
Curso 2010-2011

Lesson 5. Instruction formats. Directives, string instructions
and several modules programs

Computer Structure and
Organization

Graduated in Computer Sciences /
Graduated in Computer Engineering

Computer Structure and Organization
Graduated in Computer Sciences /

Graduated in Computer Engineering Automatic Department

Lesson 5: Instruction format. Directives, string instructions and several modules programs.

Slide.:

2 / 37
Computer Structure and Organization

Graduated in Computer Sciences / Graduated in Computer Engineering Automatic Department

Contents

  i8086 instruction formats

  String instructions

  Directives

  Assembling several modules programs

Lesson 5: Instruction format. Directives, string instructions and several modules programs.

Slide.:

3 / 37
Computer Structure and Organization

Graduated in Computer Sciences / Graduated in Computer Engineering Automatic Department

i80x86/8088 instruction formats (I)

  i80x86/88 have several instruction format types
  Format sizes vary from one byte to six bytes code length

Formato de las instrucciones registro-registro y registro-memoria:

Offset or inmediate datum

Mandatory register operand

Register or memory position

Operand size: 0 half-word or byte / 1 word or16 bits
Source or target reg operand: 0 reg is source operand / 1 reg is target operand

Operation
code

Mod Reg R/M

Byte 2

 Code D W

Byte 1 Byte 3 Byte 4

Lesson 5: Instruction format. Directives, string instructions and several modules programs.

Slide.:

4 / 37
Computer Structure and Organization

Graduated in Computer Sciences / Graduated in Computer Engineering Automatic Department

  Instruction format first byte contains following information:
–  Operation code (6 bits)

–  Direction bit register (D):
  IF D = 1 field REG = target operand
  IF D = 0 field REG = source operand

–  Data size bit (W): specifies is the instruction uses half word or
word size operands:
  IF W = 0 size is 8 bits (or 16 bits)
  IF W = 1 size is 16 bits (or 32 bits)

i80x86/8088 instruction formats (II)

Lesson 5: Instruction format. Directives, string instructions and several modules programs.

Slide.:

5 / 37
Computer Structure and Organization

Graduated in Computer Sciences / Graduated in Computer Engineering Automatic Department

  Operands are contained on the second byte
(It’s mandatory that one of them is a register)

  REG table is used to code desired register

  MOD specifies the addressing mode

REG W=0 W=1
000 AL AX
001 CL CX
010 DL DX
011 BL BX
100 AH SP
101 CH BP
110 DH SI
111 BH DI

i80x86/8088 instruction formats (III)

Lesson 5: Instruction format. Directives, string instructions and several modules programs.

Slide.:

6 / 37
Computer Structure and Organization

Graduated in Computer Sciences / Graduated in Computer Engineering Automatic Department

  Operands are contained on the second byte (ongoing):
  Depending on MOD field, R/M is used to identify one register or a

memory postion according to the bellow table
  O8 means half-word offsset (8 or 16 bits) and O16 indicates one word

offset (16 bits or 32 bits)

i80x86/8088 instruction formats (and IV)

Lesson 5: Instruction format. Directives, string instructions and several modules programs.

Slide.:

7 / 37
Computer Structure and Organization

Graduated in Computer Sciences / Graduated in Computer Engineering Automatic Department

String instructions (I)

  Mnemonic: MOVS / MOVSB / MOVSW (MOV BYTE / WORD STRING)
  Format: MOVS target, source

 MOVSB / MOSW
  Description: Pointed DS:SI byte or word is transferred to the pointed

ES:DI byte or word. SI and DI will be incremented / decremented in the
number of transferred bytes according to DF value ((DF=0  increment;
DF=1  decrement). Instruction REP is used as repetition factor.

  Operands: MOVS uses ES:DI as target and DS:SI as source by default.

  Examples:
–  movsb
–  movs tabla1, tabla2

Lesson 5: Instruction format. Directives, string instructions and several modules programs.

