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Abstract: 
 

The differences found between the superscalar performance in x86 and non-x86 processors and the peculiar 
characteristics of the x86 instruction set architecture recommend to carry out a thorough analysis of the available 
parallelism at the machine language layer. However, computer architecture evaluation requires new tools that 
complement the customary simulations and, in this sense, the traditional graph theory can help to create a new 
frame for fine-grain parallelism analysis. 

Starting off from graph theory basic foundations, new concepts are introduced from reduced valence to data 
dependence matrix D, both characterizing a code sequence in a mathematical manner. This matrix fulfills a 
number of properties and restrictions and provides information about the ability of the code to be processed 
concurrently. Among other details, a relation between the critical path length and the parallelism degree along 
with techniques to calculate it from the matrix D, are presented. 

Finally, it is explained how different data dependence sources can be composed, thus providing a 
mechanism to analyze their final influence on the parallelism degree. These techniques are applied to an example 
from which some conclusions are derived. 
 
 

Index words: Evaluation of computer architectures, instruction level parallelism, instruction set architecture, 
graph theory, DDG-based quantification. 
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1. Introduction: new challenges in computer 
architecture evaluation. 

 
Quantitative evaluation is a crucial point in the 

computer architecture research. As Kevin Skadron et 
al. explain the simulation has become the first 
evaluation tool both in industry and research [35]. 
Unfortunately, the construction of good simulators 
and the selection of appropriate workloads have 
become appalling tasks. These difficulties have led to 
a work focused just on fields where the tools have a 
tested quality while setting aside really interesting 
research topics as, for example, the multiprocessing. 

Almost contemporary with the work referred to in 
the previous paragraph and also presented in IEEE 
Computer, Dror G. Feitelson indicates that the 
performance measures are usually employed to 
compare the quality of several systems without taking 
into account that differences can arise from the 
evaluation methodology itself [14]. Specifically, he 
concludes that metric and workload can affect the 
results since they are liable to interact. 

Other aspects to consider in the quantitative 
evaluation could be the following [35]: 
� the sequential programming language used to 

program the simulators does not contribute to the 
correct description of the targeted parallel systems 

� the most used benchmark programs (SPEC) are not 
properly characterized 

� the statistical analysis commonly used (mean, 
standard deviation, etc.) is not rigorous because the 
bursty behavior of many computation processes does 
not follow a Gaussian distribution 

� usually the published results are not verified 
independently 

As to the scanty independent verification, 
Skadron suggests that it could be caused by the fact of 
not being properly rewarded. We would like to add 
that it is often impossible to reproduce the 
experiments because no sufficient information about 
the simulator, the workload, assumptions or parameter 
settings is provided. Reaching, at least, the same 
degree of reproductibility that we observe in other 
research fields would be desirable. 

Consequently, the moment has arrived for shifting 
gears and facing the new challenges arisen in 
computer architecture evaluation. Skadron’s work 
supplies some recommendations enumerated by a 
group of researchers who met in December of 2001 
with the aim of discussing these subjects. Among 
them, the quest for analytical methods has seemed to 
us particularly interesting. 

We agree with Skadron that certain hostility is 
detected towards the analytical methods in congresses 
and journals. This should not be so, since the 
analytical model contributes to understand those 
aspects not uncovered by simulation. Moreover, the 
analytical model can be useful to validate the 
simulator and to predict the behavior of some 
architectural proposals. 

As is common in other research fields, the 
mathematical formalization facilitates the description 

of phenomena, allows to predict behaviors, supports 
reproductibility and simplifies the knowledge 
transference. 
 
 
a. Applying graph theory to fine-grain 

parallelism analysis. 
 

We have found it convenient to take the first steps 
for the application of graph theory to fine-grain 
parallelism analysis. Graph theory provides an 
efficient mathematical formalization that promises to 
be very useful in the analytical modelling we are 
aiming at, encouraged by the aforementioned works. 
Moreover, graphs have already been successfully 
applied to the study of other aspects of computation 
like, for example, the medium- and coarse-grain 
parallelism extracted by compilers [3, 45, 46]. Padua 
and Wolfe claim that the parallel code will be as good 
as its corresponding data dependence graph [27]. 
Graphs are usefully employed in other fields: data 
structures [2, 3, 8, 20], operating systems design [33], 
software description [10, 11], automata logic [28], 
electronic design [9], and so on. 

Indeed, there are more reasons to approach this 
matter. First of all, the study of the fine-grain 
parallelism has been and is a significant field, where 
the simulation is the most frequently used evaluation 
technique. Perhaps it is for that reason that it needs, 
more than other fields, analytical modelling. 
Secondly, it is very common that, once the factors that 
contribute to the fine-grain parallelism are identified, 
the impact of the instruction set architecture is 
forgotten, and the stress goes directly to bare physical 
aspects. Maybe the cause is, again, the simulator: 
modelling physical aspects is easier than modelling 
the behavior of different instruction set characteristics. 
We have spotted a significant difference between the 
fine-grain parallelism degree reported in the literature 
for x86 and for non-x86 processors. This has led us to 
think that, perhaps, the impact of the instruction set 
architecture on fine-grain parallelism availability has 
been underrated. 
 
 
b. ILP difference between x86 and non-x86 

processors. 
 

Indeed, as previously mentioned, the 
quantification of parallelism at the instruction level is 
one of the most popular subjects in computer 
architecture. Some papers describe the hardware 
solution space as, for example, the one of Jouppi and 
Wall [19] or the one of Smith and Sohi [37]. In the 
literature, numerous studies can be found identifying 
limiting factors, quantifying their effects, providing 
possible solutions and evaluating the results. Among 
the evaluated factors, one can find: inhibition of 
parallelism due to conditional jumps [31], branch 
prediction with an ideal fetch unit and a 32-entry 
instruction window [36], instruction window size 
under renaming, branch prediction and several sizes of 



Raúl Durán, Rafael Rico 

4 

the register file [42, 43], precise interruptions [7], 
control flow limitations [22], memory disambiguation 
[40], performance of hybrid branch predictors [12], 
use of multithreading for increasing physical resource 
usage [41], pressure on the register file under the 
SPEC92 programs for a 256-entry reorder buffer [13], 
number of memory ports in combination with the 
reorder buffer and the register file sizes [15], data 
prediction [23, 44], impact of the SPEC95 programs 
[29], code reordering effects on branch prediction 
[30], or early register release [24], just to mention 
some of the most important ones. 

All these works have in common that they present 
non-x86processors, the evaluation has been made by 
means of simulators and the identified limiting factors 
always are related to the physical layer. The reported 
IPC average results are in the range 2.5-15, peaking 
around 30 IPC (for example, in the case of memory 
disambiguation [40]) and with a higher limit of 50 IPC 
(case presented in [15]) under ideal conditions. 

The works where x86 instruction set processors 
have been used are less frequent. In those cases, the 
reported levels of parallelism are not so good as the 
reviewed ones in the previous paragraph. Y. N. Patt 
group has proposed techniques such as pipelining 
scheduling [38] or instruction lookahead fetch [25] on 
x86 processors, thus obtaining average IPC values in 
the range between 0.5 and 3.5 in the best situations, 
the value being slightly over 1 for most cases. Huang 
and Xie measure parallelism at the microoperation 
level (MLP) [18]. MLP average is 1.32 without 
renaming and 2.20 with renaming. Bhandarkar and 
Ding characterize the Pentium Pro performance by 
means of hardware counters included in the processor 
itself [5]. The CPI for SPECint95 is in the range 0.75 
to 1.6. 

To summarize, it seems clear that the available 
parallelism in x86 processors is lower than the one 
obtained in non-x86 processors, according to the 
available articles on the topic. This led us to 
conjecture that the instruction set architecture (ISA) 
itself may impose an important limiting factor on the 
available fine-grain parallelism. 
 
 
c. The x86 instruction set and the superscalar 

model. 
 

