

On Applying Graph Theory to ILP Analysis

Technical Note TN-UAH-AUT-GAP-2005-01-en

Raúl Durán, Rafael Rico

Department of Computer Engineering, Universidad de Alcalá, Spain

January 2005

Versión en español:

Aplicación de la teoría de grafos al
análisis del paralelismo a nivel de instrucción

Nota técnica TN-UAH-AUT-GAP-2005-01-es

Raúl Durán, Rafael Rico

Departamento de Automática, Universidad de Alcalá, España

Enero 2005

Abstract:

The differences found between the superscalar performance in x86 and non-x86 processors and the peculiar
characteristics of the x86 instruction set architecture recommend to carry out a thorough analysis of the available
parallelism at the machine language layer. However, computer architecture evaluation requires new tools that
complement the customary simulations and, in this sense, the traditional graph theory can help to create a new
frame for fine-grain parallelism analysis.

Starting off from graph theory basic foundations, new concepts are introduced from reduced valence to data
dependence matrix D, both characterizing a code sequence in a mathematical manner. This matrix fulfills a
number of properties and restrictions and provides information about the ability of the code to be processed
concurrently. Among other details, a relation between the critical path length and the parallelism degree along
with techniques to calculate it from the matrix D, are presented.

Finally, it is explained how different data dependence sources can be composed, thus providing a
mechanism to analyze their final influence on the parallelism degree. These techniques are applied to an example
from which some conclusions are derived.

Index words: Evaluation of computer architectures, instruction level parallelism, instruction set architecture,
graph theory, DDG-based quantification.

2

 Technical Note TN-UAH-AUT-GAP-2005-01-en

 3

1. Introduction: new challenges in computer
architecture evaluation.

Quantitative evaluation is a crucial point in the

computer architecture research. As Kevin Skadron et
al. explain the simulation has become the first
evaluation tool both in industry and research [35].
Unfortunately, the construction of good simulators
and the selection of appropriate workloads have
become appalling tasks. These difficulties have led to
a work focused just on fields where the tools have a
tested quality while setting aside really interesting
research topics as, for example, the multiprocessing.

Almost contemporary with the work referred to in
the previous paragraph and also presented in IEEE
Computer, Dror G. Feitelson indicates that the
performance measures are usually employed to
compare the quality of several systems without taking
into account that differences can arise from the
evaluation methodology itself [14]. Specifically, he
concludes that metric and workload can affect the
results since they are liable to interact.

Other aspects to consider in the quantitative
evaluation could be the following [35]:
� the sequential programming language used to

program the simulators does not contribute to the
correct description of the targeted parallel systems

� the most used benchmark programs (SPEC) are not
properly characterized

� the statistical analysis commonly used (mean,
standard deviation, etc.) is not rigorous because the
bursty behavior of many computation processes does
not follow a Gaussian distribution

� usually the published results are not verified
independently

As to the scanty independent verification,
Skadron suggests that it could be caused by the fact of
not being properly rewarded. We would like to add
that it is often impossible to reproduce the
experiments because no sufficient information about
the simulator, the workload, assumptions or parameter
settings is provided. Reaching, at least, the same
degree of reproductibility that we observe in other
research fields would be desirable.

Consequently, the moment has arrived for shifting
gears and facing the new challenges arisen in
computer architecture evaluation. Skadron’s work
supplies some recommendations enumerated by a
group of researchers who met in December of 2001
with the aim of discussing these subjects. Among
them, the quest for analytical methods has seemed to
us particularly interesting.

We agree with Skadron that certain hostility is
detected towards the analytical methods in congresses
and journals. This should not be so, since the
analytical model contributes to understand those
aspects not uncovered by simulation. Moreover, the
analytical model can be useful to validate the
simulator and to predict the behavior of some
architectural proposals.

As is common in other research fields, the
mathematical formalization facilitates the description

of phenomena, allows to predict behaviors, supports
reproductibility and simplifies the knowledge
transference.

a. Applying graph theory to fine-grain

parallelism analysis.

We have found it convenient to take the first steps
for the application of graph theory to fine-grain
parallelism analysis. Graph theory provides an
efficient mathematical formalization that promises to
be very useful in the analytical modelling we are
aiming at, encouraged by the aforementioned works.
Moreover, graphs have already been successfully
applied to the study of other aspects of computation
like, for example, the medium- and coarse-grain
parallelism extracted by compilers [3, 45, 46]. Padua
and Wolfe claim that the parallel code will be as good
as its corresponding data dependence graph [27].
Graphs are usefully employed in other fields: data
structures [2, 3, 8, 20], operating systems design [33],
software description [10, 11], automata logic [28],
electronic design [9], and so on.

Indeed, there are more reasons to approach this
matter. First of all, the study of the fine-grain
parallelism has been and is a significant field, where
the simulation is the most frequently used evaluation
technique. Perhaps it is for that reason that it needs,
more than other fields, analytical modelling.
Secondly, it is very common that, once the factors that
contribute to the fine-grain parallelism are identified,
the impact of the instruction set architecture is
forgotten, and the stress goes directly to bare physical
aspects. Maybe the cause is, again, the simulator:
modelling physical aspects is easier than modelling
the behavior of different instruction set characteristics.
We have spotted a significant difference between the
fine-grain parallelism degree reported in the literature
for x86 and for non-x86 processors. This has led us to
think that, perhaps, the impact of the instruction set
architecture on fine-grain parallelism availability has
been underrated.

b. ILP difference between x86 and non-x86

processors.

Indeed, as previously mentioned, the
quantification of parallelism at the instruction level is
one of the most popular subjects in computer
architecture. Some papers describe the hardware
solution space as, for example, the one of Jouppi and
Wall [19] or the one of Smith and Sohi [37]. In the
literature, numerous studies can be found identifying
limiting factors, quantifying their effects, providing
possible solutions and evaluating the results. Among
the evaluated factors, one can find: inhibition of
parallelism due to conditional jumps [31], branch
prediction with an ideal fetch unit and a 32-entry
instruction window [36], instruction window size
under renaming, branch prediction and several sizes of

Raúl Durán, Rafael Rico

4

the register file [42, 43], precise interruptions [7],
control flow limitations [22], memory disambiguation
[40], performance of hybrid branch predictors [12],
use of multithreading for increasing physical resource
usage [41], pressure on the register file under the
SPEC92 programs for a 256-entry reorder buffer [13],
number of memory ports in combination with the
reorder buffer and the register file sizes [15], data
prediction [23, 44], impact of the SPEC95 programs
[29], code reordering effects on branch prediction
[30], or early register release [24], just to mention
some of the most important ones.

All these works have in common that they present
non-x86processors, the evaluation has been made by
means of simulators and the identified limiting factors
always are related to the physical layer. The reported
IPC average results are in the range 2.5-15, peaking
around 30 IPC (for example, in the case of memory
disambiguation [40]) and with a higher limit of 50 IPC
(case presented in [15]) under ideal conditions.

The works where x86 instruction set processors
have been used are less frequent. In those cases, the
reported levels of parallelism are not so good as the
reviewed ones in the previous paragraph. Y. N. Patt
group has proposed techniques such as pipelining
scheduling [38] or instruction lookahead fetch [25] on
x86 processors, thus obtaining average IPC values in
the range between 0.5 and 3.5 in the best situations,
the value being slightly over 1 for most cases. Huang
and Xie measure parallelism at the microoperation
level (MLP) [18]. MLP average is 1.32 without
renaming and 2.20 with renaming. Bhandarkar and
Ding characterize the Pentium Pro performance by
means of hardware counters included in the processor
itself [5]. The CPI for SPECint95 is in the range 0.75
to 1.6.

To summarize, it seems clear that the available
parallelism in x86 processors is lower than the one
obtained in non-x86 processors, according to the
available articles on the topic. This led us to
conjecture that the instruction set architecture (ISA)
itself may impose an important limiting factor on the
available fine-grain parallelism.

c. The x86 instruction set and the superscalar

model.

For the sake of binary compatibility with
previous processors, which has provided so far
unquestionable benefits, the x86 instruction set
architecture has inherited design characteristic suitable
to older requirements but clearly harmful in the scope
of superscalar processing. Among other undesirable
characteristics from the point of view of parallelism
explotation, we could mention the following: the
dedicated register use, the implicit operands
(associated to the operation and not specified by the
programmer), the use of state register and the large
number of registers involved in the address arithmetic.

The effect of these undesirable characteristics
becomes apparent in the over-ordering of the code,

imposed by the machine language layer through data
dependencies, and not strictly necessary to preserve
the computational meaning of the compiled task. As a
result, the instructions appear more coupled at the
physical layer than one should expect just observing
the corresponding high level program [32].

The instruction set architecture has a significant
impact in the availability of fine-grain parallelism
before reaching the physical layer, which can reduce
exploitable parallelism degree at run time. Fig. 1
schematically illustrates the factors that affect the
available parallelism at each layer of the computation
process.

Fig. 1. Factors affecting the available parallelism in the different
layers of the computation process.

Nowadays, the works on instruction set
architectures are scarce and rather oriented to study
specific machines like, for example, DSP processors
[34], to offer simulation tools [26] or to describe other
collateral aspects.

