

Tem			
	La L	nidad de Control	
	E	emental operations	(II)
	•	Instruction execution requires a activating control signals. These	set of steps to be performed by e steps are named elemental operations.
	•	 Elemental operations are classi Transfer operations . Mov another. Process operation. Source 	fied in: e information from one element to e information pass through an operator.
	•	The whole elemental operatio whatever processes one, mus also end in a memory elemen	ns, whatever transference or st start in a memory element and must t
Sn	Autor	natic Department Graduate	Computers Structure and Organization. in Computer Sciences / Graduate in Computer Engineering

Tem	a 3:		Transparencia: 19 / 73
	La Unidad de Control		
	Instructions ADD A, B (II)	execution (II)	
	ACTION	ELEMENTAL OPERATION	CONTROL SIGNAL
	Read instruction: Addressing	CP → addresses bus Load Addresses Register	TCP LDIR
	Reading	Start memory cycle Read Open buffer to data bus	MEM RD TMEM
		Load instruction machine code on Instruction Register	LI
	Decoding:	· · ·	Delay (1 period)
	Update PC: • Add PC+2	UC put 2 on data bus Operands and operation selected	DIT X0, X1 (B.Datos), Y0, Y1 (CP), Selop (suma)
		Load Accumulator Register	LAC
	Store new PC value	Transfer Accumulator content to data bus Store new PC value on PC register	TAC LPC
Sn	Automatic Department	Graduate in Computer Scien	Computers Structure and Organization. ces / Graduate in Computer Engineering

Tema 3	2: Unidad de Control		Transparencia: 20 / 73
	nstructions exe ADD A, B (III)	cution (III)	
	ACTION	ELEMENTAL OPERATION	CONTROL
P •	erforming add operation: Get registers addresses	UC generates registers A and B addresses	DIR A (register B), DIR B (register A)
1	Add	Operands and operation selection	X0, X1 (salida B), Y0, Y1 (salida A), Selop (suma)
s •	tore result : Transfer data from accumulator	Accumulator → data bus	TAC
•	Store in A register	UC generates A register address Load register file (on A register)	DIR A (register A) LR
U	pdate flag register:		LFlags
S re	et to 0 to the counter phases egister	· · · · · · · · · · · · · · · · · · ·	RESET
) Au	tomatic Department	Compute Graduate in Computer Sciences / Gra	ers Structure and Organizat duate in Computer Enginee

Tem	a 3:				Transparencia: 23 / 73					
	La Unidad de Control Instructions MOV A, [B +	execu 1234h	ution (n] (l)	VI)						
	Relative to register addressing modeInstruction format:									
	Operation code MOV	Register A	Register B	123	4h					
	 0 7 Instruction lengtl Meaning: A:= Me 	8 11 h: 4 bytes emory (B	12 15 5 + 1234h	16);	31					
Sn	Automatic Department	(Graduate in C	Computer Sciences / Grad	ers Structure and Organization. duate in Computer Engineering					

Tema 3: La Unidad de Control Instructions execution (VII) MOV A IB + 1234b1 (II)							
	₩ΟΥ Α, [В +	123411] (11)					
	ACTION	ELEMENTAL OPERATION	CONTROL SIGNAL				
	Fetch Address	CP → addresses bus Load addresses registere	TCP LDIR				
	Read instruction	Start cycle of memory Read Memory buffer → data bus Load instruction register	MEM RD TMEM LI				
	Decoding		1 periodo de retardo				
<u>n</u> ′	Automatic Department	Computers Graduate in Computer Sciences / Gradu	Structure and Organizatic				

Tem	La Unidad de Control Instructions e MOV A, [B + 1	execution (VIII) 234h] (III)	Transparencia: 25 / 73
	ACTION	ELEMENTAL OPERATION	CONTROL SIGNAL
	Update PC Add CP + 4	UC puts 4 on data bus Operands and operation selection	DIT <x0, dat="" x1="B."> <y0, y1="CP"> <selop =="" sumar=""></selop></y0,></x0,>
	Store new PC value	Load accumulator Accumulator → Data bus Load PC register	LAC TAC LCP
⊃n	Automatic Department	Computers Graduate in Computer Sciences / Gradu	s Structure and Organization. ate in Computer Engineering