For the sake of  binary compatibility with 
previous processors, which has provided so far 
unquestionable benefits, the x86 instruction set 
architecture has inherited design characteristic suitable 
to older requirements but clearly harmful in the scope 
of superscalar processing. Among other undesirable 
characteristics from the point of view of parallelism 
explotation, we could mention the following: the 
dedicated register use, the implicit operands 
(associated to the operation and not specified by the 
programmer), the use of state register and the large 
number of registers involved in the address arithmetic. 

The effect of these undesirable characteristics 
becomes apparent in the over-ordering of the code, 

imposed by the machine language layer through data 
dependencies, and not strictly necessary to preserve 
the computational meaning of the compiled task. As a 
result, the instructions appear more coupled at the 
physical layer than one should expect just observing 
the corresponding high level program [32]. 

The instruction set architecture has a significant 
impact in the availability of fine-grain parallelism 
before reaching the physical layer, which can reduce 
exploitable parallelism degree at run time. Fig. 1 
schematically illustrates the factors that affect the 
available parallelism at each layer of the computation 
process. 
 

 
 
Fig. 1. Factors affecting the available parallelism in the different 
layers of the computation process. 
 

Nowadays, the works on instruction set 
architectures are scarce and rather oriented to study 
specific machines like, for example, DSP processors 
[34], to offer simulation tools [26] or to describe other 
collateral aspects. 

Regarding the works focused on the x86 
instruction set, the analyses at the machine language 
layer are limited to counting and to calculate usage 
frequencies. Adams and Zimmerman made a study on 
the usage frequency of x86 instructions under DOS 
applications [1], but this work does not include the use 
of operands. More recently, Huang and Peng have 
made countings of the instruction usage with different 
operands [17], though they do not analyze the 
dependencies among operands. Finally, Huang and 
Xie present a study evaluating parallelism at 
microoperations level (RISC kernel of Intel CISC 
processors) where the operation and the address 
modes are considered [18]. 
 
 
d. Metrics. 
 

IPC (Instructions Per Cycle) is by far the metric 
most often employed in parallelism quantification at 
the instruction level. It consists of finding the ratio of 
the number of instructions vs. the run time in cycles 
(simulated). This method demands a complex 
simulator, if the measurements are to be precise; 
moreover, the assumptions and simplifications have a 
significant effect on the final result. The 
measurements strongly depend on the characteristics 
of the physical floorplanning and, therefore, this 
metric is amenable to the study of the different 
architectural proposals at the physical layer level. 

There exists another metric, slightly different 
from the previous one. The parallelism degree is now 
the ratio of the total number of executed instructions 

machine language layer

physical layer

program layer

compiler impact 

instruction set 
architecture impact 

hardware factors 
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vs. the scheduled time grids. It is also oriented to the 
study of the physical resources organization . 

When measuring events other than the instruction 
execution, such as, for example, cache misses, branch 
prediction misses, etc., we use a similar metric: the 
ratio with respect to the total. 

It is necessary to point out that the metric based 
on the IPC is commonly associated with a statistical 
treatment that has its own impact on the results, as 
recalled above. Most often, values, such as the average 
or the standard deviation, are supplied disregarding an 
intrinsic fact related to the computational process: 
parallelism appears to come in bursts, as indicated by 
Kumar [21]. Therefore, these statistical results are 
flawed since the measured events seldom adjust to a 
Gaussian distribution, as Skadron’s work points out 
[35]. 

A much less used metric consists of measuring 
the critical path length of a code sequence. The critical 
path is the longest chain of data dependencies that can 
be found among the instructions of a sequence. Thus, 
the least number of computation steps necessary to 
process the sequence will be equal to that length, 
should enough physical resources be available. 

Then, the greatest parallelism degree will be equal 
to the total number of processed instructions divided 
by this length, which gives an indication as to the 
amount of instructions that can be processed 
concurrently in each computation step. 

The algorithm used to measure the dependence 
chains annotates which instruction produces each 
writing and reading in each data location and then 
counts the number of correlated writing-reading 
“links”. 

Parallelism quantification by means of the critical 
path length has been used previously by Kumar. In 
this case, the study was performed on source code 
written in FORTRAN, taking sentences instead of 
instructions, and variables instead of physical data 
locations [21]. It is, therefore, a work that we can 
locate at the program layer. It is very interesting 
because it reports a much greater range of parallelism  
than the one found in the literature for the works 
related to the physical layer. Undoubtfully, the own 
computation process impairs parallelism availability. 

The critical path has also been used sometimes to 
evaluate characteristics of the physical layer. 
Specifically, the works of Austin and Sohi [4], Postiff, 
Greene, Tyson and Mudge [29] and Stefanovic and 
Martonosi [39] obtain their results by means of the 
critical path length. Really these studies start from 
execution traces on which the measurement is 
performed by applying certain rules that model the 
characteristics of the targeted hardware. For this 
reason, the results thus generated assume the 
specifications of the physical layer. 

Although the critical path measurement method 
permits to quantify the parallelism degree at the 
language layer machine, irrespective of the restrictions 
at the physical layer, no study has been found in the 
literature. It would be interesting to have some 

information about the possible parallelism degradation 
at this layer. 

An alternate measurement method is based on the 
data dependence graphs (DDG). It consists of building 
the DDG of a real code sequence. In such case, the 
characterization is independent of the physical 
implementation, since it is located in a previous step 
of the computation process, namely, in the machine 
language layer. Nevertheless, it includes the impact of 
the compilation process. These measures suggest 
possible hardware architectures suitable to take 
advantage of the partial order specified by the graph 
without imposing further restrictions to the out-of-
order execution process. 

The DDG-based quantification is a powerful tool 
of analysis when the matrix representation is used 
because it permits a mathematical processing. Thus 
we can determine not only the critical path length and, 
consequently, the parallelism degree of a instruction 
window, but also the life span of operands, data 
sharing reuse, the most important sources of 
dependencies, the parallelism distribution and other 
significant parameters. Moreover, the mathematical 
formalization will also permit to compose different 
data dependence sources with the purpose of finding 
the possible origin of the code coupling. 

Finally, the DDG can also include the 
specifications of the physical layer using formal 
hardware descriptions. 
 
 
2. Representation of instructions sequences by 

graphs. A revision. 
 

The data dependencies in an instruction sequence 
can be represented by a graph G(V, E), where V is the 
set of vertices and E is the set of edges. Each vertex in 
V represents an instruction and each edge in E a data 
dependence. Any two vertices related by an edge are 
said to be adjacent. The graph topology can be 
represented by the so-called adjacency matrix A: 
 





=
otherwise 0,

adjacent; are vertices and  if  ,1 ji
aij

 (1)

 
A is a symmetric matrix of dimension n x n where 

n is the number of instructions in the graph, with null 
diagonal and aij∈ {0, 1} [6, 16]. 

We define the incidence matrix B as: 
 





=
otherwise 0,

; ith vertexincident w is  if  ,1 ji
ij

ve
b  (2)

 
If the graph has n vertices and m edges, the 

dimension of B is n x m. 
This graph bears two possible orientations: either 

“instruction i produces data for instruction j” 
(orientation σ) or “instruction j consumes data from 
(depends on) instruction i” (orientation σ ). In each 
case, the edges point in opposite directions with a 
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complementary meaning: the first orientation shows 
the data flow whereas the second one shows the data 
dependencies. Figure 2 shows a simple x86 code 
sequence (16 bits subset) and illustrates both 
orientations of the graph. 
 

0: XOR BX, BX
1: MOV SI, 07AB
2: MOV BL, ES:[SI]
3: INC SI
4: CMP BL, DL
5: JNE/JNZ IP+F7

Data flow graph (σ) 
Data dependence 

graph (σ ) 

Fig. 2. Example of a code sequence and the two possible orientations
of the associated graph.
 

We can define the incidence matrix Bσ with 
respect to orientation σ, as the matrix n x m: 
 







+

=

otherwise  0,

; of end outgoing  theis  if  1,–

; of end incoming  theis  if  ,1

ji

ji

ij ev
ev

bσ  (3)

 
We define the valence of a vertex as the total 

number of edges that are incident with this vertex. The 
valence matrix ∆ is an n x n diagonal matrix where the 
(i, i) component is the valence of vertex i. The 
adjacency matrix and the incidence matrix for the 
orientation σ are related as follows: 
 

ABBQ t −∆=⋅= )( σσ  (4)
 

The Bσ · (Bσ)t product is known as the Laplacian 
matrix Q and is independent of the orientation. 

