
1 

Lesson 2. Instruction set design 

Computers Structure and 
Organization 

Graduated in Computer Sciences 
Graduated in Computers Engineering 

Computers Structure and Organization.                                   
Graduate  in Computer Sciences 

Graduate in Computer Engineering Automatic Department 

Lesson 2:  

Instruction set design 
Slide: 2 / 54 

Computers Structure and Organization.                                   
Graduate  in Computer Sciences / Graduate in Computer Engineering Automatic Department 

Contents 

  Basic definitions 
  High level languages influence on instruction set design 
  Instructions set parameter to be taken into account 
  Intruction format 
  VLIW technology 
  Binary compatibility 
  Compilers 
  Instruction set examples 
  Bibliography 



2 

Lesson 2:  

Instruction set design 
Slide: 3 / 54 

Computers Structure and Organization.                                   
Graduate  in Computer Sciences / Graduate in Computer Engineering Automatic Department 

Basic concepts (I). Definitions 

  Instruction set: is the set of all the operations the computer is able to 
perform. 

  Instruction: is an operation represented in 0’s and 1’s which will be 
interpreted and executed by the computer 

  Machine instruction: 0’s and 1’s string corresponding to a single 
instruction 

  Machine code: is the representation of the instruction set as machine 
instructions 

  Assembly language: is a set of mnemonics. These mnemonics 
correspond to machine instruction. Each mnemonic correspond to a 
single machine instruction 

Lesson 2:  

Instruction set design 
Slide: 4 / 54 

Computers Structure and Organization.                                   
Graduate  in Computer Sciences / Graduate in Computer Engineering Automatic Department 

Basci concepts (II). Programming 

  High level language programa creation process 
PROGRAM Ppal 
(input, output) 
VAR 
  num: integer; 
  ok: boolean; 
BEGIN 
  readln(num); 

…………. 

Inicio: 
   add ax, 1000h 
   jc fin 
   inc si 

…… 

_____
_____ 
_____ 

Compiler 
Assembler 

Linker 

Assembly program Object module 

Libraries 

Executable 

Source 
program 

(PASCAL) 

_____
_____ 
_____ 

_____
_____ 
_____ 

_____
_____ 
_____ 

_____
_____ 
_____ 



3 

Lesson 2:  

Instruction set design 
Slide: 5 / 54 

Computers Structure and Organization.                                   
Graduate  in Computer Sciences / Graduate in Computer Engineering Automatic Department 

  How high level languages and operation system services have an 
influence on  the instruction set design 

TYPE vector = ARRAY [1..n] OF tipoelemento; 
PROCEDURE IntercambioDirecto (VAR v: vector); 
VAR i, j: integer; 
        elemento: tipoelemento; 
BEGIN 
   FOR i:= 2 TO n DO 
      FOR j:= n DOWNTO i DO 
         IF v[j-i] > v[j] THEN 
         BEGIN 
            elemento := v[j-i]; 
            v[j-i] := v [j]; 
            v[j] := elemento 
         END 
END; 

  Very often used 
variables storage in 
registers. 

  How many operands are 
modified per instruction 

  Data and addressing 
modes used 

  Compare operation and 
conditional and 
unconditional jumps 

High level languages and instr. set (I). 
Operands storage (I) 

Lesson 2:  

Instruction set design 
Slide: 6 / 54 

Computers Structure and Organization.                                   
Graduate  in Computer Sciences / Graduate in Computer Engineering Automatic Department 

PROGRAM Principal (input, output); 
VAR   v: vector; 

BEGIN 
   LeerVector ( v ); 
   IntercambioDirecto ( v ); 
   MostrarVector ( V ); 
   writeln (‘Progama finalizado’) 
END. 