Tem	a 3: La Unidad de Control	execution (IX)	Transparencia: 26 / 73
	MOV A, [B + 7	1234h] (IV)	
	ACTION	ELEMENTAL OPERATION	CONTROL SIGNAL
	Calculate source operan address B selection + offset	UC puts 1234h. → Data bis UC generates B address	DIT <dir a="B"></dir>
	Add	Operands and operation selection Load accumulator	<x0, x1="b.dat"> <y0,y1 =="" a="" sal=""> <selop =="" suma=""> LAC</selop></y0,y1></x0,>
	Automatic Department		Structure and Organization

Tema 3: La Unidad de Control Instructions MOV A, [B +	s execution (X) ⊦ 1234h] (V)	Transparencia: 27 / 73
ACTION	ELEMENTAL OPERATION	CONTROL SIGNAL
Store result Put source operand o data bus	on Transfer accumulator to addresses bus Load addresses register Start memory cycle Read Buffer memory → Data bus UC generates A address Load register of the registers file	TALU LDIR MEM RD TMEM <dir a="A"> LR</dir>
Set to 0 phase cour	iter	RESET
Automatic Department	Computers S Graduate in Computer Sciences / Graduat	Structure and Organization te in Computer Engineering

Tem	a 3: La Unidad de Control	Transparencia: 31 / 73
	Contents	
	 Elemental operations Basic computer Main Memory Registers files Arithmetical-Logid Addressing Unit Control Unit Control signals timming Instructions execution Unit Control Design: Microprogramming and Computer exceptions Booting up the computer Bibliography 	cal Unit ng vired vs. microprogrammed nd nanoprogramming: Motorola 68000 uter
⊃ _∩	Automatic Department	Computers Structure and Organization. Graduate in Computer Sciences / Graduate in Computer Engineering

Tem	a 3:	Transparencia: 32 / 73
	La Unidad de Control	
	Contents	
	 Elemental operations Basic computer Main Memory Registers files Arithmetical-Logical Unit Addressing Unit Control Unit Control signals timming Instructions execution Unit Control Design: wired vs. microprogrammed Microprogramming and nanoprogramming: Motorola Computer exceptions Booting up the computer Bibliography 	68000
$\supset_{\widehat{N}}$	Automatic Department Computers Graduate in Computer Sciences / Graduate	Structure and Organization. ate in Computer Engineering

Tema 3:					Transparencia: 38 / 73
	La Unidad de Conti	rol			
	Control Ur Wired logi	nit D c (IN)esi /). S	gn (' State	(VI) es machine (III)
	Instruction fo	rmat 3	32 bits		
	 Operation co 	des a	re:		Memory instructions
		One	ration (ode	(3) (4) (25)
	Instruction	03	02	01	
	LD	0	0	0	Process instructions
	ST	0	0	1	CO R1 R2 Immediate
	ADD R1, R2, R3	0	1	0	(3) (4) (4) (21)
	SUB R1, R2, R3	0	1	1	
	ADDI R1, R2, Imm	1	0	0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	SUBI R1, R2, Imm	1	0	1	
	JZ Label	1	1	0	Conditional / Unconditional Jump Instructions
	JMP Label	1	1	1	CO Offset / Direct memory address
					(3) (29)
$\supset_{\widehat{N}}$	Automatic Department			Graduate	Computers Structure and Organization. ate in Computer Sciences / Graduate in Computer Engineering