Moreover, the graph representation based on the 
adjacency matrix A enjoys the properties of the 
characteristic polynomial det(λ I – A), a central aspect 
in graph theory [6, 16]. 

The adjacency matrix A, the incidence matrices 
for both orientations Bσ and σB  and the valence 
matrix ∆ corresponding to the proposed example are 
shown in Fig. 3. 
 

A = 









0 0 1 1 0 0
0 0 1 1 0 0
1 1 0 1 1 0
1 1 1 0 1 0
0 0 1 1 0 1
0 0 0 0 1 0









Bσ = 









-1 0 -1 0 0 0 0 0
0 -1 0 -1 0 0 0 0
1 1 0 0 -1 -1 0 0
0 0 1 1 1 0 -1 0
0 0 0 0 0 1 1 -1
0 0 0 0 0 0 0 1









σB  = 









1 0 1 0 0 0 0 0
0 1 0 1 0 0 0 0
-1 -1 0 0 1 1 0 0
0 0 -1 -1 -1 0 1 0
0 0 0 0 0 -1 -1 1
0 0 0 0 0 0 0 -1









∆ = 









2 0 0 0 0 0
0 2 0 0 0 0
0 0 4 0 0 0
0 0 0 4 0 0
0 0 0 0 3 0
0 0 0 0 0 1









 

Fig. 3. A, Bσ, σB  and ∆ matrices corresponding to the proposed example.
 

Notice that adjacency and valence matrices are 
orientation invariant, whereas the incidence matrix 
depends on it. The first two arise from the incidence 
relation while the third depends on the incidence 
relation and the direction of the edges. 
 
 
a. Reduced valence. 
 

We define the reduced valence of a vertex as the 
total number of edges that enter this vertex. The 
reduced valence depends, therefore, on the orientation 
selected. 

The σ-oriented reduced valence matrix Vσ, is an n 
x n diagonal matrix where the component (i, i) is the 
σ-oriented reduced valence of vertex i. 

Considering only one orientation, it is possible to 
give a special definition for the incidence matrix. 
Thus, we can define the reduced incidence matrix Iσ 
with respect to orientation σ, as: 
 



+

=
otherwise  0,

; of end incoming  theis  if  ,1 ji
ij

ev
iσ  (5)

 
If the graph has n vertex and m edges, the 

dimension of Iσ is n x m. 
Proposition 1: The Iσ · (Iσ)t product generates the 
reduced valence matrix Vσ for the selected orientation. 
Proof: If we compute the (i, j) product component: 
 

( )[ ] ∑∑
−

=

−

=

⋅=⋅=⋅
1

0

1

0

m

k
jkik

m

k

t
kjikij

t iiiiII σσσσσσ  (6)

 
However, 0≠⋅ σσ

jkik ii if and only if i = j, because 
each edge has just one incoming end. Since σ

iki ∈ {0, 
1}, then ( σ

iji )2 = σ
iji and so 

 

( )[ ]








≠




=
=

=⋅ ∑
−

=

ji
ji

i
II

m

k
ik

ij
t

if,0

 
; if ends

incoming ofnumber 
 

1

0

σ
σσ  (7)

 
This result agrees with the definition of the 

oriented reduced valence matrix. 
 

tIIV )( σσσ ⋅=  (8)
■ 

 

0

3 

5

1 
2 

4

0 

3

5

1

2

4
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Figure 4 presents the reduced incidence and the 
reduced valence matrices for both orientations 
corresponding to the example. 
 

Iσ =









0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
0 0 1 1 1 0 0 0
0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 1









σI  =









1 0 1 0 0 0 0 0
0 1 0 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0









Vσ =









0 0 0 0 0 0
0 0 0 0 0 0
0 0 2 0 0 0
0 0 0 3 0 0
0 0 0 0 2 0
0 0 0 0 0 1









σV  =









2 0 0 0 0 0
0 2 0 0 0 0
0 0 2 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 0









Fig. 4. Reduced incidence and reduced valence matrices for both 
orientations: Iσ, σI , Vσ and σV .
 

The inspection of Fig. 3 and Fig. 4 allows us to 
verify that the incidence matrix can be derived from 
the reduced incidence matrices and the valence matrix 
from the reduced valence matrices. We have: 
 

σσσ IIB −=  (9)
σσ VV +=∆ (10)

 
The previous equations formalize a quite intuitive 

relation that we will not prove here. 
Moreover, we can observe that the values of the 

reduced valence matrix Vσ correspond to the Iσ 
components summed by rows, as expressed in 
equation (7). The meaning is obvious: since the 
reduced valence is the total number of incoming ends 
to each vertex, it will suffice to count the number of 
entries different from 0 in each row of the Iσ matrix. 
The same holds for the opposite orientation σ . 
 
 
b. Data dependence matrix D. 
 

We defined the data dependence matrix D as: 
 





=
otherwise 0,

;on  dependsn instructio  if,1 ji
dij

 (11)

 
Therefore, i instruction is associated to a data 
dependence vector id

�

 whose j-th component is 1 if a 
direct dependence on instruction j through any data 
exists and 0 otherwise. Thus, the matrix D is the set of 
all data dependence vectors id

�

 of a code sequence. 

We want to emphasize that the matrix D represents the 
direct data dependence path or data dependence path 
of length one, that is, instruction i consumes a data 
processed directly by instruction j with no interveners. 

Figure 5 shows the data dependence matrix for 
the example of a code sequence. 
 

D =









0 0 0 0 0 0
0 0 0 0 0 0
1 1 0 0 0 0
1 1 1 0 0 0
0 0 1 1 0 0
0 0 0 0 1 0









Fig. 5. Data dependence matrix D and the data flow graph.
 

The matrix D considers just the incoming edges 
whereas the matrix A considers both incoming and 
outgoing edges. In this sense, the graph orientation 
that the matrix D shows is the one that corresponds to 
the data flow. 

Although the matrix D is used commonly in 
compiler theory (for example, in loop transformations 
[45, 46]) it has been used neither in the machine 
language analysis nor in the parallelism 
characterization at instruction level. Authors consider 
the reason for this may be that the analyses of 
instruction set architectures are considered overridden 
now or that it is assumed that their influence in the 
superscalar execution is minor, thus trusting too much 
the physical layer. 
 
 
c. Topological properties and ILP restrictions for 

the data dependence matrix. 
 

One of the aims of the graph theory algebra is to 
precisely determine how the graphs properties are 
exposed in the algebraic properties of their associated 
matrices. We try to extract, in addition, consequences 
in the scope of parallel instruction processing. 
••••  The vertex labelling should not affect the 
properties of the data dependence matrix. The 
matrix D can be associated to a graph that consists of 
a vertex set V, an edge set E and an incidence relation, 
that is, a subset of V x E. Since the set {v0, v1, v2, …, 
vn-1} corresponds to an arbitrary vertex labelling, the 
properties of matrix D should be invariant under 
arbitrary permutations of rows and columns. We are 
interested in those properties that remain invariant 
under these permutations. 

As a starting point, in the scope of instruction 
level parallelism, we must consider a sequence of 
instructions that keeps the natural sequentiality of Von 
Neumann programming model fixed by the strictly 
precedence order in which they are written in the 
program. The original vertex labelling of the graph 
(instructions) is induced by the own program counter. 
We will term this labelling programmatic labelling. 

The programmatic labelling will facilitate the 
discovering of properties invariant under arbitrary 
permutations. 