Slide.:

8 / 37
Computer Structure and Organization

Graduated in Computer Sciences / Graduated in Computer Engineering Automatic Department

String instructions (II)

  Mnemonic: LODS / LODSB / LODSW (Load BYTE / WORD to AL / AX)
  Format: LODS source

 LODSB/LODSW
  Description: get a byte or word from a string. Transfers one byte or word

from the pointed string by DS:SI to AL or AX register. SI will be
incremented / decremented in the number of transferred bytes according
to DF value ((DF=0  increment; DF=1  decrement).

  Operands: LODS uses DS:SI as source by default.

  Examples:
–  lods cadena
–  lodsb

Lesson 5: Instruction format. Directives, string instructions and several modules programs.

Slide.:

9 / 37
Computer Structure and Organization

Graduated in Computer Sciences / Graduated in Computer Engineering Automatic Department

String instructions (III)

  Mnemonic: STOS / STOSB / STOSW (Store BYTE / WORD from AL / AX)
  Format: STOS target

 STOSB/STOSW
  Description: stores one byte or word on a string. Transfers one byte (AL)

or one word (AX) to pointed ES:DI string. DI will be incremented /
decremented in the number of transferred bytes according to DF value
((DF=0  increment; DF=1  decrement). Instruction REP is used as
repetition factor

  Operands: STOS uses ES:DI as target by default.

  Examples:
–  stos cadena
–  stosw

Lesson 5: Instruction format. Directives, string instructions and several modules programs.

Slide.:

10 / 37
Computer Structure and Organization

Graduated in Computer Sciences / Graduated in Computer Engineering Automatic Department

String instructions (IV)

  Mnemonic: CMPS / CMPSB / CMPSW (Compare BYTE / WORD)
  Format: CMPS target, source

 CMPSB/CMPSW
  Description: Strings bytes or word are compared. Pointed by DS:SI

(source string) and ES:DI (target string) will be compared. SI and DI will
be incremented / decremented in the number of compared bytes
according to DF value ((DF=0  increment; DF=1  decrement).
Instruction REP is used as repetition factor.

  Operands: CMPS uses ES:DI as target and DS:SI as source by default.
  Examples:

–  cmps cadena1, cadena2
–  cmpsb
–  cmpsw

Lesson 5: Instruction format. Directives, string instructions and several modules programs.

Slide.:

11 / 37
Computer Structure and Organization

Graduated in Computer Sciences / Graduated in Computer Engineering Automatic Department

String instructions (V)

  Mnemonic: SCAS / SCASB / SCASW (Scan BYTE / WORD)
  Format: SCAS target

 SCASB/SCASW
  Description: searches a byte or word among string positions. AL is

used for byte size strings and AX for word size one. Result is not
stored but flags are modified. DI will be incremented / decremented in
the operand size according to DF value ((DF=0  increment; DF=1
 decrement). Instruction REP is used as repetition factor.

  Operands: target se emplean como referencia, pues por defecto
SCAS emplea ES:DI como target.

  Examples:
–  scas cadena
–  sacsb

Lesson 5: Instruction format. Directives, string instructions and several modules programs.

Slide.:

12 / 37
Computer Structure and Organization

Graduated in Computer Sciences / Graduated in Computer Engineering Automatic Department

String instructions (and VI)

  Mnemonic: REP / REPZ / REPE / REPNZ / REPNE (Repeat)
  Format: REP / REPZ / REPE / REPNZ / REPNE instrucción de cadena
  Description: precedes string instructions to repeat action according to CX

value (from CX to cero) or till Zero flag changes. This repetition can be
unconditional (REP) or conditional (REPZ / REPE till ZF=1 or REPNZ /
REPNE till ZF=0).

  Operands: hasn’t any operand
  Restrictions: for string instructions only
  REP is used with MOVS, LODS and STOS; REPE, REPZ, REPNE and

REPNZ are used with CMPS and SCAS

  Example:
–  rep movsb

Lesson 5: Instruction format. Directives, string instructions and several modules programs.