  Functions and 
procedures calls 

  Operting systems 
service invocation 

High level languages and instr. set (&II). 
Operands storage (and II) 

  How high level languages and operation system services have an 
influence on  the instruction set design 



4 

Lesson 2:  

Instruction set design 
Slide: 7 / 54 

Computers Structure and Organization.                                   
Graduate  in Computer Sciences / Graduate in Computer Engineering Automatic Department 

Instruction set parameters (I) 

  What to be taken into account when designing instruction sets 

Lesson 2:  

Instruction set design 
Slide: 8 / 54 

Computers Structure and Organization.                                   
Graduate  in Computer Sciences / Graduate in Computer Engineering Automatic Department 

Instruction set parameters (II). 
Outside CPU storage alternatives 



5 

Lesson 2:  

Instruction set design 
Slide: 9 / 54 

Computers Structure and Organization.                                   
Graduate  in Computer Sciences / Graduate in Computer Engineering Automatic Department 

Instruction set parameters (III). 
Memory storage 

  General purpose register file machines advantages (GPR) 
–  Flexibility in evaluating expression and reordering code 
–  Register can be used to storage often used variables to reduce traffic 

between memory and CPU 
  Compiler designers preffer non-dedicated registers 
  The number of registers depend on how will be used by the 

compiler. 
–  Requiered registers for expression evaluations 
–  Requiered register for parameter passing 
–  Required register for variables storage 

Lesson 2:  

Instruction set design 
Slide: 10 / 54 

Computers Structure and Organization.                                   
Graduate  in Computer Sciences / Graduate in Computer Engineering Automatic Department 

Instruction set parameters (IV). 
Memory storage 

  GPR classifiction: 

–  ALU number of oferands  2 or 3 
–  ALU memory operands from 0 to 3 



6 

Lesson 2:  

Instruction set design 
Slide: 11 / 54 

Computers Structure and Organization.                                   
Graduate  in Computer Sciences / Graduate in Computer Engineering Automatic Department 

Instruction set parameters (V). 
Memory addressing 

  How is a memory address interpretated? Byte, half word, word, 
double word 

  There two ways to storage the bytes of a word in memory depending 
on where the xx…xx00 byte address is located.  

  32 bits word 12345678h is to be stored from 100h memory address. 

Lesson 2:  

Instruction set design 
Slide: 12 / 54 

Computers Structure and Organization.                                   
Graduate  in Computer Sciences / Graduate in Computer Engineering Automatic Department 

Instruction set parameters (VI). 
Memory addressing 

  Longer than a byte objects must be alligned in some architectures 
  And object od s bytes is alligned on A address if  A mod s = 0 



7 

Lesson 2:  

Instruction set design 
Slide: 13 / 54 

Computers Structure and Organization.                                   
Graduate  in Computer Sciences / Graduate in Computer Engineering Automatic Department 

Instruction set parameters (VII). 
Memory addressing 

  A non-alligned memory access has several memory references 

  Even non required allignement machines are faster in accessig 
alligned memory references 

  Aligned and non-alligned different object sizes examples: 

Lesson 2:  

Instruction set design 
Slide: 14 / 54 

Computers Structure and Organization.                                   
Graduate  in Computer Sciences / Graduate in Computer Engineering Automatic Department 

Instruction set parameters (VIII). 
Addressing modes 

  How an instruction can access to the operands 

–  Inmediated: operand is inside the machine code instruction. 
–  Direct to register: machine code instruction contains the name of the 

register 
–  Direct to memory: machine code instriction codifies the operand memory 

address. 
–  Relative: an offset must be added to a register to access to the operand 
–  Indirect: the coded address inside the machine code instruction is not the 

address itselft but its memory address 
–  Implícit: there is not any reference to the operand in the machine code 

instruction because instruction works with a fixed operand  

  The name of the addressing mode may change from one vendors 
to others. 



8 

Lesson 2:  

Instruction set design 
Slide: 15 / 54 

Computers Structure and Organization.                                   
Graduate  in Computer Sciences / Graduate in Computer Engineering Automatic Department 

Instruction set parameters (IX).  
Addressing modes 

  Addressing modes influence: 

–  Addressing mode instruction influences in the number of cycles execution 
–  Cycle clock is influenced by addressing modes 
–  Addressing mode set influences in hardware complexity 

  Addressing modes dependency: 

–  Addressing modes codification depends on the relationship between them 
and operation codes 

–  Addressing modes codification depends on the allowed range for specified 
addreesing modes, e.g. offsets 

Lesson 2:  

Instruction set design 
Slide: 16 / 54 

Computers Structure and Organization.                                   
Graduate  in Computer Sciences / Graduate in Computer Engineering Automatic Department 