0 

3 

5 

1

2 

4 
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••••  There exists a precedence relation among the 
data dependence graph vertices. Any computable 
task entails some precedence relation or partial 
ordering among the tasks (instructions) to perform, 
since it is a process developed in an ordered and finite 
succession of steps. A certain ordering is essential to 
the algorithm and, often, it is stressed when passing 
from a layer to the next in the computation process as 
Fig 1 illustrates (from algorithm to program, from 
program to compiled image in machine code, from 
machine code to physical layer). 
••••  An instruction does not depend on itself. A data 
cannot have the same instruction as source and as 
destination. Consequently, matrix D has null diagonal. 
That is, 100 −≤≤= nidii . 

This is certain even in the loops. A loop is a 
compact way to write a code sequence that, in its 
expanded version, repeats a series of operations but on 
different data. Each new iteration implies a new 
instance of the loop body but on new data. The 
execution of a loop body requires a conditional branch 
instruction between iterations. In that case, the 
conditional branch instruction can be inserted in the 
data flow graph as a special operation that manipulates 
the program counter register and keeps apart the loop 
body instructions in each iteration. 
••••  The data dependencies are not symmetrical. An 
instruction cannot depend on another that depends at 
the same time on it, since this situation does not 
establish a precedence relation but a data dependence 
cycle. Consequently, the matrix D is not symmetric. 
Mathematically: 1,1 −≤∀=≠ njidd jiij . 

Therefore, if D is not symmetric, the associated 
characteristic polynomial for any data dependence 
matrix p(G; λ) = det (λ I – D), irrespective of the 
incidence relation, is always the same : p(G; λ) = λn. 
The descriptive value of this polynomial is very poor. 
••••  There is a graph vertex labelling under which the 
matrix D is lower triangular. An instruction depends 
only on the precedents in the program, and never on 
the following ones (principle of causality). This means 
that the instructions only process data given by the 
instructions written above in the program and never 
from those which are about to come in the sequence. 
According to this, the programmatic labelling of the 
dependence graph vertices generates a lower 
triangular matrix D because dij = 0 whenever j > i. In 
other words, a labelling that fullfils the order imposed 
by the program counter insures that all components (i, 
j) of D are 0 when j > i because an instruction cannot 
have data dependencies on the following ones. The 
matrix D will be termed canonical when it is lower 
triangular and will be denoted Dc. 

As a summary, we enumerate the properties that 
the data dependence matrix D fullfils: 
� it is square of dimension n x n, n being equal to the 

number of instructions included in the code 
sequence graph, 

� its values are binary, that is, dij∈ {0, 1}, 
� it has null diagonal, 

� it is not symmetric and, consequently, its 
characteristic polynomial is equal to λn, irrespective 
of the graph incidence relation,  

� there is at least a vertex labelling –programmatic 
labelling– under which it is lower triangular and 
presents the canonical form Dc, 

 
� different vertex labellings represent permutations 

that are isomorphisms, 
� it encloses a partial ordenation of instructions. 
 
 
d. The data dependence matrix and the 

adjacency matrix. 
 

There is an immediate relation between the 
orientation that generates the data dependence graph 
and the one that generates the data flow graph. Both 
share the same edge set (incidence relation) changing 
only the orientation. We can assure that if “i depends 
on j” then “j produces data for i”. If (dij)σ = 1 under an 
orientation, then 1)( =σ

jid  under the opposite, which 
corresponds to definition of transposed matrix. Notice 
that the Dt matrix in Fig. 6 takes into account the 
incoming ends of the graph, which correspond to 
“data dependence orientation”. 
 

Dt =









0 0 1 1 0 0
0 0 1 1 0 0
0 0 0 1 1 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0









Data dependence graph

Fig. 6. Dt matrix and the regarded graph orientation.
 

Since the adjacency matrix A values both ends of 
each edge, then A is the sum of the data dependence 
matrix D plus its transpose Dt, i.e.: 
 

tDDA +=  (12)
 

This means that we are able to construct the 
adjacency matrix A from D, thus allowing us to work 
with the complete matrix representation of the graph 
and, hence, to take advantage of all the algebraic 
power associated to its characteristic polynomial. 
 
 
e. The data dependence matrix and the reduced 

valence. 
 

As the data dependence matrix values only one 
end of each edge, then some relationship with the 
reduced valence might be implicit there. Also, the 
inspection of matrix D in Fig. 5 and Iσ matrix in Fig. 4 
allows us to appreciate certain similarity in the 
location of non-null components. Indeed, it must be so 

0 

3 

5 

1

2 

4 
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because the same graph lies under both matrices: Iσ 
relates edges and vertices, whereas D relates vertices 
to vertices. The mathematical formalization that we 
have developed points to the same direction, since 
equations (9), (10) and (12) suggest a relationship 
between the matrix D and the the reduced incidence 
matrix Iσ through equation (7). 
Proposition 2: the product tII σσ ⋅  generates the matrix D. 
Proof 1: By substituting equations (9), (10) and (12) 
in equation (4) we obtain: 
 

tt DDVVIIII −−+=−⋅− σσσσσσ )()( (13)
 

Some computation on the left-hand side yields: 
 

tttt

tt

IIIIIIII

IIII
σσσσσσσσ

σσσσ

⋅−⋅−⋅+⋅=

=−⋅− )()(
(14)

 
We know that equation (8) relates the reduced 

valence to the reduced incidence so we can simplify 
the previous result: 
 

ttt DDIIII +=⋅+⋅ σσσσ (15)
 

If D values the incoming ends for the data flow 
graph orientation and Dt those for the data dependence 
graph orientation, we have: 
 

DII t =⋅ σσ [16]
■ 

 
Proof 2: If we calculate the product component (i, j): 
 

( )[ ] ∑∑
−

=

−

=

⋅=⋅=⋅
1

0

1

0

m

k
jkik

m

k

t
kjikij

t iiiiII σσσσσσ (17)

 
The summation goes through all the edges in the 

index k. The product is different from zero only for the 
k-th edge if it enters the vertex i ( σ

iki  = 1) and leaves 
vertex j or, in other words,  enters vertex j under the 
opposite orientation (

σ
jki  = 1). But then, this agrees 

with the definition of the data dependence matrix D 
that we have presented in equation (11). 
 

ij

m

k
jkik dii =⋅∑

−

=

1

0

σσ (18)

 
Hence 

 
tIID σσ ⋅= (16)

■ 
 

It has been already shown that the reduced 
valence for an orientation can be obtained by counting 
the incoming ends (entry equal to 1) along rows, as 
equation (7) suggests. Observing the relationship 
expressed in equation (16) and the similarity displayed 
by the D and Iσ matrices, regarding the non-null 

values disposition, it is enticing to think about using 
matrix D in order to find the reduced valence. 
Proposition 3: The counting of edges along the rows 
of matrix D permits to generate the reduced valence 
matrix for the data flow graph orientation. 
Proof: Suppose the relation is true and replace each 
entry of D by the value given in the equation (18): 
 

∑ ∑∑
−

=

−

=

−

=

⋅==
1

0

1

0

1

0

n

p

n

p

m

k
pkikipii iidv σσ  (19)

 
A simple computation leads to 

 

∑ ∑∑∑
−

=

−

=

−

=

−

=










⋅=⋅=

1

0

1

0

1

0

1

0

m

k

n

p
pkik

m

k

n

p
pkikii iiiiv σσσσ  (20)

 
However, any given edge, say k, is incident only 

on one vertex and hence: 
 

∑∑
−

=

−

=
=⋅=

1

0

1

0
1

m

k
ik

m

k
ikii iiv σσ  (21)

 
This corresponds to equation (7) and proves that 

finding out the counting of incoming edges is 
equivalent to run through the rows either of the Iσ 
matrix or the D matrix. This fact allows us to give a 
new definition of reduced valence matrix: 
 









≠

==
= ∑

−

=

ji

jid
v

n

k
ik

ij

if,0

; if edges ofnumber  
1

0
σ  (22)

■ 
 

It becomes apparent that the data dependence 
matrix D exhibits a great descriptive ability, since it 
allows: 
� to recover the adjacency matrix A and its 

characteristic polynomial, 
� to calculate the reduced valence for data flow graph 

orientation, 
� to describe the data dependence graph by means of 

its transpose matrix Dt, 
� to obtain information about the code sequence 

without resorting to any other mathematical tool. 
 
 
f. Code coupling. 
 