Slide.:

13 / 37
Computer Structure and Organization

Graduated in Computer Sciences / Graduated in Computer Engineering Automatic Department

Directives (I)

  Directives are instruction to indicate what the assembly program
must do.

  Directives are used to reserve memory storage space, to name
program variables, to build data structures, etc.

  Directives can be classified into:
–  Data directives
–  Conditional directives
–  Listing directives
–  Macros directives

Lesson 5: Instruction format. Directives, string instructions and several modules programs.

Slide.:

14 / 37
Computer Structure and Organization

Graduated in Computer Sciences / Graduated in Computer Engineering Automatic Department

Directives (II)
Data directives (I) Symbol definition (I)

  Mnemonic: EQU (EQUIVALENT)

  Format: name EQU expression

  Description: assignes a name to the value of an expression, This
name cannot be redefined.

  Example:
–  columnas EQU 80

Lesson 5: Instruction format. Directives, string instructions and several modules programs.

Slide.:

15 / 37
Computer Structure and Organization

Graduated in Computer Sciences / Graduated in Computer Engineering Automatic Department

Directives (III)
Data directives (II) Symbol definition (and II)

  Mnemonic: =

  Format: name= expression

  Description: asignes a name to a value expression. Name can be
redefined. It’s useful for macros.

  Examples:
–  valor = 10
–  valor = valor + 1

Lesson 5: Instruction format. Directives, string instructions and several modules programs.

Slide.:

16 / 37
Computer Structure and Organization

Graduated in Computer Sciences / Graduated in Computer Engineering Automatic Department

Directives (IV)
Data directives (III) Data definition (I)

  Mnemonic: DB (DEFINE BYTE)
  Format: [variable_name] DB expression
  Description: memory storage reservation for a byte datum and

following ones. “variable_name” is optional and will be the assigned
name to the first byte of the arrange.

  Operands: “expresion” is the first value of the variable. It can be:
–  Positive or negative expression or contant (-128 ≤ expression ≤127

signed).
–  Undefined value by using “?” symbol.
–  Character string delimited by single or double quotes.
–  n1 DUP (n2) that means to repeat n1 as meny times as n2 indicates.

  Examples:
–  valores DB 30, -15, 20 - Datos DB 10 DUP(0)
–  DB 12*3 - cadena DB “Hola mundo”

Lesson 5: Instruction format. Directives, string instructions and several modules programs.

Slide.:

17 / 37
Computer Structure and Organization

Graduated in Computer Sciences / Graduated in Computer Engineering Automatic Department

Directives (V)
Data directives (IV) Data definition (II)

  Mnemonic: DD (DEFINE DOUBLE)
  Format: [variable_name] DD expression
  Description: memory storage reservation for a 32 bits datum and

following ones. “variable_name” is optional and will be the assigned
name to the first byte of the arrange.

  Operands: “expresion” is the first value of the variable. It can be:
–  Positive or negative expression or contant.
–  Undefined value by using “?” symbol.
–  A full memory address (segment and offset).
–  n1 DUP (n2) that means to repeat n1 as meny times as n2 indicates.

  Examples:
–  valores DD 300, -150, 2000
–  DD 120*3
–  Direc DD tabla

Lesson 5: Instruction format. Directives, string instructions and several modules programs.

Slide.:

18 / 37
Computer Structure and Organization

Graduated in Computer Sciences / Graduated in Computer Engineering Automatic Department

Directives (VI)
Data directives (V) Data definition (III)

  Mnemonic: DQ (DEFINE QUADWORD)
  Format: [variable_name] DQ expression
  Description: memory storage reservation for a 64 bits datum and

following ones. “variable_name” is optional and will be the assigned name
to the first byte of the arrange.

  Operands: “expresion” is the first value of the variable. It can be:
–  Positive or negative expression or contant.
–  Undefined value by using “?” symbol.
–  n1 DUP (n2) that means to repeat n1 as meny times as n2 indicates.

