924
Basic blocks 1,629,633
Procedures 14,735
System calls 254
Conditional branches 1,398,728
Register accesses 15,633,667
Memory accesses 5,006,326

Register accesses percentage 105.75%
Memory accesses percentage 33.87%
Instructions by basic block 9.07

Sequential execution time* (seg.) 1.552791730
Sequential CPI 10.50
* 8086 to 100MHz

Instruction distribution by categories

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

movement process branch string others

category count %
data movement 6,106,813 41.31%
process 5,875,812 39.75%
branch 1,659,101 11.22%
 92.28%
string 1,093,980 7.40%
others 47,218 0.32%
 7.72%

operation % accumulated

1 MOV 39.01% 39.01%
2 XOR 8.95% 47.96%
3 SUB 6.23% 54.19%
4 CMP 4.56% 58.75%
5 ADD 4.47% 63.22%
6 SHR 4.38% 67.60%
7 STOS 3.72% 71.32%

Rafael Rico

14

8 SHL/SAL 3.56% 74.88%
9 MOVS 3.43% 78.31%

10 JNB/JAE 1.94% 80.25%
11 AND 1.83% 82.08%
12 INC 1.82% 83.89%
13 DEC 1.59% 85.48%
14 JMP 1.56% 87.04%
15 LOOP 1.50% 88.54%
16 XCHG 1.42% 89.96%
17 JNE/JNZ 1.33% 91.29%
18 JNBE/JA 1.25% 92.54%
19 JS 1.15% 93.69%
20 JE/JZ 1.10% 94.79%
21 SBB 1.04% 95.84%
22 JB/JNAE 0.72% 96.56%
23 ADC 0.60% 97.16%
24 JBE/JNA 0.46% 97.62%
25 PUSH 0.40% 98.02%
� the instructions responsible of 90% of executions

have been coloured

Instrucciones de transferencia

0%
10%
20%
30%
40%
50%

IN

LA
H

F

LD
S

LE
A

LE
S

M
O

V

O
U

T

PO
P

PO
PF

PU
SH

PU
SH

F

SA
H

F

XC
H

G

XL
AT

Instrucciones aritméticas

0%
1%
2%
3%
4%
5%
6%
7%

AA
A

AA
D

AA
M

AA
S

AD
C

AD
D

C
BW C
M

P

C
W

D

D
AA D
AS D
EC D
IV

ID
IV

IM
U

L

IN
C

M
U

L

N
EG

SB
B

SU
B

Instrucciones lógicas

0%
2%
4%
6%
8%

10%

AN
D

N
O

T

O
R

R
C

L

R
C

R

R
O

L

R
O

R

SH
L/

SA
L

SA
R

SH
R

TE
ST

XO
R

Instrucciones de bifurcación

0%
2%
4%
6%
8%

10%

llamadas a
subrutinas

retornos de
subrutinas

incondicionales condicionales

Fig. 9. RAR (decompressing) counts and statistics.

The seventh trace has been composed running
RAR as a decompressing utility. The previously
compressed file has been taken as input recovering its
contained files. The compressing task executes much
more instructions than the decompressing one (almost
100 million rather than about 15). The justification
seems to be because the decompression has a
determinist output whereas the compression is a
heuristic task, cradle in test algorithms.

The use profile is totally different from the
previous trace. It is almost adjusted to the average
with a process operations percentage somewhat above.

Among the 25 top used instructions there are up
to 6 different conditional branches but without an
appreciable weight. The amount instructions

responsible of the 90% of the processing are also
considerable. All it gives idea that the instructions
distribution is extraordinarily spread.

The first instruction is the MOV with a 39% of
the total and it takes the complete percentage due to
data movement instructions.

The arithmetic/logic operations include up to 9
instructions with more than 35% of the total
percentage.

The bifurcations are represented by several
instructions among which to mention LOOP should be
done by its infrequent use in the test-bench.

It is necessary to emphasize that a 7% of
executed instructions belong to string handling.

This trace is the one that more operations make
between registers and one of which uses more data
allocated in registers. The use of memory operands is
in the average. The stack traffic is very small. We
deduce that the number of registers is sufficient for
temporary storage.

It has a good sequential CPI. The great number of
fast operations (those are executed between registers)
contributes to it although it is a little waned by a use
of memory operands slightly superior to the case of
RAR as compressing utility.