Regarding the works focused on the x86
instruction set, the analyses at the machine language
layer are limited to counting and to calculate usage
frequencies. Adams and Zimmerman made a study on
the usage frequency of x86 instructions under DOS
applications [1], but this work does not include the use
of operands. More recently, Huang and Peng have
made countings of the instruction usage with different
operands [17], though they do not analyze the
dependencies among operands. Finally, Huang and
Xie present a study evaluating parallelism at
microoperations level (RISC kernel of Intel CISC
processors) where the operation and the address
modes are considered [18].

d. Metrics.

IPC (Instructions Per Cycle) is by far the metric
most often employed in parallelism quantification at
the instruction level. It consists of finding the ratio of
the number of instructions vs. the run time in cycles
(simulated). This method demands a complex
simulator, if the measurements are to be precise;
moreover, the assumptions and simplifications have a
significant effect on the final result. The
measurements strongly depend on the characteristics
of the physical floorplanning and, therefore, this
metric is amenable to the study of the different
architectural proposals at the physical layer level.

There exists another metric, slightly different
from the previous one. The parallelism degree is now
the ratio of the total number of executed instructions

machine language layer

physical layer

program layer

compiler impact

instruction set
architecture impact

hardware factors

 Technical Note TN-UAH-AUT-GAP-2005-01-en

 5

vs. the scheduled time grids. It is also oriented to the
study of the physical resources organization .

When measuring events other than the instruction
execution, such as, for example, cache misses, branch
prediction misses, etc., we use a similar metric: the
ratio with respect to the total.

It is necessary to point out that the metric based
on the IPC is commonly associated with a statistical
treatment that has its own impact on the results, as
recalled above. Most often, values, such as the average
or the standard deviation, are supplied disregarding an
intrinsic fact related to the computational process:
parallelism appears to come in bursts, as indicated by
Kumar [21]. Therefore, these statistical results are
flawed since the measured events seldom adjust to a
Gaussian distribution, as Skadron’s work points out
[35].

A much less used metric consists of measuring
the critical path length of a code sequence. The critical
path is the longest chain of data dependencies that can
be found among the instructions of a sequence. Thus,
the least number of computation steps necessary to
process the sequence will be equal to that length,
should enough physical resources be available.

Then, the greatest parallelism degree will be equal
to the total number of processed instructions divided
by this length, which gives an indication as to the
amount of instructions that can be processed
concurrently in each computation step.

The algorithm used to measure the dependence
chains annotates which instruction produces each
writing and reading in each data location and then
counts the number of correlated writing-reading
“links”.

Parallelism quantification by means of the critical
path length has been used previously by Kumar. In
this case, the study was performed on source code
written in FORTRAN, taking sentences instead of
instructions, and variables instead of physical data
locations [21]. It is, therefore, a work that we can
locate at the program layer. It is very interesting
because it reports a much greater range of parallelism
than the one found in the literature for the works
related to the physical layer. Undoubtfully, the own
computation process impairs parallelism availability.

The critical path has also been used sometimes to
evaluate characteristics of the physical layer.
Specifically, the works of Austin and Sohi [4], Postiff,
Greene, Tyson and Mudge [29] and Stefanovic and
Martonosi [39] obtain their results by means of the
critical path length. Really these studies start from
execution traces on which the measurement is
performed by applying certain rules that model the
characteristics of the targeted hardware. For this
reason, the results thus generated assume the
specifications of the physical layer.

Although the critical path measurement method
permits to quantify the parallelism degree at the
language layer machine, irrespective of the restrictions
at the physical layer, no study has been found in the
literature. It would be interesting to have some

information about the possible parallelism degradation
at this layer.

An alternate measurement method is based on the
data dependence graphs (DDG). It consists of building
the DDG of a real code sequence. In such case, the
characterization is independent of the physical
implementation, since it is located in a previous step
of the computation process, namely, in the machine
language layer. Nevertheless, it includes the impact of
the compilation process. These measures suggest
possible hardware architectures suitable to take
advantage of the partial order specified by the graph
without imposing further restrictions to the out-of-
order execution process.

The DDG-based quantification is a powerful tool
of analysis when the matrix representation is used
because it permits a mathematical processing. Thus
we can determine not only the critical path length and,
consequently, the parallelism degree of a instruction
window, but also the life span of operands, data
sharing reuse, the most important sources of
dependencies, the parallelism distribution and other
significant parameters. Moreover, the mathematical
formalization will also permit to compose different
data dependence sources with the purpose of finding
the possible origin of the code coupling.

Finally, the DDG can also include the
specifications of the physical layer using formal
hardware descriptions.

2. Representation of instructions sequences by

graphs. A revision.

The data dependencies in an instruction sequence
can be represented by a graph G(V, E), where V is the
set of vertices and E is the set of edges. Each vertex in
V represents an instruction and each edge in E a data
dependence. Any two vertices related by an edge are
said to be adjacent. The graph topology can be
represented by the so-called adjacency matrix A:





=
otherwise 0,

adjacent; are vertices and if ,1 ji
aij

 (1)

A is a symmetric matrix of dimension n x n where

n is the number of instructions in the graph, with null
diagonal and aij∈ {0, 1} [6, 16].

We define the incidence matrix B as:





=
otherwise 0,

; ith vertexincident w is if ,1 ji
ij

ve
b (2)

If the graph has n vertices and m edges, the

dimension of B is n x m.
This graph bears two possible orientations: either

“instruction i produces data for instruction j”
(orientation σ) or “instruction j consumes data from
(depends on) instruction i” (orientation σ). In each
case, the edges point in opposite directions with a

Raúl Durán, Rafael Rico

6

complementary meaning: the first orientation shows
the data flow whereas the second one shows the data
dependencies. Figure 2 shows a simple x86 code
sequence (16 bits subset) and illustrates both
orientations of the graph.

0: XOR BX, BX
1: MOV SI, 07AB
2: MOV BL, ES:[SI]
3: INC SI
4: CMP BL, DL
5: JNE/JNZ IP+F7

Data flow graph (σ)
Data dependence

graph (σ)

Fig. 2. Example of a code sequence and the two possible orientations
of the associated graph.

We can define the incidence matrix Bσ with
respect to orientation σ, as the matrix n x m:







+

=

otherwise 0,

; of end outgoing theis if 1,–

; of end incoming theis if ,1

ji

ji

ij ev
ev

bσ (3)

We define the valence of a vertex as the total

number of edges that are incident with this vertex. The
valence matrix ∆ is an n x n diagonal matrix where the
(i, i) component is the valence of vertex i. The
adjacency matrix and the incidence matrix for the
orientation σ are related as follows:

ABBQ t −∆=⋅=)(σσ (4)

The Bσ · (Bσ)t product is known as the Laplacian
matrix Q and is independent of the orientation.

Moreover, the graph representation based on the
adjacency matrix A enjoys the properties of the
characteristic polynomial det(λ I – A), a central aspect
in graph theory [6, 16].

The adjacency matrix A, the incidence matrices
for both orientations Bσ and σB and the valence
matrix ∆ corresponding to the proposed example are
shown in Fig. 3.

A =









0 0 1 1 0 0
0 0 1 1 0 0
1 1 0 1 1 0
1 1 1 0 1 0
0 0 1 1 0 1
0 0 0 0 1 0









Bσ =









-1 0 -1 0 0 0 0 0
0 -1 0 -1 0 0 0 0
1 1 0 0 -1 -1 0 0
0 0 1 1 1 0 -1 0
0 0 0 0 0 1 1 -1
0 0 0 0 0 0 0 1









σB =









1 0 1 0 0 0 0 0
0 1 0 1 0 0 0 0
-1 -1 0 0 1 1 0 0
0 0 -1 -1 -1 0 1 0
0 0 0 0 0 -1 -1 1
0 0 0 0 0 0 0 -1









∆ =









2 0 0 0 0 0
0 2 0 0 0 0
0 0 4 0 0 0
0 0 0 4 0 0
0 0 0 0 3 0
0 0 0 0 0 1









Fig. 3. A, Bσ, σB and ∆ matrices corresponding to the proposed example.

Notice that adjacency and valence matrices are
orientation invariant, whereas the incidence matrix
depends on it. The first two arise from the incidence
relation while the third depends on the incidence
relation and the direction of the edges.

a. Reduced valence.

We define the reduced valence of a vertex as the
total number of edges that enter this vertex. The
reduced valence depends, therefore, on the orientation
selected.

The σ-oriented reduced valence matrix Vσ, is an n
x n diagonal matrix where the component (i, i) is the
σ-oriented reduced valence of vertex i.