Tem	a 3: La Unidac	l de	Con	trol			Transparencia: 41 / 73
	Cont Wired	rol d lo	U og	nit ic	t D (V	esign (IX) II). States n	nachine (VI)
	 Trar be c 4 bit Stat (001 Trar 	e fin s ar e #0 0), e	on b ed e ne (00 etc	etwo eede 000) tate	een ed to), sta s eo	a for the second	
	State 1 2 3 4	Ecuation $$0 - \overline{$53 52 $51 $50}$ $$1 - \overline{$53 52 $51 $50}$ $$1 - \overline{$53 52 $51 $50}$ $$2 - \overline{$53 52 $51 $50}$ $$2 - \overline{$53 52 $51 $50}$ $$2 - \overline{$53 52 $51 $50}$					
Sn	Automatic De	Computers Structure and Organization. puter Sciences / Graduate in Computer Engineering					

Tem	Tema 3: Transparencia: 42 / 73 La Unidad de Control									
Control Unit Design (X) Wired logic (VIII). States machine (VII)										
	• Transition states equations (cont):									
	E	stad	o nue	vo						
	Estado	S3	S 2	S1	S0	Condición	Ecuación			
	5	0	1	0	1	Estado Anterior 4	S2=S3-S2-S1-S0 y S0=S3-S2-S1-S0			
	6	0	1	1	0	Estado Anterior 5	S2=S3-S2-S1-S0 Y S1=S3-S2-S1-S0			
		0	1	1	1	Y CO = ST	$S2 = S1 = S0 = \overline{S3} \cdot S2 \cdot S1 \cdot \overline{S0} \cdot \overline{O2} \cdot \overline{O1} \cdot O0$			
	8	1	0	0	0	Estado Anterior 6 Y CO = LD	\$3=\$3-\$2-\$1-\$0-02-01-00			
	9	1	0	0	1	Estado Anterior 3 Y CO = Salto incondicional	\$3 = \$0 = \$3 \$ \$2 \$\$1\$\$0020100			
	14	1	1	1	0	S3 = S2 = S1 = S3.S2 .S1.S0.O2.O1. O 0.Z				
	15	1	1	1	1	Estado Anterior 14	$S3 = S2 = S1 = S0 = \overline{S3} \cdot \overline{S2} \cdot \overline{S1} \cdot S0$			
Sn	IS I I I Estado Anterior 14 ISSE S2 = S1 = S0 = S3-S2-S1-S0 Automatic Department Computers Structure and Organization. Graduate in Computer Sciences / Graduate in Computer Engineering									

Tem	Tema 3: Trans La Unidad de Control								
	Cont Wire	ro d I	L 0(Jn gic	it ; (Design (XI) IX). States r	machine (VIII)		
	_						CO = memoria CO = Salo nomacional CO = proceso CO = Salo condicional (CO = proceso C		
	• 11a	Insi	tion	Sta	ates	s equations:			
	State	Nev	v Stat	e 91	90	Condition	Ecuation		
	10	1	0	1	0	Previous State 3 And CO = ADDI or SUBI	$S_3 = S_1 = \overline{S_3} \overline{S_2} S_1 S_0 \cdot (\overline{O2} O) = O + \overline{O2} O + \overline{O0})$		
	11	1	0	1	1	Previous State 10	$S3 = S1 = S0 = S3 \cdot \overline{S2} \cdot S1 \cdot \overline{S0}$		
	12	1	1	0	0	Previous State 3 And CO = ADD or SUB	$S3 = S2 = \overline{S3} \cdot \overline{S2} \cdot S1 \cdot S0 \cdot (\overline{O2} \cdot O1 \cdot \overline{O0} + \overline{O2} \cdot O1 \cdot O0)$		
	13	1	1	0	1	Previous State 12	S3 = S2 = S0 =S3 S2 S1 S0		
	0	0	0	0	0	Previous State 7or 8 or 9 or 11 or 13 or15 or (3 and not Z)	$\frac{53}{5} = 52 = 51 = 50 - \overline{53525150} + 53\overline{525150} + 53\overline{525150} + \\ + \overline{53525150} + \overline{53525150} + \overline{53525150}\overline{Z}$		
Sn	Automatic Department Computer Sciences / Graduate in Computer Engineering								