  Examples:
–  valores DQ 300, -150, 2000
–  DQ 120*3
–  datos DQ 4 DUP (0) ; Equivale a DQ 0, 0, 0 , 0

Lesson 5: Instruction format. Directives, string instructions and several modules programs.

Slide.:

19 / 37
Computer Structure and Organization

Graduated in Computer Sciences / Graduated in Computer Engineering Automatic Department

Directives (VII)
Data directives (VI) Data definition (IV)

  Mnemonic: DT (DEFINE TENBYTE)
  Format: [variable_name] DT expression
  Description: ten bytes storage space are reserved to store packe

BCD digits. First byte is reserved to store sign number 00h (positive)
80h (negative. 9 remaining bytes are used to store 18 decimal
numbeers. “variable_name” is optional and will be the assigned name
to the first byte of the arrange.

  Operands: “expresion” is the first value of the variable. It can be:
–  Positive or negative expression or contant.
–  Undefined value by using “?” symbol.
–  n1 DUP (n2) that means to repeat n1 as meny times as n2

indicates.

  Examples:
–  valores DT 0123456789
–  negat DT -0123456789

Lesson 5: Instruction format. Directives, string instructions and several modules programs.

Slide.:

20 / 37
Computer Structure and Organization

Graduated in Computer Sciences / Graduated in Computer Engineering Automatic Department

Directives (VIII)
Data directives (VII) Data definition (and V)

  Mnemonic: DW (DEFINE WORD)
  Format: [variable_name] DW expression
  Description: memory storage reservation for a 16 bits datum and

following ones. “variable_name” is optional and will be the assigned
name to the first byte of the arrange.

  Operands: “expresion” is the first value of the variable. It can be:
–  Positive or negative expression or contant.
–  Undefined value by using “?” symbol.
–  An offset.
–  n1 DUP (n2) that means to repeat n1 as meny times as n2

indicates.

  Examples:
–  valores DW 300, -150, 2000
–  DW 120*3

Lesson 5: Instruction format. Directives, string instructions and several modules programs.

Slide.:

21 / 37
Computer Structure and Organization

Graduated in Computer Sciences / Graduated in Computer Engineering Automatic Department

Directives (IX)
Data directives (VIII). External references (I)

  Mnemonic: PUBLIC

  Format: PUBLIC symbol

  Description: specified symbols can be accessed by other
modules during link modules operation (LINK). To use
these symbols, EXTRN senteces must be used in the
modules that want to access it.

  Example:
–  PUBLIC dato
–  dato DB 23h

Lesson 5: Instruction format. Directives, string instructions and several modules programs.

Slide.:

22 / 37
Computer Structure and Organization

Graduated in Computer Sciences / Graduated in Computer Engineering Automatic Department

Directives (X)
Data directives (IX). External references (and II)

  Mnemonic: EXTRN

  Format: EXTRN symbol:type

  Description: identifies symbols which were defined in
other modules by using PUBLIC.

  Example:
–  EXTRN dato:byte

Lesson 5: Instruction format. Directives, string instructions and several modules programs.

Slide.:

23 / 37
Computer Structure and Organization

Graduated in Computer Sciences / Graduated in Computer Engineering Automatic Department

Directives (XI)
Data directives (X). Segment definitions (I)

  Mnemonic: SEGMENT
  Format: name SEGMENT [allignment] [combination]
  Description: indicates the begining of the “name” segment.

  Alignment (optional):
–  BYTE
–  WORD
–  PARA
–  PAGE

  Example:
–  datos SEGMENT
–  datos ENDS

  Combination (optional):
–  PUBLIC
–  COMMON
–  AT
–  STACK
–  MEMORY

Lesson 5: Instruction format. Directives, string instructions and several modules programs.