Considering only one orientation, it is possible to
give a special definition for the incidence matrix.
Thus, we can define the reduced incidence matrix Iσ
with respect to orientation σ, as:



+

=
otherwise 0,

; of end incoming theis if ,1 ji
ij

ev
iσ (5)

If the graph has n vertex and m edges, the

dimension of Iσ is n x m.
Proposition 1: The Iσ · (Iσ)t product generates the
reduced valence matrix Vσ for the selected orientation.
Proof: If we compute the (i, j) product component:

()[] ∑∑
−

=

−

=

⋅=⋅=⋅
1

0

1

0

m

k
jkik

m

k

t
kjikij

t iiiiII σσσσσσ (6)

However, 0≠⋅ σσ

jkik ii if and only if i = j, because
each edge has just one incoming end. Since σ

iki ∈ {0,
1}, then (σ

iji)2 = σ
iji and so

()[]








≠




=
=

=⋅ ∑
−

=

ji
ji

i
II

m

k
ik

ij
t

if,0

; if ends

incoming ofnumber

1

0

σ
σσ (7)

This result agrees with the definition of the

oriented reduced valence matrix.

tIIV)(σσσ ⋅= (8)
■

0

3

5

1
2

4

0

3

5

1

2

4

 Technical Note TN-UAH-AUT-GAP-2005-01-en

 7

Figure 4 presents the reduced incidence and the
reduced valence matrices for both orientations
corresponding to the example.

Iσ =









0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
0 0 1 1 1 0 0 0
0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 1









σI =









1 0 1 0 0 0 0 0
0 1 0 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0









Vσ =









0 0 0 0 0 0
0 0 0 0 0 0
0 0 2 0 0 0
0 0 0 3 0 0
0 0 0 0 2 0
0 0 0 0 0 1









σV =









2 0 0 0 0 0
0 2 0 0 0 0
0 0 2 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 0









Fig. 4. Reduced incidence and reduced valence matrices for both
orientations: Iσ, σI , Vσ and σV .

The inspection of Fig. 3 and Fig. 4 allows us to
verify that the incidence matrix can be derived from
the reduced incidence matrices and the valence matrix
from the reduced valence matrices. We have:

σσσ IIB −= (9)
σσ VV +=∆ (10)

The previous equations formalize a quite intuitive

relation that we will not prove here.
Moreover, we can observe that the values of the

reduced valence matrix Vσ correspond to the Iσ
components summed by rows, as expressed in
equation (7). The meaning is obvious: since the
reduced valence is the total number of incoming ends
to each vertex, it will suffice to count the number of
entries different from 0 in each row of the Iσ matrix.
The same holds for the opposite orientation σ .

b. Data dependence matrix D.

We defined the data dependence matrix D as:





=
otherwise 0,

;on dependsn instructio if,1 ji
dij

 (11)

Therefore, i instruction is associated to a data
dependence vector id

�

 whose j-th component is 1 if a
direct dependence on instruction j through any data
exists and 0 otherwise. Thus, the matrix D is the set of
all data dependence vectors id

�

 of a code sequence.

We want to emphasize that the matrix D represents the
direct data dependence path or data dependence path
of length one, that is, instruction i consumes a data
processed directly by instruction j with no interveners.

Figure 5 shows the data dependence matrix for
the example of a code sequence.

D =









0 0 0 0 0 0
0 0 0 0 0 0
1 1 0 0 0 0
1 1 1 0 0 0
0 0 1 1 0 0
0 0 0 0 1 0









Fig. 5. Data dependence matrix D and the data flow graph.

The matrix D considers just the incoming edges
whereas the matrix A considers both incoming and
outgoing edges. In this sense, the graph orientation
that the matrix D shows is the one that corresponds to
the data flow.

Although the matrix D is used commonly in
compiler theory (for example, in loop transformations
[45, 46]) it has been used neither in the machine
language analysis nor in the parallelism
characterization at instruction level. Authors consider
the reason for this may be that the analyses of
instruction set architectures are considered overridden
now or that it is assumed that their influence in the
superscalar execution is minor, thus trusting too much
the physical layer.

c. Topological properties and ILP restrictions for

the data dependence matrix.

One of the aims of the graph theory algebra is to
precisely determine how the graphs properties are
exposed in the algebraic properties of their associated
matrices. We try to extract, in addition, consequences
in the scope of parallel instruction processing.
•••• The vertex labelling should not affect the
properties of the data dependence matrix. The
matrix D can be associated to a graph that consists of
a vertex set V, an edge set E and an incidence relation,
that is, a subset of V x E. Since the set {v0, v1, v2, …,
vn-1} corresponds to an arbitrary vertex labelling, the
properties of matrix D should be invariant under
arbitrary permutations of rows and columns. We are
interested in those properties that remain invariant
under these permutations.

As a starting point, in the scope of instruction
level parallelism, we must consider a sequence of
instructions that keeps the natural sequentiality of Von
Neumann programming model fixed by the strictly
precedence order in which they are written in the
program. The original vertex labelling of the graph
(instructions) is induced by the own program counter.
We will term this labelling programmatic labelling.

The programmatic labelling will facilitate the
discovering of properties invariant under arbitrary
permutations.

0

3

5

1

2

4

Raúl Durán, Rafael Rico

8

•••• There exists a precedence relation among the
data dependence graph vertices. Any computable
task entails some precedence relation or partial
ordering among the tasks (instructions) to perform,
since it is a process developed in an ordered and finite
succession of steps. A certain ordering is essential to
the algorithm and, often, it is stressed when passing
from a layer to the next in the computation process as
Fig 1 illustrates (from algorithm to program, from
program to compiled image in machine code, from
machine code to physical layer).
•••• An instruction does not depend on itself. A data
cannot have the same instruction as source and as
destination. Consequently, matrix D has null diagonal.
That is, 100 −≤≤= nidii .

This is certain even in the loops. A loop is a
compact way to write a code sequence that, in its
expanded version, repeats a series of operations but on
different data. Each new iteration implies a new
instance of the loop body but on new data. The
execution of a loop body requires a conditional branch
instruction between iterations. In that case, the
conditional branch instruction can be inserted in the
data flow graph as a special operation that manipulates
the program counter register and keeps apart the loop
body instructions in each iteration.
•••• The data dependencies are not symmetrical. An
instruction cannot depend on another that depends at
the same time on it, since this situation does not
establish a precedence relation but a data dependence
cycle. Consequently, the matrix D is not symmetric.
Mathematically: 1,1 −≤∀=≠ njidd jiij .

Therefore, if D is not symmetric, the associated
characteristic polynomial for any data dependence
matrix p(G; λ) = det (λ I – D), irrespective of the
incidence relation, is always the same : p(G; λ) = λn.
The descriptive value of this polynomial is very poor.
•••• There is a graph vertex labelling under which the
matrix D is lower triangular. An instruction depends
only on the precedents in the program, and never on
the following ones (principle of causality). This means
that the instructions only process data given by the
instructions written above in the program and never
from those which are about to come in the sequence.
According to this, the programmatic labelling of the
dependence graph vertices generates a lower
triangular matrix D because dij = 0 whenever j > i. In
other words, a labelling that fullfils the order imposed
by the program counter insures that all components (i,
j) of D are 0 when j > i because an instruction cannot
have data dependencies on the following ones. The
matrix D will be termed canonical when it is lower
triangular and will be denoted Dc.

As a summary, we enumerate the properties that
the data dependence matrix D fullfils:
� it is square of dimension n x n, n being equal to the

number of instructions included in the code
sequence graph,

� its values are binary, that is, dij∈ {0, 1},
� it has null diagonal,

� it is not symmetric and, consequently, its
characteristic polynomial is equal to λn, irrespective
of the graph incidence relation,

� there is at least a vertex labelling –programmatic
labelling– under which it is lower triangular and
presents the canonical form Dc,

� different vertex labellings represent permutations

that are isomorphisms,
� it encloses a partial ordenation of instructions.

d. The data dependence matrix and the

adjacency matrix.

There is an immediate relation between the
orientation that generates the data dependence graph
and the one that generates the data flow graph. Both
share the same edge set (incidence relation) changing
only the orientation. We can assure that if “i depends
on j” then “j produces data for i”. If (dij)σ = 1 under an
orientation, then 1)(=σ

jid under the opposite, which
corresponds to definition of transposed matrix. Notice
that the Dt matrix in Fig. 6 takes into account the
incoming ends of the graph, which correspond to
“data dependence orientation”.

Dt =









0 0 1 1 0 0
0 0 1 1 0 0
0 0 0 1 1 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0









Data dependence graph

Fig. 6. Dt matrix and the regarded graph orientation.

Since the adjacency matrix A values both ends of
each edge, then A is the sum of the data dependence
matrix D plus its transpose Dt, i.e.:

tDDA += (12)

This means that we are able to construct the
adjacency matrix A from D, thus allowing us to work
with the complete matrix representation of the graph
and, hence, to take advantage of all the algebraic
power associated to its characteristic polynomial.

e. The data dependence matrix and the reduced

valence.