Tema			
	La Unidad (de Control	
	Contro Wired	ol Unit Design logic (X). State	(XII) es machine (IX)
	Gene	rated signals:	
	State	Elemental Op.	Signals
	0	Address Reg. ←PC PC = PC + 4	TCP, LDIR MUX Y, DIT, MUX X, SELOP, LAC
	1	Start Memory Cycle PC ← Accumulator	MEM, RD TAC, LCP
	2	RI ← Memory	RD, TMEM, LI
	3	Decoding	Anything but checking flags
	4	Accumulator ← Register + Offset	DIR A, DIT, MUX X, MUX Y, SELOP, LAC
	5	Address Reg. ←Accum	TALU, LDIR
	6	Start Memory Cycle	MEM
	7	Register Memory	RD, TMEM, DIRA, LR, RESET
	8	Memory ← Register	DIR A, DIR B, MUX X, MUX Y, SELOP, TAC, WR, RESET
Sn	Automatic Depa	artment Gradu	Computers Structure and Organization. ate in Computer Sciences / Graduate in Computer Engineering

Tem	a 3: La Unidad	de Control	Transparencia: 45 / 73
	Contr Wired	ol Unit Design l logic (XI). Stat	(XIII) tes machine (X)
	• Gene	erated signals:	
	State	Elemental Op.	Signals
	9	PC - Target	DIT, LCP, RESET
	10	Accumulator ← Register OP Immediate	DIR A, DIT, MUX Y, MUX X, SELOP, LAC, LFLAGS
	11	Register	TAC, DIR A, LR, RESET
	12	Accumulator ← Register OP Register	DIR A, DIR B, MUX Y, MUX X, SELOP, LAC, LFLAGS
	13	Register	TAC, DIR A, LR, RESET
	14	Accumulator ← PC + offset	MUX Y, DIT, MUX X, SELOP, LAC
	15	PC ← Accumulator	TAC, LCP, RESET
	L		
$\mathcal{D}^{\mathbb{N}}$	Automatic Depa	artment Gradu	Computers Structure and Organization. ate in Computer Sciences / Graduate in Computer Engineering

Tem			
	La Unidao	l de Control	
	Contr Wired	rol Unit De d logic (XII	esign (XIV)). States machine (XI)
	 CU lequa Seve LCP active 	moves throught s ations are defined eral different stat signal is activat vated in 0, 4, 10,	states machine when transition states d. es generate same output signals red in 1, 9 and 15 states. LAC signal is 12 and 14 states. Signals equations are:
	Signal LCP LAC	States in which signal is activated 1, 9 and 15 0, 4, 10, 12 and 14 	Signal output equation LCP =\$3\$\$\$2\$\$1\$\$0 + \$3\$\$2\$\$1\$\$0 + \$3\$\$2\$\$1\$\$0 LAC =\$3\$\$\$2\$\$1\$\$0 + \$3\$\$2\$\$1\$\$0 + \$3\$\$2\$\$1\$\$0 + \$3\$\$2\$\$1\$\$0 + \$3\$\$2\$\$1\$\$0
⊃ _∩	Automatic De	partment	Computers Structure and Organization. Graduate in Computer Sciences / Graduate in Computer Engineering