The size of the basic block is one of the larger
ones of the test-bench, with 9 instructions. Both the
system and the procedures calls are despicable.

h. SORT program

Dynamic evaluation
Instructions 271,989
Basic blocks 29,144
Procedures 9
System calls 15
Conditional branches 28,802
Register accesses 130,653
Memory accesses 32,792

Register accesses percentage 48.04%
Memory accesses percentage 12.06%
Instructions by basic block 9.33

Sequential execution time* (seg.) 0.028361530
Sequential CPI 10.43
* 8086 to 100MHz

Instruction distribution by categories

0%

10%

20%

30%

40%

50%

60%

movement process branch string others

category count %
data movement 73,362 26.97%
process 38,008 13.97%
branch 29,162 10.72%
 51.67%
string 131,352 48.29%
others 105 0.04%
 48.33%

 Technical Report TR-UAH-AUT-GAP-2005-21-en

 15

 operation % accumulated

1 MOVS 44.75% 44.75%
2 MOV 11.76% 56.50%
3 PUSH 6.00% 62.50%
4 POP 6.00% 68.50%
5 ADD 4.50% 73.00%
6 XLAT 3.22% 76.22%
7 CMP 3.15% 79.37%
8 SUB 3.05% 82.42%
9 JNBE/JA 2.93% 85.36%

10 SCAS 1.89% 87.25%
11 INC 1.71% 88.96%
12 LODS 1.61% 90.56%
13 LOOPZ/LOOPE 1.61% 92.17%
14 JNE/JNZ 1.57% 93.74%
15 JE/JZ 1.50% 95.24%
16 OR 1.48% 96.73%
17 JB/JNAE 1.47% 98.20%
18 JNB/JAE 1.47% 99.66%
19 JMP 0.13% 99.79%
20 DEC 0.06% 99.85%
21 STOS 0.05% 99.89%
22 JCXZ 0.04% 99.93%
23 CLD 0.02% 99.95%
24 SHR 0.02% 99.97%
25 STD 0.02% 99.98%
� the instructions responsible of 90% of executions

have been coloured

Instrucciones de transferencia

0%
2%
4%
6%
8%

10%
12%
14%

IN

LA
H

F

LD
S

LE
A

LE
S

M
O

V

O
U

T

PO
P

PO
PF

PU
SH

PU
SH

F

SA
H

F

XC
H

G

XL
AT

Instrucciones aritméticas

0%

1%
2%

3%
4%

5%

AA
A

AA
M

AD
C

C
BW

C
W

D

D
AS D
IV

IM
U

L

M
U

L

SB
B

Instrucciones lógicas

0,0%
0,5%
1,0%

1,5%
2,0%

AN
D

N
O

T

O
R

R
C

L

R
C

R

R
O

L

R
O

R

SH
L/

SA
L

SA
R

SH
R

TE
ST

XO
R

Instrucciones de bifurcación

0%
2%
4%
6%
8%

10%
12%

llamadas a
subrutinas

retornos de
subrutinas

incondicionales condicionales

Fig. 10. SORT counts and statistics.

This trace belongs to the execution of SORT
utility on a disordered file generating a sorted new
one. It implies the application of a sorting algorithm
on strings and the copy of the sorted ones.

The instruction distribution by categories leaves
the average as far as the string operations are

concerned. In fact, if the average profile of the test-
bench has a percentage of a little more than 8% for
this category is due to this trace. Obviously, if instead
of counting each repetition of the string instruction it
would be counted just its appearance in the code
sequence, the total percentage would adjust better to
the rest of the programs.

Twelve are the instructions that monopolize 90%
of the executed operations. MOVS is the first with
approximately a 45%. Other string instructions are
SCAS and LODS with a 1.89% and a 1.61%
respectively. Notice that once the strings have been
sorted they have to be copied completely in the output.
The percentage of MOVS occurrences is due to that.

The 3 consecutive places after MOVS are
occupied by data movement instructions. The second
position is for MOV with almost a 12% and PUSH
and POP follow it with a total of 12% distributed to
equal parts

Among the process operations we can emphasize
the use of ADD (4.5%), CMP (3%), SUB (3%) and
INC. (almost 2%).

The branch instructions take a 10% over the total
executed instructions but a unique conditional branch
instruction (JNBE/JA with almost a 3%) appears
among the operations responsible of 90% of the
executed instructions. In fact, the string instructions
are repeated since they work in the same way as
control flow structures based on loops. For that
reason, the number of implicit conditional jumps is
larger.

The SORT trace uses few data, as much in
registers as in memory, in comparison with the test-
bench average values. Nevertheless, they are implicit
in the string instructions. Also, considerable memory
traffic is observed thanks to PUSH/POP instructions
without having a significant number of procedure
calls. Then, all the stack traffic is due to limitations in
temporary storage. The system calls are inappreciable.

The sequential CPI is good and the size of the
basic block quite large although if we took the
repetitions due to string instructions as conditional
branches, the basic block would be smaller.

i. TCC program

Dynamic evaluation
Instructions 1,010,078
Basic blocks 159,463
Procedures 23,182
System calls 56
Conditional branches 124,397
Register accesses 770,882
Memory accesses 370,182

Register accesses percentage 76.32%
Memory accesses percentage 36.65%
Instructions by basic block 6.33

Sequential execution time* (seg.) 0,142059500
Sequential CPI 14,06
* 8086 to 100MHz