As the data dependence matrix values only one
end of each edge, then some relationship with the
reduced valence might be implicit there. Also, the
inspection of matrix D in Fig. 5 and Iσ matrix in Fig. 4
allows us to appreciate certain similarity in the
location of non-null components. Indeed, it must be so

0

3

5

1

2

4

 Technical Note TN-UAH-AUT-GAP-2005-01-en

 9

because the same graph lies under both matrices: Iσ
relates edges and vertices, whereas D relates vertices
to vertices. The mathematical formalization that we
have developed points to the same direction, since
equations (9), (10) and (12) suggest a relationship
between the matrix D and the the reduced incidence
matrix Iσ through equation (7).
Proposition 2: the product tII σσ ⋅ generates the matrix D.
Proof 1: By substituting equations (9), (10) and (12)
in equation (4) we obtain:

tt DDVVIIII −−+=−⋅− σσσσσσ)()((13)

Some computation on the left-hand side yields:

tttt

tt

IIIIIIII

IIII
σσσσσσσσ

σσσσ

⋅−⋅−⋅+⋅=

=−⋅−)()(
(14)

We know that equation (8) relates the reduced

valence to the reduced incidence so we can simplify
the previous result:

ttt DDIIII +=⋅+⋅ σσσσ (15)

If D values the incoming ends for the data flow
graph orientation and Dt those for the data dependence
graph orientation, we have:

DII t =⋅ σσ [16]
■

Proof 2: If we calculate the product component (i, j):

()[] ∑∑
−

=

−

=

⋅=⋅=⋅
1

0

1

0

m

k
jkik

m

k

t
kjikij

t iiiiII σσσσσσ (17)

The summation goes through all the edges in the

index k. The product is different from zero only for the
k-th edge if it enters the vertex i (σ

iki = 1) and leaves
vertex j or, in other words, enters vertex j under the
opposite orientation (

σ
jki = 1). But then, this agrees

with the definition of the data dependence matrix D
that we have presented in equation (11).

ij

m

k
jkik dii =⋅∑

−

=

1

0

σσ (18)

Hence

tIID σσ ⋅= (16)

■

It has been already shown that the reduced
valence for an orientation can be obtained by counting
the incoming ends (entry equal to 1) along rows, as
equation (7) suggests. Observing the relationship
expressed in equation (16) and the similarity displayed
by the D and Iσ matrices, regarding the non-null

values disposition, it is enticing to think about using
matrix D in order to find the reduced valence.
Proposition 3: The counting of edges along the rows
of matrix D permits to generate the reduced valence
matrix for the data flow graph orientation.
Proof: Suppose the relation is true and replace each
entry of D by the value given in the equation (18):

∑ ∑∑
−

=

−

=

−

=

⋅==
1

0

1

0

1

0

n

p

n

p

m

k
pkikipii iidv σσ (19)

A simple computation leads to

∑ ∑∑∑
−

=

−

=

−

=

−

=










⋅=⋅=

1

0

1

0

1

0

1

0

m

k

n

p
pkik

m

k

n

p
pkikii iiiiv σσσσ (20)

However, any given edge, say k, is incident only

on one vertex and hence:

∑∑
−

=

−

=
=⋅=

1

0

1

0
1

m

k
ik

m

k
ikii iiv σσ (21)

This corresponds to equation (7) and proves that

finding out the counting of incoming edges is
equivalent to run through the rows either of the Iσ
matrix or the D matrix. This fact allows us to give a
new definition of reduced valence matrix:









≠

==
= ∑

−

=

ji

jid
v

n

k
ik

ij

if,0

; if edges ofnumber
1

0
σ (22)

■

It becomes apparent that the data dependence
matrix D exhibits a great descriptive ability, since it
allows:
� to recover the adjacency matrix A and its

characteristic polynomial,
� to calculate the reduced valence for data flow graph

orientation,
� to describe the data dependence graph by means of

its transpose matrix Dt,
� to obtain information about the code sequence

without resorting to any other mathematical tool.

f. Code coupling.

The concept of reduced valence is very useful in
the scope of instruction processing parallelism.
Remember that if we select the data flow graph
orientation σ, the reduced valence gauges how much
an instruction is coupled (linked) with the rest, that is,
it hints at how weaved a code sequence is. So, a large
reduced valence indicates that an instruction consumes
data coming from several instructions and, therefore, it
must stall its own execution till all these data are
available. Consequently, a larger coupling implies a
potentially greater partial ordering of the code, since

Raúl Durán, Rafael Rico

10

there are more precedence relationships: The more
partial ordering, the less available parallelism.

The diagonal of the reduced valence matrix for
data flow graph orientation (Vσ) informs us about the
coupling that each instruction bears.

The trace of the reduced valence matrix for data
flow graph orientation is the total number of edges,
that is, it quantifies the amount of dependence
relationships among instructions. This value gives
information about how much coupled (linked,
weaved) a code sequence is. We denote this parameter
as coupling C:

C = tr Vσ (23)

The summation by rows in matrix D gives the
reduced valence of each instruction for data flow
graph orientation (22). However, we have already
indicated that there is a vertex labelling for which the
matrix D becomes lower triangular (canonical form
Dc). In that case, and remembering that the diagonal is
null, we have:







 ≠==
= ∑

−

=

otherwise,0

;0 if edges ofnumber
1

0
jid

v

i

k
ikc

ij
σ (24)

Consequently, the reduced valence matrix trace

for the orientation corresponding to the data flow
graph (coupling C) will be:

∑∑∑
−

=

−

=

−

=
===

1

1

1

0

1

0
C

n

i

i

k
ikc

n

i
ii dvV σσtr (25)

The maximum number of data dependencies

(edges) in the graph is given by all the possible
ordered vertex pairs, which is precisely the binomial
coefficient . Hence, the coupling C is bounded by:

22
C0

2 nnn −=







≤≤ (26)

With the purpose of obtaining a coupling

measurement which is independent of the amount of
instructions in the sequence, we define a normalized
coupling, CN, as the ratio C vs. the number of
instructions n in the code sequence. When CN is zero
there is no dependence; in the worst case, each
instruction depends on all the precedent ones.

2
1C0 −≤≤ n

N
 (27)

g. Data reuse.

If the orientation is the opposite σ , that is, the
edges are incoming to indicate which vertex the data
are given to (data dependence graph), the reduced

valence quantifies the data reuse. If the data generated
by an instruction is used by many others, it must be
stored, thus consuming temporary storage resources.

The reduced valence matrix diagonal for data
dependence graph orientation (σV) informs about the
reuse of data produced by each instruction. When this
value is 0, it means that the data is not consumed. If
the value is 1, it means that each data generated by an
instruction is consumed only by another one. With no
reuse, the lifespan of the data in the storage elements
is negligible. There is a special circumstance that takes
place when all the non-null values of the σV diagonal
are equal to 1. This situation is illustrated in the Fig
7.(a). Mathematically the product D · Dt generates a
diagonal matrix that coincides with Vσ. Clearly all dik ·
djk products are zero since, if instruction i depends on
instruction k, no other instruction can depend on
instruction k.

When the reuse value is larger than 1 it means
that several instructions consume a data. In this case,
it is interesting to know the life span (storage time) of
the data. In the Fig. 7.(b) and (c), two possible
situations are illustrated. In both cases, instruction 0
generates data for instruction 1 and instruction 2. In
the case (b) the data is consumed in the next
computation step whereas in the case (c) this is not
possible because there is a data dependence path of
length 2 that is also coupling instruction 2 to the 0. We
deduce that the life span of a data produced by
instruction i and consumed by instruction j must be at
least equal to the longest data dependence path
between both instructions. For that reason we talk
about the minimum life span Tmin.

Tmin= n such that [Dn]ij ≠ 0 and [Dn+1]ij = 0 (28)

The case of the Fig. 7.(d) shows that this time
eventually depends on the scheduling criteria (at the
physical layer) since instruction 1 can be scheduled
immediately one computation step before instruction 3
or at the same time as the instruction 0, causing the
storage time to be 2 computation steps.

a) b) c) d)
Fig. 7. Diferent classes of data reuse.

In the case of reuse, it is useless to calculate its
value for the complete graph as we have done for the
coupling C because the storage resources only make
sense when referred to individual data requirements.
Moreover, computing the trace of σV is nothing but
counting edges in the graph –by columns in D instead
of by rows as in the equation (24)–, which coincides
with the coupling C.

0

1 2

3

0

2
1

3

0

3

1 2

0

2

1

3










2
n

 Technical Note TN-UAH-AUT-GAP-2005-01-en

 11

h. Data dependence paths of length larger than 1.

Given a graph G(V, E), a path of length l (edges)
from vertex vi to vj is, by definition, a finite sequence
of l + 1 different vertices that begins in vi and finishes
in vj, such that two consecutive vertices are adjacent
[6, 16].
The data dependence matrix D represents the data
dependence paths of length 1 or direct dependencies
between instructions. Nevertheless, data dependence
chains between instructions of larger length can exist.
For example, if dij = 1 and djk = 1 then instruction i
depends on instruction k through the instruction j by a
path of length 2. We can say that there exists a data
dependence path of length 2 from instruction i to
instruction j running through, at least, one of the
instructions in the graph, if the following holds:

() () ()

() 0
1

0

111100

≠⋅=

=⋅++⋅+⋅

∑
−

=

−−

n

k
kjik

jninjiji

dd

dddddd �

 (29)

But this value corresponds to the (i, j) entry of the
product D ·D and, therefore, the matrix D2 represents
the data dependence paths of length 2.
•••• Dl represents the data dependence path of length
l (edges). Generalizing the reasoning for the paths of
length 2, each power of matrix D represents the
dependence paths of length equal to the power degree.
In other words, given a graph G(V, E), the number of
data dependence paths of length l from vi to vj with
orientation σ, is the (i, j) entry in the matrix Dl. In [6]
we can find a proof by induction of this proposition
which is based on the adjacency matrix A and can be
extended to the case of the data dependence matrix D.
Note that the length is measured in edges.
•••• The n-th power of D is null. The maximum length
of a data dependence path is n − 1 (edges), n being the
number of instructions in the code sequence. Hence,
Dn will be necessarily null.
•••• There are no cycles of dependencies. There are no
closed dependence paths because this case does not set
a strict precedence relation and, consequently, the
graph must be acyclic (DAG or Directed Acyclic
Graph). If cycles were permitted, an instruction would
depend on itself through others and so the task would
not have solution in a finite number of steps.
Therefore, no instruction can depend on itself under
any path of length l. Algebraically, the diagonal of any
power of the data dependence matrix (Dl) must be
null: d l

ii = 0, 1 ≤ l ≤ n − 1, 1 ≤ i ≤ n.
From another standpoint, if the n-th power of D

were not the null matrix, then there would exist cycles
of dependencies and, therefore, the matrix D would
not represent a computable task (solutionable in a
finite number of steps).