na 3: La Unida	d de Control	
Cont	rol Unit D	esign (XV)
Wire	d loaic (X	III). States machine (XII)
	nala aguatiana.	
• Sig	nais equations:	
	States in which	
Signal	signal is activated	Signal output equation
LCP	1, 9 and 15	$LCP = \overline{S3} \cdot \overline{S2} \cdot \overline{S1} \cdot S0 + S3 \cdot \overline{S2} \cdot \overline{S1} \cdot S0 + S3 \cdot \overline{S2} \cdot \overline{S1} \cdot S0$
TCP	0	<i>TCP</i> = <u>S</u> 3· <u>S</u> 2· <u>S</u> 1· <u>S</u> 0
DIR A	4, 7, 8, 10, 11, 12 and 13	$DIRA = \overline{S3S2}\overline{S1S0} + \overline{S3S2}S1S0 + S3\overline{S2S1S0} + S3$
DIR B	8 and 12	$DIRB = S3 \cdot \overline{S2} \cdot \overline{S1} \cdot \overline{S0} + S3 \cdot S2 \cdot \overline{S1} \cdot \overline{S0}$
LR	7, 11 and 13	$LR = \overline{S3} \cdot S2 \cdot S1 \cdot S0 + S3 \cdot \overline{S2} \cdot S1 \cdot S0 + S3 \cdot S2 \cdot \overline{S1} \cdot S0$
MUX X	0, 4, 8, 10, 12 and 14	$MUXX = \overline{S3} \cdot \overline{S2} \cdot \overline{S1} \cdot \overline{S0} + \overline{S3} \cdot S2 \cdot \overline{S1} \cdot \overline{S0} + \overline{S3} \cdot \overline{S2} \cdot \overline{S1} \cdot \overline{S0} + \overline{S3} \cdot \overline{S1} \cdot \overline{S1} \cdot \overline{S0} + \overline{S3} \cdot \overline{S1} \cdot \overline{S1} \cdot \overline{S1} + \overline{S1} \cdot \overline{S1} \cdot \overline{S1} \cdot \overline{S1} + \overline{S1} \cdot \overline{S1} \cdot \overline{S1} \cdot \overline{S1} + \overline{S1} \cdot $
MUX AND	0, 4, 8, 10, 12 and 14	$MUXY = \overline{S3} \cdot \overline{S2} \cdot \overline{S1} \cdot \overline{S0} + \overline{S3} \cdot S2 \cdot \overline{S1} \cdot \overline{S0} + \overline{S3} \cdot \overline{S2} \cdot \overline{S1} \cdot \overline{S0} + \overline{S3} \cdot \overline{S1} \cdot \overline{S1} \cdot \overline{S0} + \overline{S3} \cdot \overline{S1} \cdot \overline{S1} \cdot \overline{S1} + \overline{S1} \cdot \overline{S1} \cdot \overline{S1} + \overline{S1} \cdot \overline{S1} \cdot \overline{S1} \cdot \overline{S1} \cdot \overline{S1} + \overline{S1} \cdot \overline{S1} \cdot \overline{S1} \cdot \overline{S1} + \overline{S1} \cdot $
SELOP	0, 4, 8, 10, 12 and 14	$SELOP = \overline{S3} \cdot \overline{S2} \cdot \overline{S1} \cdot \overline{S0} + \overline{S3} \cdot S2 \cdot \overline{S1} \cdot \overline{S0} + \overline{S3} \cdot \overline{S2} \cdot \overline{S1} \cdot \overline{S0} + \overline{S3} \cdot \overline{S1} \cdot \overline{S1} \cdot \overline{S0} + \overline{S3} \cdot \overline{S1} \cdot \overline{S1} \cdot \overline{S0} + \overline{S3} \cdot$
LAC	0, 4, 10, 12 and 14	$LAC = \overline{S3} \cdot \overline{S2} \cdot \overline{S1} \cdot \overline{S0} + \overline{S3} \cdot \overline{S2} \cdot \overline{S1} \cdot \overline{S0}$
	1 8 11 13 and 15	$T4C = \overline{S3}\cdot\overline{S2}\cdot\overline{S1}\cdot\overline{S0} + S3\cdot\overline{S2}\cdot\overline{S1}\cdot\overline{S0} + S3\cdot\overline{S2}\cdot\overline{S1}\cdot\overline{S0} + S3\cdot\overline{S2}\cdot\overline{S1}\cdot\overline{S0} + S3\cdot\overline{S2}\cdot\overline{S1}\cdot\overline{S0} + S3\cdot\overline{S2}\cdot\overline{S1}\cdot\overline{S0}$
TAC	1, 0, 11, 10 and 10	