Instruction set parameters (X).  
Addressing modes use frequence 

  VAX addressing mode use frequency 



9 

Lesson 2:  

Instruction set design 
Slide: 17 / 54 

Computers Structure and Organization.                                   
Graduate  in Computer Sciences / Graduate in Computer Engineering Automatic Department 

Instruction set parameters (XI).  
Addressing modes use frequence 

  VAX immediate data use frequency 

Lesson 2:  

Instruction set design 
Slide: 18 / 54 

Computers Structure and Organization.                                   
Graduate  in Computer Sciences / Graduate in Computer Engineering Automatic Department 

Instruction set parameters (XII).  
Operands size 

  How to codify an operand: 
–  Operand is codified in operation code 
–  Tagged operands (operand type and operation) 

  Operand type shows its size 
  Often operand sizez: 

–  Byte 
–  Half word (16 bits) 
–  Word (32 bits) 
–  Single precision floating point (32 bits) 
–  Double precision floating point (64 bits) 
–  Character (byte) ASCII or EBCDIC 
–  Packed or unpacked BCD 



10 

Lesson 2:  

Instruction set design 
Slide: 19 / 54 

Computers Structure and Organization.                                   
Graduate  in Computer Sciences / Graduate in Computer Engineering Automatic Department 

Instruction set parameters (XIII).  
Instruction set 

  Arithmetical-logical, control, and data transference instructions are 
supported by all microprocessors 

  System instructions may vary a lot from one architecture to another 
  Floating point, decimal and string instruction may, or may not, exist in 

different microprocessors 

Lesson 2:  

Instruction set design 
Slide: 20 / 54 

Computers Structure and Organization.                                   
Graduate  in Computer Sciences / Graduate in Computer Engineering Automatic Department 

Instruction set parameters (XIV).  
Instruction set 

  Program control instructions: 

–  Modify program execution 
instruction sequence 

–  Types of control instructions 
  Conditional jumps 
  Unconditional jumps 
  Procedures / interrupts calls 
  Procedures / interrupts returns 

–  Jumping addresses must be 
always specified 

–  Jumps are specified by using 
relative to program counter 
addressing mode 



11 

Lesson 2:  

Instruction set design 
Slide: 21 / 54 

Computers Structure and Organization.                                   
Graduate  in Computer Sciences / Graduate in Computer Engineering Automatic Department 

Instruction set parameters (XV).  
Instruction set 

  How to evaluate jump conditions: 

  Flag register: one or more bits of the flag register record the result of 
the operaration, e.g., carry, signed, ... 

–  Advantage: only one bit is used 
–  Drawbacks: superescalar dependence problems 

  One general purpose register: one register is set to 0 or to 1 
dependign on the result of the operation 

–  Advantage: Dependence is simplified 
–  Drawback: A full register is required 

  By using a test and set instruction: instruction for generating the 
condition and jumping is the same  

–  Advantage: is solved in only one instruction 
–  Drawback: CPI instruction may be increased 

Lesson 2:  

Instruction set design 
Slide: 22 / 54 

Computers Structure and Organization.                                   
Graduate  in Computer Sciences / Graduate in Computer Engineering Automatic Department 

Instruction set parameters (XVI).  
Instruction set 

  Conditional jump comparation frequency 



12 

Lesson 2:  

Instruction set design 
Slide: 23 / 54 

Computers Structure and Organization.                                   
Graduate  in Computer Sciences / Graduate in Computer Engineering Automatic Department 

Instruction set parameters (and XVII).  
To take into account when designing 

  Summary of parameters to be taken into account when designing an 
instruction set: 

–  Parameter 1: CPU operands storage 

–  Parameter 2: number of explicit operand in each instruction 

–  Parameter 3: addressing modes 

–  Parameter 4: Operand types and sizes 

–  Parameter 5. instruction types to be taken into account by the instruction set 

Lesson 2:  

Instruction set design 
Slide: 24 / 54 

Computers Structure and Organization.                                   
Graduate  in Computer Sciences / Graduate in Computer Engineering Automatic Department 