Regarding data dependence paths of value larger
than one, we can emphasize, as a summary:

� each power of matrix D represents the dependence
paths of length equal to the degree of the power
(measured in number of edges),

� Dn must necessarily be null; otherwise it would not
represent a computable task,

� there can be no cycles of dependencies and, hence,
the diagonal of any power of D is null.

i. Critical path length and degree of parallelism.

One of the most important pieces of information
that we can extract from data dependence matrices is
the available instruction level parallelism degree
contained in the code sequences represented by the
matrices. This information is independent of the
limitations that the physical layer can impose later on.
It concerns the machine language layer only and it
derives from the algorithm, the program
implementation, the compiler impact and the
instruction set architecture itself.

The available parallelism is inversely related to
the length of the data dependence chains between
instructions. The longer these chains are, the stricter is
the partial ordering of the code sequence imposing a
very sequential instruction execution and limiting the
ability of concurrent processing. On the contrary,
short data dependence chains imply a weak ordering
between instructions amenable for concurrent
execution.

Given a code sequence, represented by its data
dependence matrix D, we define the critical path
length L(D) (briefly L) as the length of the longest
data dependence path. However, two possible metrics
exist: measuring edges –as explained in the preceding
Section, according to traditional graph theory– or
measuring computation steps –appropriate to
instruction level computation environment–.

There is an immediate relation between the two
metrics of critical path length and the number of
vertices involved. If the length of the critical path L
involves l + 1 vertices, then this path has l edges and
the minimum number of computation steps required to
process the associated code sequence is l + 1. The
execution of independent instructions frees a data
dependence of the longest chain in each computation
step. After l computation steps, we will be ready to
process the last instruction(s) of the sequence (free of
any dependence). We need, therefore, l + 1
computation steps to finish the execution of l + 1
instructions of the critical data path chain.

We know that Dl represents the data dependence
paths of length l (edges). According to this, the first
power of D that is identically zero indicates the length
of the critical data path. This is:

L = l computation steps if and only if Dl = 0 (30)

With this metric, L is bounded in the following
way:

1 ≤ L ≤ n (31)

Raúl Durán, Rafael Rico

12

The minimum length L is 1: this means that there
are no data dependencies among instructions and,
should the resources be available, all the instructions
could be processed concurrently in only one
computation step. The maximum value of L is n. In
that case, each computation step admits the issuing of
just one instruction and the sequentiality is complete:
n computation steps are required to carry out the code
processing.

The more instructions are included in the data
dependence graph, the longer the potential length of
the critical path L. With the purpose of obtaining a
measurement of instruction level parallelism
independent of the number of vertices in the graph, we
define the normalized critical data path length, LN, as
the ratio critical path length (L) expressed in
computation step vs. the maximum value of L (Lmax).

nmáx
N

L
L

LL == (32)

When LN approaches 1 there is no parallelism,

and the nearer to 0, the more the parallelism the code
bears.

]1,0(L ∈N (33)

Also we define the parallelism degree, Gp, as the
reciprocal of LN expressed in computation steps (Gp =
(L N)-1). Gp goes from 1 (absence of parallelism) to n
(maximum parallelism degree).

[]nG p ,1∈ (34)

The meaning of Gp is clear. It indicates the
number of instructions that can be concurrently
processed in each computation step. To issue n
instructions in a computation step means that no data
dependence among instructions exists and they are
capable of being processed concurrently. On the
contrary, if only one instruction can issue in each
computation step, this means that the sequentiality is
absolute.

The code sequence of Fig. 2 has a graph with a
critical path length of 4 edges, or 5 computation steps,
and a parallelism degree Gp of 5/6, namely, 5/6
instructions are processed in each computation step.
Indeed, the example is quite sequential (Gp = 0.83 ≈
1): we are able to issue 2 instructions concurrently
only in the first computation step.

Let us discuss an interesting point. The
parallelism degree is a function of the number of
instructions in the code sequence, that is, Gp = f(n). It
might seem reasonable to think that as n increases, so
does Gp, and, therefore, the larger the number of
instructions in the sequence, the more potential
parallelism. Following this rationale, the instruction
window size of some superscalar processors has been
enlarged, thus expecting to find more independent
instructions ready to be executed simultaneously.

Against this idea, the simulations of David Wall found
an asymptotic behavior [42, 43]. After a certain point
no more parallelism is uncovered, even examining
more and more instructions. From another point of
view, the dependence chain length grows when the
code sequence grows because the logical resources of
the software architecture of the instruction set are
limited.

j. Algorithmic calculation of the critical path

length.

The calculation of the successive powers of the
matrix D allows the determination of the critical path
length by means of an algebraic procedure, according
to equation (30). Nevertheless, the calculation based
on the matrix product is very heavy (complexity O(n4)
product operations) and renders this method useless.

The algorithm to find the partial ordering that a
graph bears also serves to find the critical path length.
This procedure has a lower computation cost
(complexity O(n2) sum operations) that makes it
attractive for the automation of the analysis of code
sequences. It consists of setting the precedence
between instructions based on their dependencies. In
each computation step, we list the independent
instructions and we free of data dependencies those
they supply data to. All the instructions that belong to
the list of a computation step share the same level of
precedence and, therefore, can be processed
concurrently. The number of required computation
steps to order all the instructions is the length of the
critical path. On the other hand, the extracted partial
ordering gives a scheme for the scheduling of the
instructions, useful to assign physical resources. The
following figure illustrates the pseudocode of this
algorithm.

/* Partial ordering procedure */
1: GIVEN: computation step step = 0, instructions list for step s List(s),
dependence matrix D;

2: while (unordered instructions left)
3: {
4: while (independent instructions left)
5: {
6: List(s) = Add_Independent_List_Step(s);
7: }
8: Remove_Dependencies (List(s), D);
9: step ++;
10: }

Fig. 8. Partial ordering algorithm.

This algorithm allows both the evaluation of the
critical path length (expressed in computation steps)
and the elaboration of the partial ordering listing.

Figure 9 shows the partial ordering associated to
the graph example. Notice that this partial ordering
allows, if there are enough physical resources, to
process the code sequence in 5 computation steps
giving rise to a parallelism degree of Gp = 5/6 = 0.83
instructions per computation step.

 Technical Note TN-UAH-AUT-GAP-2005-01-en

 13

Computation step 0: 0, 1
Computation step 1: 2
Computation step 2: 3
Computation step 3: 4
Computation step 4: 5

Fig. 9. Partial ordering corresponding to example graph.

3. Dependence sources composition.

If a code sequence can be represented by the data
dependence matrix D and this is a formalization of the
partial ordering implicit in the code, we can accurately
analyze the impact of the different dependence sources
since the final dependence map is really a simple
composition of those sources. If Ds1 and Ds2 are
matrices arising from two different sources of
dependencies, then the resultant matrix D will be:

D = Ds1 OR Ds2 (35)

In other words, dij = ijsijs dd 2OR1 means that
instruction i depends on instruction j because of cause
1 or because of cause 2 or because of both causes
simultaneously.

Figure 10 illustrates the composition of sources of
data dependencies with a simple example. Consider
the code sequence presented in the example of Fig. 2.
The aim is to decompose the data dependencies into
those due to explicit operands and those due to
implicit operands (those arising from the operation
code). According to this we will have:

 Dop expl. OR Dop impl. = D








0 0 0 0 0 0
0`0 0 0 0 0
1 1`0 0 0 0
0 1 1`0 0 0
0 0 1 0`0 0
0 0 0 0 0`0









OR









0 0 0 0 0 0
0`0 0 0 0 0
0 0`0 0 0 0
1 0 0`0 0 0
0 0 0 1`0 0
0 0 0 0 1`0









=









0 0 0 0 0 0
0`0 0 0 0 0
1 1`0 0 0 0
1 1 1`0 0 0
0 0 1 1`0 0
0 0 0 0 1`0









Fig. 10. Dependence sources composition.

It is noticeable that the composition of both data
dependence sources has caused a sequentiality in the
resulting graph larger than the one originally produced
by each source on its own.