The concept of reduced valence is very useful in 
the scope of instruction processing parallelism. 
Remember that if we select the data flow graph 
orientation σ, the reduced valence gauges how much 
an instruction is coupled (linked) with the rest, that is, 
it hints at how weaved a code sequence is. So, a large 
reduced valence indicates that an instruction consumes 
data coming from several instructions and, therefore, it 
must stall its own execution till all these data are 
available. Consequently, a larger coupling implies a 
potentially greater partial ordering of the code, since 
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there are more precedence relationships: The more 
partial ordering, the less available parallelism. 

The diagonal of the reduced valence matrix for 
data flow graph orientation (Vσ) informs us about the 
coupling that each instruction bears. 

The trace of the reduced valence matrix for data 
flow graph orientation is the total number of edges, 
that is, it quantifies the amount of dependence 
relationships among instructions. This value gives 
information about how much coupled (linked, 
weaved) a code sequence is. We denote this parameter 
as coupling C: 
 
C = tr Vσ  (23)
 

The summation by rows in matrix D gives the 
reduced valence of each instruction for data flow 
graph orientation (22). However, we have already 
indicated that there is a vertex labelling for which the 
matrix D becomes lower triangular (canonical form 
Dc). In that case, and remembering that the diagonal is 
null, we have: 
 







 ≠==
= ∑

−

=

otherwise,0

;0 if edges ofnumber  
1

0
jid

v

i

k
ikc

ij
σ  (24)

 
Consequently, the reduced valence matrix trace 

for the orientation corresponding to the data flow 
graph (coupling C) will be: 
 

∑∑∑
−

=

−

=

−

=
===

1

1

1

0

1

0
C

n

i

i

k
ikc

n

i
ii dvV σσtr  (25)

 
The maximum number of data dependencies 

(edges) in the graph is given by all the possible 
ordered vertex pairs, which is precisely the binomial 
coefficient     . Hence, the coupling C is bounded by: 
 
 

22
C0

2 nnn −=







≤≤  (26)

 
With the purpose of obtaining a coupling 

measurement which is independent of the amount of 
instructions in the sequence, we define a normalized 
coupling, CN, as the ratio C vs. the number of 
instructions n in the code sequence. When CN is zero 
there is no dependence; in the worst case, each 
instruction depends on all the precedent ones. 
 

2
1C0 −≤≤ n

N
 (27)

 
 
g. Data reuse. 
 

If the orientation is the opposite σ , that is, the 
edges are incoming to indicate which vertex the data 
are given to (data dependence graph), the reduced 

valence quantifies the data reuse. If the data generated 
by an instruction is used by many others, it must be 
stored, thus consuming temporary storage resources. 

The reduced valence matrix diagonal for data 
dependence graph orientation ( σV ) informs about the 
reuse of data produced by each instruction. When this 
value is 0, it means that the data is not consumed. If 
the value is 1, it means that each data generated by an 
instruction is consumed only by another one. With no 
reuse, the lifespan of the data in the storage elements 
is negligible. There is a special circumstance that takes 
place when all the non-null values of the σV  diagonal 
are equal to 1. This situation is illustrated in the Fig 
7.(a). Mathematically the product D · Dt generates a 
diagonal matrix that coincides with Vσ. Clearly all dik · 
djk products are zero since, if instruction i depends on 
instruction k, no other instruction can depend on 
instruction k. 

When the reuse value is larger than 1 it means 
that several instructions consume a data. In this case, 
it is interesting to know the life span (storage time) of 
the data. In the Fig. 7.(b) and (c), two possible 
situations are illustrated. In both cases, instruction 0 
generates data for instruction 1 and instruction 2. In 
the case (b) the data is consumed in the next 
computation step whereas in the case (c) this is not 
possible because there is a data dependence path of 
length 2 that is also coupling instruction 2 to the 0. We 
deduce that the life span of a data produced by 
instruction i and consumed by instruction j must be at 
least equal to the longest data dependence path 
between both instructions. For that reason we talk 
about the minimum life span Tmin. 
 
Tmin= n   such that [Dn]ij ≠ 0 and [Dn+1]ij = 0 (28)
 

The case of the Fig. 7.(d) shows that this time 
eventually depends on the scheduling criteria (at the 
physical layer) since instruction 1 can be scheduled 
immediately one computation step before instruction 3 
or at the same time as the instruction 0, causing the 
storage time to be 2 computation steps. 
 
 

 

 
 

 

a) b) c) d) 
Fig. 7. Diferent classes of data reuse. 

 
 

In the case of reuse, it is useless to calculate its 
value for the complete graph as we have done for the 
coupling C because the storage resources only make 
sense when referred to individual data requirements. 
Moreover, computing the trace of σV is nothing but 
counting edges in the graph –by columns in D instead 
of by rows as in the equation (24)–, which coincides 
with the coupling C. 
 
 

0

1 2

3

0 

2 
1 

3 

0

3

1 2

0

2

1

3










2
n
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h. Data dependence paths of length larger than 1. 
 

Given a graph G(V, E), a path of length l (edges) 
from vertex vi to vj is, by definition, a finite sequence 
of l + 1 different vertices that begins in vi and finishes 
in vj, such that two consecutive vertices are adjacent 
[6, 16]. 
The data dependence matrix D represents the data 
dependence paths of length 1 or direct dependencies 
between instructions. Nevertheless, data dependence 
chains between instructions of larger length can exist. 
For example, if dij = 1 and djk = 1 then instruction i 
depends on instruction k through the instruction j by a 
path of length 2. We can say that there exists a data 
dependence path of length 2 from instruction i to 
instruction j running through, at least, one of the 
instructions in the graph, if the following holds: 
 
( ) ( ) ( )

( ) 0
1

0

111100

≠⋅=

=⋅++⋅+⋅

∑
−

=

−−

n

k
kjik

jninjiji

dd

dddddd �

 (29)

 
But this value corresponds to the (i, j) entry of the 
product D ·D and, therefore, the matrix D2 represents 
the data dependence paths of length 2. 
••••  Dl represents the data dependence path of length 
l (edges). Generalizing the reasoning for the paths of 
length 2, each power of matrix D represents the 
dependence paths of length equal to the power degree. 
In other words, given a graph G(V, E), the number of 
data dependence paths of length l from vi to vj with 
orientation σ, is the (i, j) entry in the matrix Dl. In [6] 
we can find a proof by induction of this proposition 
which is based on the adjacency matrix A and can be 
extended to the case of the data dependence matrix D. 
Note that the length is measured in edges. 
••••  The n-th power of D is null. The maximum length 
of a data dependence path is n − 1 (edges), n being the 
number of instructions in the code sequence. Hence, 
Dn will be necessarily null. 
••••  There are no cycles of dependencies. There are no 
closed dependence paths because this case does not set 
a strict precedence relation and, consequently, the 
graph must be acyclic (DAG or Directed Acyclic 
Graph). If cycles were permitted, an instruction would 
depend on itself through others and so the task would 
not have solution in a finite number of steps. 
Therefore, no instruction can depend on itself under 
any path of length l. Algebraically, the diagonal of any 
power of the data dependence matrix (Dl) must be 
null: d l

ii = 0, 1 ≤ l ≤ n − 1, 1 ≤ i ≤ n. 
From another standpoint, if the n-th power of D 

were not the null matrix, then there would exist cycles 
of dependencies and, therefore, the matrix D would 
not represent a computable task (solutionable in a 
finite number of steps). 

Regarding data dependence paths of value larger 
than one, we can emphasize, as a summary: 

� each power of matrix D represents the dependence 
paths of length equal to the degree of the power 
(measured in number of edges), 

� Dn must necessarily be null; otherwise it would not 
represent a computable task, 

� there can be no cycles of dependencies and, hence, 
the diagonal of any power of D is null. 

 
 
i. Critical path length and degree of parallelism. 
 