Instruction formats (I).  
Design alternatives 

  CISC: Complex Instruction Set 
Computer 

–  A lot of addressing modes 

–  A great deal of operation types 

–  High complexity instruction 
rarely used 

–  E.g. I80x86, M680x0 

  RISC: Reduced Instruction Set 
Computer 

–  A few addressing modes 

–  Simple and few instruction types 

–  Very regular instruction formats 

–  E.g. ARM, MIPS R4000, SPARC 

  CISC or RISC are available when designing 



13 

Lesson 2:  

Instruction set design 
Slide: 25 / 54 

Computers Structure and Organization.                                   
Graduate  in Computer Sciences / Graduate in Computer Engineering Automatic Department 

Instruction formats (II).  
Instruction coding 

  Criteria to be taken into account: 
–  Source code size is related to memory accesses and therefore to 

execution time. 
–  Type and number of instructions to be decoded is related to execution time 

again 
–  The computer must be easily programmed 

  Balance in design: 
–  Between number of registers and addressing modes 
–  Instruction size must be in multiples of the word 
–  Memory accesses must be in word or cache line size 

Lesson 2:  

Instruction set design 
Slide: 26 / 54 

Computers Structure and Organization.                                   
Graduate  in Computer Sciences / Graduate in Computer Engineering Automatic Department 

Instruction formats (III).  
Instruction coding 

  Instruction code must contained: 
–  Operation code: identifies the operation to be performed 
–  Source operands: the operands on which operation is performed 
–  Target operand: where result will be stored 
–  Next instruction address: where is next program instruction 

  To take into account: 
–  CISC, such as i80x86, often use one of the operands as source and target 

of the instruction 
–  RISC usually employ three operands for ALU operations: two sources and 

one target 



14 

Lesson 2:  

Instruction set design 
Slide: 27 / 54 

Computers Structure and Organization.                                   
Graduate  in Computer Sciences / Graduate in Computer Engineering Automatic Department 

Instruction formats (IV).  
Instruction coding 

  General characteristics: 
–  Systematic format: fields use fixed positions. 
–  Operation code: or its extension is the first field 
–  They are multiple of the computer word: for memory access 

optimization 
  Instruction format alternatives: 

–  Fixed format: it’s very difficult to implement it because it uses the same 
format for all instruction types 

–  Variable format: operation code, extended operation codes, variable 
number of operands and different addressing modes are used 

–  Mixed format : two or three fixed format are use to fit instructions 
–  Orthogonal format: whatever instruction may use whatever operand and 

whatever addressing mode 

Lesson 2:  

Instruction set design 
Slide: 28 / 54 

Computers Structure and Organization.                                   
Graduate  in Computer Sciences / Graduate in Computer Engineering Automatic Department 

Instruction formats (and V).  
Instruction coding 

  Advices to be taken into account when designing instruction sets: 
–  Balance. Try to get number of registers and addressing modes balanced 
–  Instruction size must be multiple of computer word. The best: the 

instruction size is only one word 
–  Source program code. Depending on the addressing modes, number of 

registers and instruction types source program code may be longer or not 
and then execution time also depends on it 

–  Decoding. Instruction decoding time increases when using complex 
instructions or addressing modes. Execution time depends on it too 

–  Programming. Depending on the number of addressing modes and register 
it will be easy, or not,  to program the computer 

–  Compiler. Instruction formats must facilitate to compiler code generation 



15 

Lesson 2. Instruction set design 

Computers Structure and 
Organization 

Graduated in Computer Sciences 
Graduated in Computers Engnieering 

Achademic course 2011-2012 
Computers Structure and Organization.                                   

Graduate  in Computer Sciences 
Graduate in Computer Engineering Automatic Department 

Lesson 2:  

Instruction set design 
Slide: 30 / 54 

Computers Structure and Organization.                                   
Graduate  in Computer Sciences / Graduate in Computer Engineering Automatic Department 

Contents 

  Basic definitions 
  High level languages influence on instruction set design 
  Instructions set parameter to be taken into account 
  Intruction format 
  VLIW technology 
  Binary code compatibility 
  Compilers 
  Instruction set examples 
  Bibliography 



16 

Lesson 2:  