Unfortunately, the resulting or final data
dependence matrix does not admit the inverse process
or decomposition, that would allow us to make a more
methodical and precise analysis of the impact of each
data dependence source. The merged dependencies
cannot be traced back to their origins.

a. Some possible compositions

The construction of the data dependence graphs
admits, as previously seen, the composition of
different categories. In a first approach, the

composition of true dependencies, antidependencies
and output dependencies would be helpful.

D = Dtrue OR Doutput OR Dantidependence (36)

This allows us to distinguish the type of data
dependence and to predict whether it has
computational relevance (true dependencies) or it is
due simply to the physical storage reuse (anti-
dependencies and output dependencies).

However, we can carry out a finer analysis if we
differentiate possible data dependence sources. In this
case we will have:

D = Ds1 OR Ds2 OR Ds3 OR · · · (37)

These diverse data dependence sources could be:
� a limited number of general purpose software

registers,
� register reuse,
� implicit operands use,
� condition codes writes,
� memory address computation,
� stack traffic, etc.

Besides, any of them can be considered in the
three variants presented in the first place: true
dependencies, antidependencies and output
dependencies.

b. Critical path length of the composition.

All the properties and procedures proposed for the
matrix D can be applied to each of the matrices that
represent different data dependence sources (Dsn).

It is interesting to consider the evolution of the
critical path length of the resulting matrix as a
function of its components. The resulting graph does
not have a critical path length necessarily equal to the
sum of the critical paths of its components because the
data dependence chains can overlap. It is not possible,
therefore, to determine in a direct way the length of
the composition based on the components. At most,
we can obtain a bound for it.

As for the upper bound, we know that the final
length is limited by the number of instructions present
in the graph. Besides, we can affirm that the critical
path length of the composition will never be longer
than the sum of the critical path lengths of the
components assuming the most unfavorable case in
which all of them contribute to create data dependence
chains. Therefore, the upper bound will be imposed by
the minimum of both:

)(L,)(Lmin DnD
i

si ≥







∑ (38)

Equation (38) uses the metric based on

computation steps.
As for the lower bound, it will never be less than

the one corresponding to the longest component of the

0

3

5

1
2

4

Raúl Durán, Rafael Rico

14

critical path, assuming that all the rest are overlapped
with it, i.e., there are no cross dependencies among the
components. Formally:

{ })(Lmax)(L sii
DD ≥ (39)

Actually, the critical path length L(D) of the

compound matrix D is a number bounded by:

{ })(Lmax)(L,)(Lmin siii
si DDnD ≥≥








∑ (40)

That is, L(D) will always be equal to or greater

than the longest data dependence path of components
and it will always be smaller than or equal to either
the sum of the components lengths or n (the number of
instructions present in the code sequence), whichever
is smaller.

c. Illustrative example.

An example based on an x86 code sequence is
proposed. Some features of the instruction set
architecture related to its behavior in superscalar
execution are enumerated in Section 1.c. The
assembler x86 instructions use explicit operands –
those written by the programmer– and implicit
operands –those necessarily associated to the
operation code–. This feature, along with others, such
as the dedicated use of certain registers, the peculiar
way to access memory positions or the use of the state
register, renders very interesting the analysis of the
different data dependence sources [32].

In Table 1 we propose an x86 code sequence that
can well represent a typical basic block. The 16 bits
subset has been used for the sake of simplicity. The
operands used by each operation are classified into
two major sets: read operands and written operands.
Within each one of these main sets, the operands are
grouped by their functionality: data mapped in
registers or memory, registers used in the calculation
of effective memory addresses, registers involved in
stack accesses and state register. The explicit operands
(included in the format of the instruction) are set apart
from the implicit operands (associated necessarily to
the operation code). Each one of these categories
represents a possible data dependence source whose
impact we can study separately.

In some cases it is not easy to know the actual
functionality that an operand access will have. It is for
that reason that the explicit writing on operands
related to the address computing or related to the stack
appears empty in the table.

With respect to the memory locations, the most
pessimistic situation is assumed, namely, the memory
is considered a single resource as far as the data
dependence generation is concerned: the accesses are
not different because of their address. This is not true
for the stack since the accesses are ordered by the
stack pointer.

From the information in Table 1 the data
dependence matrices D are built for each one of the
selected sources and for the three types of data
dependencies: true dependencies, antidependencies
and output dependencies. Figure 11 shows all the
results.

Table 1. Code sequence and the operands used in each operation.
Readed operands Writed operands

explicit implicit explicit implicit

 code sequence

reg adr stack cc reg adr stack cc reg adrstackcc reg adrstack cc
0: MOV DX, 6B42 - - - - - - - - DX - - - - - - -
1: MOV CS:[BX], DX DX CS, BX - - - - - - MEM - - - - - - -
2: SUB BX, AX AX, BX - - - - - - - BX - - - - - - OF, SF, ZF, AF, PF, CF
3: MOV AH, 30 - - - - - - - - AH - - - - - - -
4: INT 21 - - - - AX, CS, IP - SS, SP Flags - - - - AX, BX, CX, CS, IP - SP IF, TF
5: CLI - - - - - - - - - - - - - - - IF
6: MOV BP, [BX][SI] MEM BX, SI - - - DS - - BP - - - - - - -
7: MOV DS, DX DX - - - - - - - DS - - - - - - -
8: OR SS:[DI], AX AX, MEM SS, DI - - - - - - MEM - - - - - - OF, SF, ZF, AF, PF, CF
9: CWD - - - - AX - - - - - - - AX, DX - - -
10: XOR CX, BX BX, CX - - - - - - - CX - - - - - - OF, SF, ZF, AF, PF, CF
11: DEC DI DI - - - - - - - DI - - - - - - OF, SF, ZF, AF, PF, CF
12: INC SI SI - - - - - - - SI - - - - - - OF, SF, ZF, AF, PF, CF
13: MOV BL, ES:[SI] MEM ES, SI - - - - - - BL - - - - - - -
14: TEST [BX][DI], AL AL, MEM BX, DI - - - DS - - MEM - - - - - - OF, SF, ZF, AF, PF, CF
15: JNE/JNZ IP+F7 - - - ZF - - - - - - - - IP - - -

 Technical Note TN-UAH-AUT-GAP-2005-01-en

 15

Explicit dependencies:

 D reg ex OR D adr ex OR D stack ex OR D cc ex = D ex


















0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1`0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0`0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0`0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0`0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0`0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0`0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0`0 0 0 0 0 0 0 0 0
0 1 0 0 1 0 0 0`0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0`0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0`0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0`0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0`0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0`0 0 0
0 0 0 0 0 0 0 0 1 1 0 0 0 0`0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0`0



















OR



















0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0`0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0`0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0`0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0`0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0`0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0`0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0`0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0`0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0`0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0`0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0`0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0`0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1`0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 1`0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0`0



















OR



















0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0`0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0`0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0`0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0`0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0`0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0`0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0`0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0`0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0`0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0`0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0`0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0`0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0`0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0`0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0`0



















OR



















0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0`0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0`0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0`0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0`0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0`0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0`0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0`0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0`0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0`0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0`0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0`0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0`0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0`0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0`0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1`0



















=



















0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1`0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0`0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0`0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0`0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0`0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 1 0`0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0`0 0 0 0 0 0 0 0 0
0 1 0 0 1 0 0 0`0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0`0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0`0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0`0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0`0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 1`0 0 0
0 0 0 0 0 0 0 0 1 1 0 1 0 1`0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1`0



















 L = 3 L = 2 L = 0 L = 1 L = 5

Implicit dependencies:

 D reg im OR D adr im OR D stack im OR D cc im = D im


















0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0`0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0`0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0`0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1`0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0`0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0`0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0`0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0`0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0`0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0`0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0`0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0`0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0`0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0`0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0`0



















OR



















0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0`0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0`0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0`0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0`0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0`0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0`0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0`0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0`0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0`0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0`0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0`0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0`0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0`0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0`0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0`0



















OR



















0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0`0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0`0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0`0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0`0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0`0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0`0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0`0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0`0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0`0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0`0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0`0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0`0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0`0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0`0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0`0



















OR



















0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0`0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0`0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0`0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0`0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0`0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0`0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0`0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0`0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0`0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0`0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0`0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0`0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0`0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0`0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0`0



















=



















0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0`0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0`0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0`0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1`0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0`0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0`0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0`0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0`0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0`0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0`0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0`0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0`0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0`0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0`0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0`0



















 L = 2 L = 1 L = 0 L = 1 L = 2

Explicit antidependencies:

 AD reg ex OR AD adr ex OR AD stack ex OR AD cc ex = AD ex


















0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0`0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1`0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1`0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0`0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0`0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0`0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1`0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0`0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0`0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0`0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0`0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0`0 0 0 0
0 1 1 0 0 0 0 0 0 0 1 0 0`0 0 0
0 0 0 0 0 0 1 0 1 0 0 0 0 1`0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0`0



















OR



















0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0`0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0`0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0`0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0`0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0`0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0`0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0`0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0`0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0`0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0`0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0`0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0`0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0`0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0`0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0`0



















OR



















0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0`0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0`0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0`0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0`0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0`0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0`0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0`0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0`0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0`0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0`0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0`0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0`0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0`0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0`0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0`0



