One of the most important pieces of information 
that we can extract from data dependence matrices is 
the available instruction level parallelism degree 
contained in the code sequences represented by the 
matrices. This information is independent of the 
limitations that the physical layer can impose later on. 
It concerns the machine language layer only and it 
derives from the algorithm, the program 
implementation, the compiler impact and the 
instruction set architecture itself. 

The available parallelism is inversely related to 
the length of the data dependence chains between 
instructions. The longer these chains are, the stricter is 
the partial ordering of the code sequence imposing a 
very sequential instruction execution and limiting the 
ability of concurrent processing. On the contrary, 
short data dependence chains imply a weak ordering 
between instructions amenable for concurrent 
execution. 

Given a code sequence, represented by its data 
dependence matrix D, we define the critical path 
length L(D) (briefly L) as the length of the longest 
data dependence path. However, two possible metrics 
exist: measuring edges –as explained in the preceding 
Section, according to traditional graph theory– or 
measuring computation steps –appropriate to 
instruction level computation environment–. 

There is an immediate relation between the two 
metrics of critical path length and the number of 
vertices involved. If the length of the critical path L 
involves l + 1 vertices, then this path has l edges and 
the minimum number of computation steps required to 
process the associated code sequence is l + 1. The 
execution of independent instructions frees a data 
dependence of the longest chain in each computation 
step. After l computation steps, we will be ready to 
process the last instruction(s) of the sequence (free of 
any dependence). We need, therefore, l + 1 
computation steps to finish the execution of l + 1 
instructions of the critical data path chain. 

We know that Dl represents the data dependence 
paths of length l (edges). According to this, the first 
power of D that is identically zero indicates the length 
of the critical data path. This is: 
 

L = l computation steps if and only if Dl = 0 (30)
 

With this metric, L is bounded in the following 
way: 
 
1 ≤ L ≤ n (31)
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The minimum length L is 1: this means that there 
are no data dependencies among instructions and, 
should the resources be available, all the instructions 
could be processed concurrently in only one 
computation step. The maximum value of L is n. In 
that case, each computation step admits the issuing of 
just one instruction and the sequentiality is complete: 
n computation steps are required to carry out the code 
processing. 

The more instructions are included in the data 
dependence graph, the longer the potential length of 
the critical path L. With the purpose of obtaining a 
measurement of instruction level parallelism 
independent of the number of vertices in the graph, we 
define the normalized critical data path length, LN, as 
the ratio critical path length (L) expressed in 
computation step vs. the maximum value of L (Lmax). 
 

nmáx
N

L
L

LL ==  (32)

 
When LN approaches 1 there is no parallelism, 

and the nearer to 0, the more the parallelism the code 
bears. 
 

]1,0(L ∈N  (33)
 

Also we define the parallelism degree, Gp, as the 
reciprocal of LN expressed in computation steps (Gp = 
(L N)-1). Gp goes from 1 (absence of parallelism) to n 
(maximum parallelism degree). 
 

[ ]nG p ,1∈  (34)
 

The meaning of Gp is clear. It indicates the 
number of instructions that can be concurrently 
processed in each computation step. To issue n 
instructions in a computation step means that no data 
dependence among instructions exists and they are 
capable of being processed concurrently. On the 
contrary, if only one instruction can issue in each 
computation step, this means that the sequentiality is 
absolute. 

The code sequence of Fig. 2 has a graph with a 
critical path length of 4 edges, or 5 computation steps, 
and a parallelism degree Gp of 5/6, namely, 5/6 
instructions are processed in each computation step. 
Indeed, the example is quite sequential (Gp = 0.83 ≈ 
1): we are able to issue 2 instructions concurrently 
only in the first computation step. 

Let us discuss an interesting point. The 
parallelism degree is a function of the number of 
instructions in the code sequence, that is, Gp = f(n). It 
might seem reasonable to think that as n increases, so 
does Gp, and, therefore, the larger the number of 
instructions in the sequence, the more potential 
parallelism. Following this rationale, the instruction 
window size of some superscalar processors has been 
enlarged, thus expecting to find more independent 
instructions ready to be executed simultaneously. 

Against this idea, the simulations of David Wall found 
an asymptotic behavior [42, 43]. After a certain point 
no more parallelism is uncovered, even examining 
more and more instructions. From another point of 
view, the dependence chain length grows when the 
code sequence grows because the logical resources of 
the software architecture of the instruction set are 
limited. 
 
 
j. Algorithmic calculation of the critical path 

length. 
 

The calculation of the successive powers of the 
matrix D allows the determination of the critical path 
length by means of an algebraic procedure, according 
to equation (30). Nevertheless, the calculation based 
on the matrix product is very heavy (complexity O(n4) 
product operations) and renders this method useless. 

The algorithm to find the partial ordering that a 
graph bears also serves to find the critical path length. 
This procedure has a lower computation cost 
(complexity O(n2) sum operations) that makes it 
attractive for the automation of the analysis of code 
sequences. It consists of setting the precedence 
between instructions based on their dependencies. In 
each computation step, we list the independent 
instructions and we free of data dependencies those 
they supply data to. All the instructions that belong to 
the list of a computation step share the same level of 
precedence and, therefore, can be processed 
concurrently. The number of required computation 
steps to order all the instructions is the length of the 
critical path. On the other hand, the extracted partial 
ordering gives a scheme for the scheduling of the 
instructions, useful to assign physical resources. The 
following figure illustrates the pseudocode of this 
algorithm. 
 
/* Partial ordering procedure */ 
1: GIVEN: computation step step = 0, instructions list for step s List(s), 
dependence matrix D; 
 
2:   while (unordered instructions left) 
3:   { 
4:    while (independent instructions left) 
5:    { 
6:     List(s) = Add_Independent_List_Step(s); 
7:    } 
8:    Remove_Dependencies (List(s), D); 
9:    step ++; 
10: } 
 
Fig. 8. Partial ordering algorithm. 
 

This algorithm allows both the evaluation of the 
critical path length (expressed in computation steps) 
and the elaboration of the partial ordering listing. 

Figure 9 shows the partial ordering associated to 
the graph example. Notice that this partial ordering 
allows, if there are enough physical resources, to 
process the code sequence in 5 computation steps 
giving rise to a parallelism degree of Gp = 5/6 = 0.83 
instructions per computation step. 
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Computation step 0:   0, 1 
Computation step 1:   2 
Computation step 2:   3 
Computation step 3:   4 
Computation step 4:   5 

Fig. 9. Partial ordering corresponding to example graph.
 
 
3. Dependence sources composition. 
 

If a code sequence can be represented by the data 
dependence matrix D and this is a formalization of the 
partial ordering implicit in the code, we can accurately 
analyze the impact of the different dependence sources 
since the final dependence map is really a simple 
composition of those sources. If Ds1 and Ds2 are 
matrices arising from two different sources of 
dependencies, then the resultant matrix D will be: 
 
D = Ds1 OR Ds2 (35)
 

In other words, dij = ijsijs dd 2OR1  means that 
instruction i depends on instruction j because of cause 
1 or because of cause 2 or because of both causes 
simultaneously. 

Figure 10 illustrates the composition of sources of 
data dependencies with a simple example. Consider 
the code sequence presented in the example of Fig. 2. 
The aim is to decompose the data dependencies into 
those due to explicit operands and those due to 
implicit operands (those arising from the operation 
code). According to this we will have: 
 
 Dop expl.  OR  Dop impl.  =  D 








0 0 0 0 0 0
0`0 0 0 0 0
1 1`0 0 0 0
0 1 1`0 0 0
0 0 1 0`0 0
0 0 0 0 0`0









OR









0 0 0 0 0 0
0`0 0 0 0 0
0 0`0 0 0 0
1 0 0`0 0 0
0 0 0 1`0 0
0 0 0 0 1`0









=









0 0 0 0 0 0
0`0 0 0 0 0
1 1`0 0 0 0
1 1 1`0 0 0
0 0 1 1`0 0
0 0 0 0 1`0









Fig. 10. Dependence sources composition.
 

It is noticeable that the composition of both data 
dependence sources has caused a sequentiality in the 
resulting graph larger than the one originally produced 
by each source on its own. 