Slide.:

24 / 37
Computer Structure and Organization

Graduated in Computer Sciences / Graduated in Computer Engineering Automatic Department

Directives (XII)
Data directives (XI). Segment definitions (II)

  Mnemonic: ENDS (END SEGMENT)

  Format: segment_name ENDS

  Description: states “segment_name” ends or
“structure_name” ends.

  Operands: segment_name is mandatory

Lesson 5: Instruction format. Directives, string instructions and several modules programs.

Slide.:

25 / 37
Computer Structure and Organization

Graduated in Computer Sciences / Graduated in Computer Engineering Automatic Department

Directives (XIII)
Data directives (XII). Segment definitions (and III)

  Mnemonic: ASSUME

  Format: ASSUME segment_register:segment_name

  Description: states each segment name to be use by assembler
program..

  Operandos: “segment_register”: DS, CS, SS or ES
“segment_rname”: defined by SEGMENT directive.

  Example:
–  ASSUME CS:codigo
–  ASSUME ES:@DATA

Lesson 5: Instruction format. Directives, string instructions and several modules programs.

Slide.:

26 / 37
Computer Structure and Organization

Graduated in Computer Sciences / Graduated in Computer Engineering Automatic Department

Directives (XIV)
Data directives (XIII) Procedure definitions (I)

  Mnemonic: PROC (PROCEDURE)

  Format: procedure_name PROC [atributte]

  Description: estiblishes the begining of procedure_name
declaration

  Operands: atributte = NEAR or FAR (NEAR by default)

  Example:
–  rutina PROC
–  rutina ENDP

Lesson 5: Instruction format. Directives, string instructions and several modules programs.

Slide.:

27 / 37
Computer Structure and Organization

Graduated in Computer Sciences / Graduated in Computer Engineering Automatic Department

Directives (XV)
Data directives (XIV) Procedure definitions (and II)

  Mnemonic: ENDP (END PROCEDURE)

  Format: procedure_name ENDP

  Description: stats the end of the procedure

  Operand: procedure_name is mandatory

Lesson 5: Instruction format. Directives, string instructions and several modules programs.

Slide.:

28 / 37
Computer Structure and Organization

Graduated in Computer Sciences / Graduated in Computer Engineering Automatic Department

Directives (XVI)
Data directives (XV) Macro definitions (I)

  Mnemonic: MACRO

  Format: macro_name MACRO parameters_list

  Description: specifies the name and the list of parametrs
to be uses by the macro. Parameters are separated by
commas.

  Example:
–  add3 MACRO operando1, operando2, resultado
–  macro body
–  ENDM

Lesson 5: Instruction format. Directives, string instructions and several modules programs.

Slide.:

29 / 37
Computer Structure and Organization

Graduated in Computer Sciences / Graduated in Computer Engineering Automatic Department

Directives (XVII)
Data directives (XVI) Macro definitions (II)

  Mnemonic: ENDM (END MACRO)

  Format: ENDM

  Description: states macro end.

Lesson 5: Instruction format. Directives, string instructions and several modules programs.

Slide.:

30 / 37
Computer Structure and Organization

Graduated in Computer Sciences / Graduated in Computer Engineering Automatic Department

Directives (XVIII)
Data directives (XVII) Macro definitions (and III)

  Mnemonic: LOCAL

  Format: LOCAL label

  Description: indicates the labels to be changed in macro expansion.
LOCAL can be used in macro definition only.

  Example:
Delay MACRO number

 LOCAL goon
 mov cx, number
 goon: loop goon

ENDM

Lesson 5: Instruction format. Directives, string instructions and several modules programs.

Slide.:

31 / 37
Computer Structure and Organization

Graduated in Computer Sciences / Graduated in Computer Engineering Automatic Department

Directives (XIX)
Data directives (XVIII). Block definitions

  Mnemonic: STRUC (STRUCTURE)
  Format: structure_name STRUC
  Description: defines new data type. Memory storage is not reserved

by definition. To access to each field: structure_name.field.
  Operands: estándar data directives DB, DW, DD, DQ and DT.