OR



















0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0`0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0`0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0`0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0`0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0`0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0`0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0`0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0`0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0`0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0`0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0`0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0`0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0`0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0`0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0`0



















=



















0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0`0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1`0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1`0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0`0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0`0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0`0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1`0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0`0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0`0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0`0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0`0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0`0 0 0 0
0 1 1 0 0 0 0 0 0 0 1 0 0`0 0 0
0 0 0 0 0 0 1 0 1 0 0 0 0 1`0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0`0



















 L = 3 L = 0 L = 0 L = 0 L = 3

Implicit antidependencies:

 AD reg im OR AD adr im OR AD stack im OR AD cc im = AD im


















0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0`0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0`0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0`0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0`0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0`0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0`0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0`0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0`0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 1 1`0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0`0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0`0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0`0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0`0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0`0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0`0



















OR



















0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0`0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0`0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0`0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0`0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0`0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0`0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0`0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0`0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0`0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0`0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0`0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0`0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0`0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0`0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0`0



















OR



















0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0`0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0`0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0`0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0`0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0`0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0`0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0`0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0`0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0`0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0`0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0`0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0`0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0`0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0`0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0`0



















OR



















0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0`0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0`0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0`0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0`0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1`0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0`0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0`0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0`0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0`0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0`0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0`0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0`0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0`0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0`0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0`0



















=



















0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0`0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0`0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0`0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0`0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1`0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0`0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0`0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0`0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 1 1`0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0`0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0`0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0`0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0`0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0`0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0`0



















 L = 2 L = 0 L = 0 L = 1 L = 2

Explicit output dependencies:

 S reg ex OR S adr ex OR S stack ex OR S cc ex = S ex


















0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0`0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0`0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0`0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0`0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0`0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0`0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0`0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0`0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0`0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0`0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0`0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0`0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0`0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0`0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0`0



















OR



















0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0`0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0`0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0`0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0`0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0`0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0`0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0`0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0`0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0`0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0`0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0`0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0`0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0`0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0`0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0`0



















OR



















0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0`0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0`0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0`0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0`0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0`0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0`0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0`0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0`0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0`0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0`0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0`0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0`0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0`0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0`0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0`0



















OR



















0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0`0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0`0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0`0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0`0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0`0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0`0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0`0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0`0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0`0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0`0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0`0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0`0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0`0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0`0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0`0



















=



















0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0`0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0`0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0`0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0`0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0`0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0`0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0`0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0`0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0`0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0`0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0`0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0`0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0`0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0`0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0`0



















 L = 2 L = 0 L = 0 L = 0 L = 2

Implicit output dependencies:

 S reg im OR S adr im OR S stack im OR S cc im = S im


















0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0`0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0`0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0`0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1`0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0`0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0`0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0`0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0`0 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0`0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0`0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0`0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0`0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0`0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0`0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0`0



















OR



















0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0`0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0`0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0`0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0`0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0`0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0`0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0`0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0`0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0`0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0`0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0`0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0`0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0`0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0`0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0`0



















OR



















0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0`0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0`0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0`0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0`0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0`0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0`0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0`0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0`0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0`0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0`0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0`0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0`0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0`0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0`0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0`0



















OR



















0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0`0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0`0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0`0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0`0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1`0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0`0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0`0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0`0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0`0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0`0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1`0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1`0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0`0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0`0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0`0



















=



















0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0`0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0`0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0`0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1`0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1`0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0`0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0`0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0`0 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0`0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0`0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1`0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1`0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0`0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0`0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0`0



















 L = 1 L = 0 L = 0 L = 5 L = 5

Fig. 11. Different data dependence sources composition for code sequence example.

Raúl Durán, Rafael Rico

16

The dependencies have been combined by
groups, composing the four basic sources for each
type of dependence and separately in explicit and
implicit operands. The critical path length L has been
computed for each matrix. The lengths of the
composed matrices meet the bounds shown in
equation (40).

The sequential composition of each dependence
source with each basic type has been evaluated
producing the graph of Fig. 12. The composition order
does not change the final result but the used sequence
is not absolutely arbitrary. We began with true
dependencies, which are those that do not have
hardware solution, and then we examined the
antidependencies and the output dependencies. Within
each basic type, the analysis began with the explicit
operands and then the implicit operands. Finally, the
operand functionality has also an order: we began with
the accesses to operands with a greater computational
meaning because they represent the direct
manipulation of data, followed by the memory address
computation (that turns out to be essential to variable
access but that it is not directly involved in main
computation); next, the impact of the operands related
to the stack access is evaluated and we finish with the
state register accesses whose only function is to save
the condition codes used in conditional branches.

The composition sequence illustrates how data
dependence over-ordering generated by collateral
computational load (memory address computation,
stack accesses and state backup) gets added to the
dependencies with a true computational meaning.

Critical path length for each data dependencies source and for the composition

0
1
2
3
4
5
6
7
8
9

10

D
 re

g
ex

D
 a

dr
 e

x

D
 s

ta
ck

 e
x

D
 c

c
ex

D
 re

g
im

D
 a

dr
 im

D
 s

ta
ck

 im

D
 c

c
im

A
D

 re
g

ex

A
D

 a
dr

 e
x

A
D

 s
ta

ck
 e

x

A
D

 c
c

ex

A
D

 re
g

im

A
D

 a
dr

 im

A
D

 s
ta

ck
 im

A
D

 c
c

im

S
 re

g
ex

S
 a

dr
 e

x

S
 s

ta
ck

 e
x

S
 c

c
ex

S
 re

g
im

S
 a

dr
 im

S
 s

ta
ck

 im

S
 c

c
im

Fig. 12. Critical path length for each data dependence source and for
the composition.

From the example some immediate consequences
can be extracted whose generalization should be
verified in works to come.

We began with true dependencies. The
dependencies generated by the memory address
computation are added to the dependencies between
explicit data registers. Consequently, it is a cause of
parallelism degradation at the instruction level. The
next parallelism degradation comes from condition
codes. In this case, the true dependencies through
implicit operands no longer affect the length of the
critical path. We find, therefore, two sources with
remarkable impact on the parallelism degradation:
� memory address computing; and
� condition codes.

The antidependencies among explicit registers
provide a new parallelism degradation that, in our

example, does not change until the last contribution
due to the output dependencies in implicit operands,
specially the one due to condition codes. That is,
among the data dependencies due to physical
resources limitations, the most remarkable ones seem
to be:
� explicit use registers in antidependencies; and
� condition codes in output dependencies.

4. Conclusions and future work.

A model of analysis applicable to the computation
process at the machine language layer has been
proposed. It allows the quantitative evaluation of the
impact of both the instruction set architecture and the
compilation procedure itself.

The topological properties and restrictions that the
matrix D has to fullfil in the ILP scope have been
identified along with a method that uses the matrix D
to quantify the ordering degree of code, the data reuse
and its life span. A metric to evaluate the available
parallelism degree has been defined as well.

It is showed how the different data dependence
sources can be composed, thus allowing a precise
analysis of the impact of each one on the final
parallelism degree.

The proposed analytical model has been applied
to the evaluation of some aspects of the x86
instruction set architecture and valuable information
has been obtained [32].

In future works, the contribution of each one of
the dependence sources will be studied, analyzing its
behavior on a greater set of test programs. It seems
also possible to extend the use of the graphs to model
the limitations of the physical layer and the processes
of allocation-scheduling.

As a summary, we enumerate the contributions
that have been made throughout the technical note:
� we introduce the data dependence matrix D from the

traditional graph theory definitions and supported by
the novel concept of the reduced valence,

� several topological properties and restrictions that
the data dependence matrix D must satisfy in the
instruction parallel processing scope, have been
identified,

� a relation between the matrix D and the adjacency
matrix A, traditionally used in graph theory, has
been determined,

� Dt, the transposed matrix of D, has been identified as
the way to relate the two graph orientations,

� the relation between the matrix D and the reduced
valence matrix for an orientation has been proved,

� the concept of code coupling has been introduced as
a method to measure the ordering degree of a code
sequence,

� a way to quantify the data reuse degree has been
established,

� the relation between the matrix D and the data
dependence paths length longer than 1 has been
identified,

 Technical Note TN-UAH-AUT-GAP-2005-01-en

 17

� the relation between the critical path length and the
powers of matrix D has been identified,

� variables relating critical path length and available
parallelism degree in code have been defined,

� an algorithmic method to calculate the critical path
length have been proposed,

� it has been shown how different data dependence
sources can be composed and some dependencies
sources have been suggested,

� the critical path length of a composition has been
bounded,

� some possible lines of future work have been
suggested from an illustrative example.

5. Referencies.

[1] T. L. Adams and R. E. Zimmerman, “An analysis of 8086

instruction set usage in MS DOS programs,” in Proceedings of
the Third International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS-
III), April 1989, pp. 152 - 160.

[2] A. V. Aho, J. E. Hopcroft, J. Ullman. Data Structures and
Algorithms. Addison-Wesley Publishing Co., 1983.

[3] A. V. Aho and J. Ullman. Foundations of Computer Science.
Computer Science Press, 1992.

[4] T. M. Austin and G. S. Sohi, “Dynamic Dependency Analysis
of Ordinary Programs,” in Proceedings of the 19th International
Symposium on Computer Architecture, 1992, pp. 342-351.