Unfortunately, the resulting or final data 
dependence matrix does not admit the inverse process 
or decomposition, that would allow us to make a more 
methodical and precise analysis of the impact of each 
data dependence source. The merged dependencies 
cannot be traced back to their origins. 
 
 
a. Some possible compositions 
 

The construction of the data dependence graphs 
admits, as previously seen, the composition of 
different categories. In a first approach, the 

composition of true dependencies, antidependencies 
and output dependencies would be helpful. 
 
D = Dtrue OR Doutput OR Dantidependence (36)
 

This allows us to distinguish the type of data 
dependence and to predict whether it has 
computational relevance (true dependencies) or it is 
due simply to the physical storage reuse (anti-
dependencies and output dependencies). 

However, we can carry out a finer analysis if we 
differentiate possible data dependence sources. In this 
case we will have: 
 
D = Ds1 OR Ds2 OR Ds3 OR · · · (37)
 

These diverse data dependence sources could be: 
� a limited number of general purpose software 

registers, 
�  register reuse, 
�  implicit operands use, 
�  condition codes writes, 
�  memory address computation, 
�  stack traffic, etc. 

Besides, any of them can be considered in the 
three variants presented in the first place: true 
dependencies, antidependencies and output 
dependencies. 
 
 
b. Critical path length of the composition. 
 

All the properties and procedures proposed for the 
matrix D can be applied to each of the matrices that 
represent different data dependence sources (Dsn). 

It is interesting to consider the evolution of the 
critical path length of the resulting matrix as a 
function of its components. The resulting graph does 
not have a critical path length necessarily equal to the 
sum of the critical paths of its components because the 
data dependence chains can overlap. It is not possible, 
therefore, to determine in a direct way the length of 
the composition based on the components. At most, 
we can obtain a bound for it. 

As for the upper bound, we know that the final 
length is limited by the number of instructions present 
in the graph. Besides, we can affirm that the critical 
path length of the composition will never be longer 
than the sum of the critical path lengths of the 
components assuming the most unfavorable case in 
which all of them contribute to create data dependence 
chains. Therefore, the upper bound will be imposed by 
the minimum of both: 
 

)(L,)(Lmin DnD
i

si ≥







∑ (38)

 
Equation (38) uses the metric based on 

computation steps. 
As for the lower bound, it will never be less than 

the one corresponding to the longest component of the 

0 

3 

5 

1 
2 

4 
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critical path, assuming that all the rest are overlapped 
with it, i.e., there are no cross dependencies among the 
components. Formally: 
 

{ })(Lmax)(L sii
DD ≥  (39)

 
Actually, the critical path length L(D) of the 

compound matrix D is a number bounded by: 
 

{ })(Lmax)(L,)(Lmin siii
si DDnD ≥≥








∑ (40)

 
That is, L(D) will always be equal to or greater 

than the longest data dependence path of components 
and it will always be smaller than or equal to either 
the sum of the components lengths or n (the number of 
instructions present in the code sequence), whichever 
is smaller.  
 
 
c. Illustrative example. 
 

An example based on an x86 code sequence is 
proposed. Some features of the instruction set 
architecture related to its behavior in superscalar 
execution are enumerated in Section 1.c. The 
assembler x86 instructions use explicit operands –
those written by the programmer– and implicit 
operands –those necessarily associated to the 
operation code–. This feature, along with others, such 
as the dedicated use of certain registers, the peculiar 
way to access memory positions or the use of the state 
register, renders very interesting the analysis of the 
different data dependence sources [32]. 

In Table 1 we propose an x86 code sequence that 
can well represent a typical basic block. The 16 bits 
subset has been used for the sake of simplicity. The 
operands used by each operation are classified into 
two major sets: read operands and written operands. 
Within each one of these main sets, the operands are 
grouped by their functionality: data mapped in 
registers or memory, registers used in the calculation 
of effective memory addresses, registers involved in 
stack accesses and state register. The explicit operands 
(included in the format of the instruction) are set apart 
from the implicit operands (associated necessarily to 
the operation code). Each one of these categories 
represents a possible data dependence source whose 
impact we can study separately. 

In some cases it is not easy to know the actual 
functionality that an operand access will have. It is for 
that reason that the explicit writing on operands 
related to the address computing or related to the stack 
appears empty in the table. 

With respect to the memory locations, the most 
pessimistic situation is assumed, namely, the memory 
is considered a single resource as far as the data 
dependence generation is concerned: the accesses are 
not different because of their address. This is not true 
for the stack since the accesses are ordered by the 
stack pointer. 

From the information in Table 1 the data 
dependence matrices D are built for each one of the 
selected sources and for the three types of data 
dependencies: true dependencies, antidependencies 
and output dependencies. Figure 11 shows all the 
results. 

 

 
 

Table 1. Code sequence and the operands used in each operation. 
Readed operands Writed operands 

explicit implicit explicit implicit 
 
 code sequence 

reg adr stack cc reg adr stack cc reg adrstackcc reg adrstack cc 
0: MOV DX, 6B42  -  -  -  -  -  -  -  -  DX  -  -  -  -  -  -  - 
1: MOV CS:[BX], DX  DX  CS, BX  -  -  -  -  -  -  MEM -  -  -  -  -  -  - 
2: SUB BX, AX  AX, BX  -  -  -  -  -  -  -  BX  -  -  -  -  -  -  OF, SF, ZF, AF, PF, CF
3: MOV AH, 30  -  -  -  -  -  -  -  -  AH  -  -  -  -  -  -  - 
4: INT 21  -  -  -  -  AX, CS, IP -  SS, SP Flags  -  -  -  -  AX, BX, CX, CS, IP  -  SP  IF, TF 
5: CLI  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  IF 
6: MOV BP, [BX][SI]  MEM  BX, SI  -  -  -  DS -  -  BP  -  -  -  -  -  -  - 
7: MOV DS, DX  DX  -  -  -  -  -  -  -  DS  -  -  -  -  -  -  - 
8: OR SS:[DI], AX  AX, MEM  SS, DI  -  -  -  -  -  -  MEM -  -  -  -  -  -  OF, SF, ZF, AF, PF, CF
9: CWD  -  -  -  -  AX  -  -  -  -  -  -  -  AX, DX  -  -  - 
10: XOR CX, BX  BX, CX  -  -  -  -  -  -  -  CX  -  -  -  -  -  -  OF, SF, ZF, AF, PF, CF
11: DEC DI  DI  -  -  -  -  -  -  -  DI  -  -  -  -  -  -  OF, SF, ZF, AF, PF, CF
12: INC SI  SI  -  -  -  -  -  -  -  SI  -  -  -  -  -  -  OF, SF, ZF, AF, PF, CF
13: MOV BL, ES:[SI]  MEM  ES, SI  -  -  -  -  -  -  BL  -  -  -  -  -  -  - 
14: TEST [BX][DI], AL  AL, MEM  BX, DI  -  -  -  DS -  -  MEM -  -  -  -  -  -  OF, SF, ZF, AF, PF, CF
15: JNE/JNZ IP+F7  -  -  -  ZF  -  -  -  -  -  -  -  -  IP  -  -  - 
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Explicit dependencies: 

 D reg ex  OR  D adr ex  OR D stack ex OR D cc ex  =  D ex 


















0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1`0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0`0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0`0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0`0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0`0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0`0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0`0 0 0 0 0 0 0 0 0
0 1 0 0 1 0 0 0`0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0`0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0`0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0`0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0`0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0`0 0 0
0 0 0 0 0 0 0 0 1 1 0 0 0 0`0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0`0 



















OR 



















0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0`0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0`0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0`0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0`0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0`0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0`0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0`0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0`0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0`0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0`0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0`0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0`0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1`0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 1`0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0`0 



















OR



















0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0`0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0`0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0`0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0`0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0`0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0`0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0`0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0`0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0`0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0`0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0`0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0`0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0`0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0`0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0`0 



















OR



















0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0`0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0`0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0`0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0`0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0`0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0`0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0`0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0`0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0`0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0`0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0`0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0`0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0`0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0`0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1`0 



