Rafael Rico

16

Instruction distribution by categories

0%

10%

20%

30%

40%

50%

60%

movement process branch string others

category count %
data movement 524,947 51.97%
process 230,835 22.85%
branch 205,812 20.38%
 95.20%
string 40,892 4.05%
others 7,592 0.75%
 4.80%

 operation % accumulated

1 MOV 33.87% 33.87%
2 PUSH 10.64% 44.51%
3 CMP 7.29% 51.80%
4 POP 5.78% 57.58%
5 JE/JZ 3.99% 61.58%
6 JNE/JNZ 3.79% 65.37%
7 INC 3.66% 69.02%
8 JMP 3.47% 72.49%
9 CALL 2.30% 74.79%

10 OR 2.10% 76.89%
11 RETF 1.74% 78.64%
12 ADD 1.63% 80.26%
13 DEC 1.59% 81.85%
14 SCAS 1.57% 83.42%
15 SUB 1.53% 84.95%
16 LES 1.41% 86.37%
17 STOS 1.37% 87.74%
18 JB/JNAE 1.31% 89.05%
19 LOOP 1.18% 90.24%
20 SHL/SAL 1.08% 91.32%
21 XOR 0.99% 92.31%
22 TEST 0.90% 93.21%
23 CBW 0.86% 94.07%
24 LODS 0.86% 94.94%
25 RET 0.55% 95.49%
� the instructions responsible of 90% of executions

have been coloured

Instrucciones de transferencia

0%

10%

20%

30%

40%

IN

LA
H

F

LD
S

LE
A

LE
S

M
O

V

O
U

T

PO
P

PO
PF

PU
SH

PU
SH

F

SA
H

F

XC
H

G

XL
AT

Instrucciones aritméticas

0%

2%

4%

6%

8%

AA
A

AA
M

AD
C

C
BW

C
W

D

D
AS D
IV

IM
U

L

M
U

L

SB
B

Instrucciones lógicas

0,0%
0,5%
1,0%
1,5%
2,0%
2,5%

AN
D

N
O

T

O
R

R
C

L

R
C

R

R
O

L

R
O

R

SH
L/

SA
L

SA
R

SH
R

TE
ST

XO
R

Instrucciones de bifurcación

0%
2%
4%
6%
8%

10%
12%
14%

llamadas a
subrutinas

retornos de
subrutinas

incondicionales condicionales

Fig. 11. TCC counts and statistics.

It is the trace generated by the compilation of a
simple source program through TCC. The distribution
profile is similar to the average with a branch
instruction weight something larger than the average
as it must be in a compiler since the analysis phase
implies patterns searching and batteries of control
flow structures of switch-case type.

The instruction set responsible of the 90% of the
entire execution is large, what has to do with a great
dispersion of operations. The first instruction is the
MOV, with almost a 34% of use frequency, followed
of PUSH with a 10.64%. The POP instruction is in
fourth place with near a 6%.

Among the process instructions, CMP highlights
in third position with a 7.29% of total frequency. It is
logical because this operation is frequently repeated
due to the pattern searching. Other operations of this
class are INC, OR, ADD, DEC and SUB that
accumulate around 10%.

The branch instructions are represented mainly
by three conditional ones, the unconditional jump and
a high percentage of procedures calls/returns. Notice,
that LOOP is used in more of a 1%.

Notice how LES instruction and far return
(RETF) are used. Without doubt, it must be due to the
program size (it is the larger one after GO) what
implies the continuous segment change.

Also some string instructions are used.
The operands both allocated in registers and in

memory, adjust to the test-bench average values. The
number of operations between registers, nevertheless,
is below the average.

The stack traffic is very important.
The system calls are not significant.
The sequential CPI is not very good being 2

cycles over the average. The basic block size is just in
the average value.

 Technical Report TR-UAH-AUT-GAP-2005-21-en

 17

7. References

[1] T. L. Adams and R. E. Zimmerman, “An analysis of 8086

instruction set usage in MS DOS programs,” in Proceedings of
the Third International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS-
III), April 1989, pp. 152 - 160.

[2] D. G. Feitelson. “Metric and Workload Effects on Computer
Systems Evaluation,” IEEE Computer, vol. 36, 9, September,
2003.

[3] I. J. Huang and T. C. Peng, “Analysis of x86 Instruction Set
Usage for DOS/Windows Applications and Its Implication on
Superscalar Design,” IEICE Transactions on Information and
Systems, Vol.E85-D, No. 6, pp. 929-939, June 2002. (SCI).

[4] K. Skadron, M. Martonosi, D. I. August, M. D. Hill, D. J. Hill
and V. S. Pai. “Challenges in Computer Architecture
Evaluation,” IEEE Computer, vol. 36, 8, August, 2003.

[5] R. Durán, R. Rico, “On Applying Graph Theory to ILP
Analysis,” Technical Note TN-UAH-AUT-GAP-2005-01-en.
Available at: http://atc2.aut.uah.es/~gap/

[6] R. Durán, R. Rico, “Quantification of ISA Impact on
Superscalar Processing,” in Proceedings of Eurocon2005,
November 2005.

[7] A. Fernández., “Un análisis cuantitativo del Spec95,” Informe
técnico UPC-DAC-1999-12, Universidad Politécnica de
Cataluña, Barcelona, 1999.