[5] D. Bhandarkar and J. Ding, “Performance characterization of
the Pentium Pro processor,” in Proceedings of the Third
International Symposium on High-Performance Computer
Architecture, 1997, pp. 288 –297.

[6] N. L. Biggs, Algebraic Graph Theory (2nd. edn.), ISBN: 0-521-
45897-8, Cambridge University Press, 1993.

[7] M. Butler, Tse-Yu Yeh, Y. Patt, M. Alsup, H. Scales and
M.Shebanow. “Single Instruction Stream is Greater than Two,”
in Proceedings of the 18th Annual International Symposium on
Computer Architecture, 1991, pp. 163-174.

[8] T. H. Cormen, C. E. Leiserson and R. L. Rivert. Introduction to
Algorithms. Mit Press, McGraw Hill, 1996.

[9] R. David, “Modular design of asynchronous circuits defined by
graphs,” IEEE Transactions on Computers, vol. C-26, 8, pages
727-737, August 1977.

[10] A. L. Davis and R. M. Keller, “Data flow program graphs,”
IEEE Computer, vol. 15, 2, February, 1982.

[11] J. B. Dennis, “Concurrency in software systems,” in Advanced
Course in Software Engineering, Springer-Verlag, pages 111-
127, 1973.

[12] S. McFarling, “Combining Branch Predictors”, W.R.L.
Technical Note TN-36. Digital Equipment Corporation. Palo
Alto, CA. June 1993.
Available at: http://www.research.compaq.com/wrl/
techreports/index.html.

[13] K. I. Farkas, N. P. Jouppi and P. Chow. “Register File Design
Considerations in Dynamically Scheduled Processors,” in
Proceedings of the 2nd International Symposium on High-
Performance Computer Architecture (HPCA), 1996, pp. 40–51.

[14] D. G. Feitelson. “Metric and Workload Effects on Computer
Systems Evaluation,” IEEE Computer, vol. 36, 9, September,
2003.

[15] J. González and A. González. “Identifying Contributing Factors
to ILP,” in Proceedings of the 22nd Euromicro Conference
(Euromicro'96), 1996, pp. 45-50. Short Contribution.

[16] C. D. Godsil and G. F. Royle, Algebraic Graph Theory, ISBN:
0-387-95220-9, Springer-Verlag, 2001.

[17] I. J. Huang and T. C. Peng, “Analysis of x86 Instruction Set
Usage for DOS/Windows Applications and Its Implication on
Superscalar Design,” IEICE Transactions on Information and
Systems, Vol.E85-D, No. 6, pp. 929-939, June 2002. (SCI).

[18]I. J. Huang and P. H. Xie, “Application of Instruction
Analysis/Scheduling Techniques to Resource Allocation of
Superscalar Processors,” IEEE Transactions on VLSI Systems,
vol. 10, no. 1, pp. 44-54, February 2002.

[19]N. P. Jouppi and D. W. Wall, “Available Instruction-Level
Parallelism for Superscalar and Superpipelined Machines,” in
Proceedings of the Third International Conference on
Architectural Support for Programming Languages and
Operating Systems, pp. 272-282, April 1989.

[20]L. Joyanes and I. Zahonero. Estructura de datos. Algoritmos,
abstracción y objetos. Mc Graw Hill, 1998.

[21]M. Kumar, “Measuring parallelism in computation intensive
scientific/engineering applications,” IEEE Transactions on
Computers, 37(9), pp. 1088-1098, 1988.

[22]M. Lam and R. Wilson. “Limits of Control Flow on
Parallelism,” in Proceedings of the 19th Annual International
Symposium on Computer Architecture, 1992, pp. 46-56.

[23]M. H. Lipasti and J. P. Shen. “Exceeding the Dataflow Limit
Via Value Prediction,” in Proceedings of the 29th International
Symposium on Microarchitecture, pp. 226-237, 1996.

[24]T. Monreal, V. Viñals, A. González and M. Valero. “Hardware
Schemes for Early Register Release,” in Proceedings of the
International Conference on Parallel Processing (ICPP’02),
2002, pp. 5-13.

[25]O. Mutlu, J. Stark, Ch. Wilkerson and Y. N. Patt, “Runahead
Execution: An Alternative to Very Large Instruction Windows
for Out-of-order Processors,” in Proceedings of the 9th

International Symposium on High-Performance Computer
Architecture (HPCA'03), 2003, pp. 129–140.

[26]A. Nohl, G. Braun, O. Schliebusch, R. Leupers, H. Meyr and A.
Hoffmann. “A Universal Technique for Fast and Flexible
Instruction-Set Architecture Simulation,” in Proceedings of the
39th Design Automation Conference (DAC 2002), pp. 22-27,
2002.

[27]D. A. Padua and M. J. Wolfe, “Advanced Compiler
Optimizations for Supercomputers,” Communications of the
ACM, 29(12), pages 1184-1201, December 1986.

[28]C. A. Petri, “Comunication with automata,” Supplement 1 to
Technical Report RADC-TR-65-377, vol. 1, 1966.

[29]M. A. Postiff, D. A. Greene, G. S. Tyson and T. N. Mudge,
“The Limits of Instruction Level Parallelism in SPEC95
Applications,” in Proceedings of the 3rd Workshop on
Interaction Between Compilers and Computer Architecture,
1998.

[30]A. Ramirez, J. L. Larriba-Pey and M. Valero, “The effect of
code reordering on branch prediction,” in Proceedings of the
International Conference on Parallel Architectures and
Compilation Techniques, pages 189-198, October 2000.

[31]E. M. Riseman and C. C. Foster, “The inhibition of potential
parallelism by conditional jumps,” IEEE Transactions on
Computers, vol. C-21, pages 1405-1411, December 1972.

[32]R. Rico, J. I. Pérez, J. A. Frutos. “The impact of x86 instruction
set architecture on superscalar processing,” Journal of Systems
Architecture, vol. 51-1, pages 63-77, January 2005.

[33]M. Silva. Las redes de Petri: en la automática y la informática.
Editorial AC, 1985.

[34]P. Simonen, I. Saastamoinen, M. Kuulusa and J. Nurmi.
“Advanced Instruction Set Architectures for Reducing Program
Memory Usage in a DSP Processor,” in Proceedings of the
First IEEE International Workshop on Electronic Design, Test
and Applications (DELTA '02), pp. 477-479, 2002.

[35]K. Skadron, M. Martonosi, D. I. August, M. D. Hill, D. J. Hill
and V. S. Pai. “Challenges in Computer Architecture
Evaluation,” IEEE Computer, vol. 36, 8, August, 2003.

[36]M. Smith, M. Johnson and M. Horowitz. “Limits on Multiple
Instruction Issue,” in Proceedings of the 3rd International
Conference on Architectural Support for Programming
Languages and Operating Systems, 1989, pp. 272-282.

[37]J. E. Smith and G. S. Sohi, “The Microarchitecture of
Superscalar Processors,” in Proceedings of the IEEE, 83(12),
pp. 1609-1624, December, 1995.

[38]J. Stark, M. D. Brown and Y. N. Patt. “On Pipelining Dynamic
Instruction Scheduling Logic,” in Proceedings of the 33rd

Annual ACM/IEEE International Symposium on
Microarchitecture, 2000, pp. 57-66.

Raúl Durán, Rafael Rico

18

[39] D. Stefanovic and M. Martonosi, “Limits and Graph Structure
of Available Instruction-Level Parallelism,” in Proceedings of
the European Conference on Parallel Computing (Euro-Par
2000), 2000.

[40] K. B. Theobald, G. R. Gao and L. J. Hendren, “On the Limits of
Program Parallelism and its Smoothability,” in Proceedings of
the 25th Annual International Symposium on Microarchitecture,
pp. 10-19, 1992.

[41] D. M. Tullsen, S. J. Eggers and H. M. Levy, “Simultaneous
multithreading: maximizing on-chip parallelism,” in
Proceedings of the 22nd Annual International Symposium on
Computer Architecture, 1995, pp. 392-403.

[42] D. W. Wall, “Limits of instruction-level parallelism,” W.R.L.
Technical Note TN-15. Digital Equipment Corporation. Palo
Alto, CA. December 1990.
Available at: http://www.research.compaq.com/wrl/
techreports/index.html.

[43] D. W. Wall, “Limits of instruction-level paralelism,” in
Proceedings of the Fourth International Conference on
Architectural Support for Programming Languages and
Operating Systems, pages 176-188, April 1991.
Also as:
W.R.L. Research Report 93/06. Digital Equipment Corporation.
Palo Alto, CA. 1993. Available at:
http://www.research.compaq.com/wrl/techreports/index.html.

[44] K. Wang and M. Franklin. “Highly accurate data value
prediction using hybrid predictors,” in Proceedings of the 30th

International Symposium on Microarchitecture, pp. 281-290,
1997.

[45] M. Wolfe. High Performance Compiler for Parallel
Computing. Addison-Wesley, CA, 1996.

[46] H. Zima and B. Chapman. “Supercompilers for Parallel and
Vector Supercomputers,” ACM Press Frontiers Series, 1990.