  Example:
 parametros STRUC
 p1 dw ?
 p2 db ?
 parametros ENDS

Lesson 5: Instruction format. Directives, string instructions and several modules programs.

Slide.:

32 / 37
Computer Structure and Organization

Graduated in Computer Sciences / Graduated in Computer Engineering Automatic Department

Directives (XX)
Data directives (XIX). MASM control (I)

  Mnemonic: END

  Format: END [expression]

  Description: states end source file. “expresión” operand
indicates begining source program address. If several
modules are used only main module can use this
expression.

  Example: END begin

Lesson 5: Instruction format. Directives, string instructions and several modules programs.

Slide.:

33 / 37
Computer Structure and Organization

Graduated in Computer Sciences / Graduated in Computer Engineering Automatic Department

Directives (XXI)
Data directives (and XX). MASM control (and II)

  Mnemonic: .RADIX

  Format: .RADIX expression

  Description: establishes number base by default.
Expression is allwais expressed in 10 base.

  Example: .RADIX 16

Lesson 5: Instruction format. Directives, string instructions and several modules programs.

Slide.:

34 / 37
Computer Structure and Organization

Graduated in Computer Sciences / Graduated in Computer Engineering Automatic Department

Directives (XXII)
Conditional directives

  Assembly program ignore or not some portions of the source file.
 IFxxx [condition]
 ...
 ELSE
 ...
 ENDIF

  ELSE statement is optional

  Example:
–  PRUEBA = 0
–  IF PRUEBA EQ 0
–  ... ; Instructions used in test only
–  ...
–  ENDIF

Lesson 5: Instruction format. Directives, string instructions and several modules programs.

Slide.:

35 / 37
Computer Structure and Organization

Graduated in Computer Sciences / Graduated in Computer Engineering Automatic Department

Directives (and XXIII)
Listing directives

  What to print and printing format
  Listing directives are classified into:

–  List format:
 PAGE, TITLE, SUBTTL

–  Macro list:
  .LALL: list macros and their expanssions
  .SALL: macros and their expanssions are not

printed
–  Remarks:

 COMMENT
–  Menssages:

 %OUT: output a message during assembly process

Lesson 5: Instruction format. Directives, string instructions and several modules programs.

Slide.:

36 / 37
Computer Structure and Organization

Graduated in Computer Sciences / Graduated in Computer Engineering Automatic Department

Several modules assembling (I)

  EXTRN and PUBLIC directives are used to share data information and
definition between different modules during assembling and linking processes

  Link syntax when individual OBJ are created is:
LINK [opciones] módulos_objeto, [ejecutable];

Todo.exe

Lesson 5: Instruction format. Directives, string instructions and several modules programs.

Slide.:

37 / 37
Computer Structure and Organization

Graduated in Computer Sciences / Graduated in Computer Engineering Automatic Department

Several modules assembling (and II)

Program 2
Extrn variable: byte
Public texto2
Public Leer
Dosseg
.model small
.stack 100h
.data
 texto2db ‘Has pulsado$’
.code
Leer proc far
 mov ax, @data
 mov ds, ax
 mov ah, 1
 int 21h

Program 1 (ongoing)
 int 21h
 call leer
 lea dx, texto2,
 mov ah, 9
 int 21h
 Mov dl, variable
 Mov ah, 2
 Int 21h
 mov ah,4Ch
 int 21h
End inicio

Program 1
Extrn texto2: byte
Extrn leer: far
Public variable
Dosseg
.model small
.stack 100h
.data
 texto db ‘Pulsa tecla$’
 variable db ?
.code
 inicio: mov ax, @data
 mov ds, ax
 lea dx, texto
 mov ah, 9

Program 2 (ongoing)
mov variable, al
ret
Leer endp
End

Assembling and linking the
program

Masm prg1;
Masm prg2
Link prg1 prg2, todo