= 



















0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1`0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0`0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0`0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0`0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0`0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 1 0`0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0`0 0 0 0 0 0 0 0 0
0 1 0 0 1 0 0 0`0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0`0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0`0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0`0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0`0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 1`0 0 0
0 0 0 0 0 0 0 0 1 1 0 1 0 1`0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1`0 



















 L = 3    L = 2  L = 0 L = 1    L = 5 
 
Implicit dependencies: 

 D reg im  OR  D adr im  OR D stack im OR D cc im  =  D im 


















0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0`0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0`0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0`0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1`0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0`0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0`0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0`0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0`0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0`0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0`0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0`0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0`0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0`0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0`0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0`0 



















OR



















0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0`0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0`0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0`0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0`0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0`0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0`0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0`0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0`0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0`0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0`0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0`0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0`0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0`0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0`0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0`0 



















OR



















0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0`0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0`0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0`0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0`0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0`0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0`0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0`0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0`0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0`0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0`0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0`0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0`0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0`0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0`0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0`0 



















OR



















0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0`0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0`0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0`0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0`0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0`0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0`0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0`0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0`0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0`0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0`0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0`0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0`0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0`0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0`0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0`0 



















= 



















0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0`0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0`0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0`0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1`0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0`0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0`0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0`0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0`0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0`0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0`0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0`0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0`0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0`0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0`0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0`0 



















 L = 2    L = 1  L = 0 L = 1    L = 2 
 
Explicit antidependencies: 

 AD reg ex  OR  AD adr ex  OR AD stack ex OR AD cc ex  =  AD ex 


















0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0`0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1`0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1`0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0`0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0`0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0`0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1`0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0`0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0`0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0`0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0`0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0`0 0 0 0
0 1 1 0 0 0 0 0 0 0 1 0 0`0 0 0
0 0 0 0 0 0 1 0 1 0 0 0 0 1`0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0`0 



















OR



















0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0`0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0`0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0`0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0`0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0`0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0`0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0`0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0`0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0`0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0`0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0`0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0`0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0`0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0`0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0`0 



















OR



















0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0`0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0`0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0`0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0`0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0`0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0`0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0`0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0`0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0`0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0`0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0`0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0`0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0`0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0`0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0`0 



















OR



















0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0`0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0`0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0`0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0`0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0`0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0`0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0`0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0`0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0`0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0`0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0`0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0`0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0`0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0`0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0`0 



















= 



















0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Implicit antidependencies: 
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Implicit output dependencies: 

 S reg im  OR  S adr im  OR S stack im OR S cc im  =  S im 


















0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0`0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0`0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0`0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1`0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0`0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0`0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0`0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0`0 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0`0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0`0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0`0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0`0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0`0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0`0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0`0 



















OR



















0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0`0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0`0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0`0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0`0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0`0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0`0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0`0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0`0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0`0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0`0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0`0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0`0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0`0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0`0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0`0 



















OR



















0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0`0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0`0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0`0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0`0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0`0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0`0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0`0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0`0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0`0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0`0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0`0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0`0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0`0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0`0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0`0 



















OR



















0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0`0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0`0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0`0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0`0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1`0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0`0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0`0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0`0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0`0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0`0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1`0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1`0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0`0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0`0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0`0 



















= 



















0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0`0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0`0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0`0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1`0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1`0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0`0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0`0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0`0 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0`0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0`0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1`0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1`0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0`0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0`0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0`0 



















 L = 1    L = 0  L = 0 L = 5    L = 5 

 
Fig. 11. Different data dependence sources composition for code sequence example. 
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The dependencies have been combined by 
groups, composing the four basic sources for each 
type of dependence and separately in explicit and 
implicit operands. The critical path length L has been 
computed for each matrix. The lengths of the 
composed matrices meet the bounds shown in 
equation (40). 

The sequential composition of each dependence 
source with each basic type has been evaluated 
producing the graph of Fig. 12. The composition order 
does not change the final result but the used sequence 
is not absolutely arbitrary. We began with true 
dependencies, which are those that do not have 
hardware solution, and then we examined the 
antidependencies and the output dependencies. Within 
each basic type, the analysis began with the explicit 
operands and then the implicit operands. Finally, the 
operand functionality has also an order: we began with 
the accesses to operands with a greater computational 
meaning because they represent the direct 
manipulation of data, followed by the memory address 
computation (that turns out to be essential to variable 
access but that it is not directly involved in main 
computation); next, the impact of the operands related 
to the stack access is evaluated and we finish with the 
state register accesses whose only function is to save 
the condition codes used in conditional branches. 

The composition sequence illustrates how data 
dependence over-ordering generated by collateral 
computational load (memory address computation, 
stack accesses and state backup) gets added to the 
dependencies with a true computational meaning. 
 

Critical path length for each data dependencies source and for the composition
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Fig. 12. Critical path length for each data dependence source and for 
the composition. 
 

From the example some immediate consequences 
can be extracted whose generalization should be 
verified in works to come. 

We began with true dependencies. The 
dependencies generated by the memory address 
computation are added to the dependencies between 
explicit data registers. Consequently, it is a cause of 
parallelism degradation at the instruction level. The 
next parallelism degradation comes from condition 
codes. In this case, the true dependencies through 
implicit operands no longer affect the length of the 
critical path. We find, therefore, two sources with 
remarkable impact on the parallelism degradation: 
� memory address computing; and 
� condition codes. 

The antidependencies among explicit registers 
provide a new parallelism degradation that, in our 

example, does not change until the last contribution 
due to the output dependencies in implicit operands, 
specially the one due to condition codes. That is, 
among the data dependencies due to physical 
resources limitations, the most remarkable ones seem 
to be: 
� explicit use registers in antidependencies; and 
� condition codes in output dependencies. 
 
 
4. Conclusions and future work. 
 

A model of analysis applicable to the computation 
process at the machine language layer has been 
proposed. It allows the quantitative evaluation of the 
impact of both the instruction set architecture and the 
compilation procedure itself.  

The topological properties and restrictions that the 
matrix D has to fullfil in the ILP scope have been 
identified along with a method that uses the matrix D 
to quantify the ordering degree of code, the data reuse 
and its life span. A metric to evaluate the available 
parallelism degree has been defined as well. 

It is showed how the different data dependence 
sources can be composed, thus allowing a precise 
analysis of the impact of each one on the final 
parallelism degree. 

The proposed analytical model has been applied 
to the evaluation of some aspects of the x86 
instruction set architecture and valuable information 
has been obtained [32]. 

In future works, the contribution of each one of 
the dependence sources will be studied, analyzing its 
behavior on a greater set of test programs. It seems 
also possible to extend the use of the graphs to model 
the limitations of the physical layer and the processes 
of allocation-scheduling. 

As a summary, we enumerate the contributions 
that have been made throughout the technical note: 
� we introduce the data dependence matrix D from the 

traditional graph theory definitions and supported by 
the novel concept of the reduced valence, 

� several topological properties and restrictions that 
the data dependence matrix D must satisfy in the 
instruction parallel processing scope, have been 
identified, 

� a relation between the matrix D and the adjacency 
matrix A, traditionally used in graph theory, has 
been determined, 

� Dt, the transposed matrix of D, has been identified as 
the way to relate the two graph orientations, 

� the relation between the matrix D and the reduced 
valence matrix for an orientation has been proved, 

� the concept of code coupling has been introduced as 
a method to measure the ordering degree of a code 
sequence, 

� a way to quantify the data reuse degree has been 
established, 

� the relation between the matrix D and the data 
dependence paths length longer than 1 has been 
identified, 
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� the relation between the critical path length and the 
powers of matrix D has been identified, 

� variables relating critical path length and available 
parallelism degree in code have been defined, 

� an algorithmic method to calculate the critical path 
length have been proposed, 

� it has been shown how different data dependence 
sources can be composed and some dependencies 
sources have been suggested, 

� the critical path length of a composition has been 
bounded, 

� some possible lines of future work have been 
suggested from an illustrative example. 
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