Tem	a 3:		Transparencia: 48 / 73
	La Unidao	l de Control	
	Contr Wired	rol Unit De d logic (XI	esign (XVI) V). States machine (and XIII)
	• Sign	als equations:	
		States in which	
	Signal	signal is activated	
		0, 4, 9, 10 and 14	DTT=55525150+55525150+55525150+55525150+55525150
	RESET	7, 8, 9, 11, 13 and 15	RESET = \$3\$2\$150 + \$3\$2\$150 + \$3\$2\$150 + \$3\$2\$150 + \$3\$2\$150 + \$3\$2\$150 + \$3\$2\$150 + \$3\$2\$150 + \$3\$2\$150
	LFLAGS	10 and 12	$LFLAGS = S3 \cdot S2 \cdot S1 \cdot S0 + S3 \cdot S2 \cdot S1 \cdot S0$
	MEM	1 and 6	$MEM = \overline{S3} \cdot \overline{S2} \cdot \overline{S1} \cdot S0 + \overline{S3} \cdot S2 \cdot \overline{S1} \cdot \overline{S0}$
	RD	2 and 7	$RD = \overline{S3} \cdot \overline{S2} \cdot \overline{S1} \cdot \overline{S0} + \overline{S3} \cdot \overline{S2} \cdot \overline{S1} \cdot \overline{S0}$
	WR	8	$WR = S3 \cdot \overline{S2} \cdot \overline{S1} \cdot \overline{S0}$
	LDIR	0 and 5	$LDIR = \overline{S3} \cdot \overline{S2} \cdot \overline{S1} \cdot \overline{S0} + \overline{S3} \cdot S2 \cdot \overline{S1} \cdot S0$
	TMEM	2 and 7	$TMEM = \overline{S3} \cdot \overline{S2} \cdot S1 \cdot \overline{S0} + \overline{S3} \cdot S2 \cdot S1 \cdot S0$
Ð	Automatic De	partment	Computers Structure and Organization. Graduate in Computer Sciences / Graduate in Computer Engineering

Tem	a 3:											Tra	inspa	renc	ia: 7	3 / 73	
	La Unidad	de Col	ntrol														
	Contro Microp	ol Un orogi	it De ramr	esi ne	ign ed () (Co	and XI	_II r [) Des	sign	(a	nd	X)			
	Micro ins	tructi	on wi	tho	ut r	nie	cro jump										
	Fin microprogram a 31	Microsalto 30	Condición 29	8 n 28	lanco de egistros	21	Unidad. Direccionamiento 20	Men 19	noria	ALU 17	10	Bus direcc 9	de iones 8	Bus dat 7	s de tos 6	Carga registr 5	de os 0
	Micro ins	struct	ion w	ith	mic	ro	jump	<u> </u>	<u> </u>			<u> </u>	<u> </u>	<u> </u>	<u> </u>		
	Fin microprograma	Microsalto	Condición		Banco o registro	ie s	Unidad. Direccionamiento	Me	moria	AL	J	Direc	valor (i micro que ter	salto d ngan E	lependiendi 330 y B29	o del
	31	30	29	28		21	20	19	18	17	. 10	9					0
Ð	Automatic Dep	artment				(Graduate in Co	ompu	ter So	Co ciences	mpute / Grad	ers Stru duate i	ucture n Con	e and	l Org er Er	anization	п. 9

Tem	a 3:	Transparencia: 76 / 73
	La Unidad de Control	
	Bibliography	
	 Estructura y diseño de computadores David A. Patterson y John L. Hennessy. Reve Capítulo 5 y Apéndice C 	erté, 2000
	 Estructura y diseño de computadores Jose Mª Angulo. Paraninfo, 1996 Capítulo 5 	
	 Arquitectura de computadores. Un enfoque cua John L. Hennessy y David A. Patterson. Mc C Capítulo 5 	antitativo Graw Hill, 3ª ed, 2002
	 Arquitectura de computadores José A. de Frutos y Rafael Rico. Servicio de l Universidad de Alcalá, 1995 Capítulo 4. 	Publicaciones de la
	Automatic Department Graduate in Computer Science	Computers Structure and Organization. s / Graduate in Computer Engineering