Instruction set design 
Slide: 31 / 54 

Computers Structure and Organization.                                   
Graduate  in Computer Sciences / Graduate in Computer Engineering Automatic Department 

Contents 

  Basic definitions 
  High level languages influence on instruction set design 
  Instructions set parameter to be taken into account 
  Intruction format 
  VLIW technology 
  Binary compatibility 
  Compilers 
  Instruction set examples 
  Bibliography 

Lesson 2:  

Instruction set design 
Slide: 32 / 54 

Computers Structure and Organization.                                   
Graduate  in Computer Sciences / Graduate in Computer Engineering Automatic Department 

VLIW technology (I) 

  RISC technology easily allows microprocessor segmentation. In 
such way, several instruction may be executed at once 

  Dependencies between instructions appear in segmentation. Two 
alternatives to face them: 

–  To detect dependencies and reorder the source code in execution time. 
Hardware is required 

–  To detect dependecies and reorder the source code in compilation time 
  VLIW technology uses the second alternative 



17 

Lesson 2:  

Instruction set design 
Slide: 33 / 54 

Computers Structure and Organization.                                   
Graduate  in Computer Sciences / Graduate in Computer Engineering Automatic Department 

VLIW technology (II) 

  VLIW machines have a compiler that group several independent 
instruction in an only big instruction. They are splitted in independent 
operation and dispatched in different functional units when they are 
decoded by the control unit 

  Compiler packs independent instruction in a big one 
  Functional units and clock speed may be improved because no 

hardware is required to detect and correct dependecies in execution 
time 

  Drawback: each compiler only works on an architecture  (CISC or 
RISC) 

Lesson 2:  

Instruction set design 
Slide: 34 / 54 

Computers Structure and Organization.                                   
Graduate  in Computer Sciences / Graduate in Computer Engineering Automatic Department 

VLIW technology (and III) 

EU EU EU 

Multioperation instruction Fetch 
Unit 

Instruct. 
Cache 

Register file 

VLIW 



18 

Lesson 2:  

Instruction set design 
Slide: 35 / 54 

Computers Structure and Organization.                                   
Graduate  in Computer Sciences / Graduate in Computer Engineering Automatic Department 

Binary code compatibility (I) 

  Binary code translation is the used technique to change a designed 
program for an architecture and operating system into another 
program designed to run in a different archicture and operating 
system 

  Using native compilers and source program files isthe best alternative 
but it’s not frequently possible 

Lesson 2:  

Instruction set design 
Slide: 36 / 54 

Computers Structure and Organization.                                   
Graduate  in Computer Sciences / Graduate in Computer Engineering Automatic Department 

Binary code compatibility (and II) 

  Binary code translation techniques: 
–  Software interpreter. A program reads instruction by instruction the 

program of the old architecture and translate it to the new one. They are 
not very quickly 

–  Microcode emulator. Similar to above technique but it only works in 
microcode machines by adding hardware to help in old instruction 
translation 

–  Binary code translator. They are sequences of instructions of the new 
architecture that translate the old one sentences. Some of the flag register 
information is stored in the new one.  

–  Native compilers. It’s the quickest alternative by recompiling last source 
program  



19 

Lesson 2:  

Instruction set design 
Slide: 37 / 54 

Computers Structure and Organization.                                   
Graduate  in Computer Sciences / Graduate in Computer Engineering Automatic Department 

Compilers (I) 

  Compiler: it’s a program that translates a source program created in a 
high level language to a machine code object program ready to run in 
a computer with few or none additional information (PSP) 

  Compilers types: 
–  Assembler. Translates a mnemonic language to machine code language 
–  Crossed compiler. Translates to a different computer and operating 

system that using for compilation it 
–  One or more passed compiler. One or more passes must be taken to 

get object program 
–  Incremental compiler. Compiles discovered fixed errors only 
–  Decompiler. It’s the opposite process of a compiler 

Lesson 2:  

Instruction set design 
Slide: 38 / 54 

Computers Structure and Organization.                                   
Graduate  in Computer Sciences / Graduate in Computer Engineering Automatic Department 

Compilers (II).  
Compiler structure 

Source 

Objet 

Compiler 

Symbols 
table 

FOR 
tables 

Strings 

Constants 

Analysis 
Scanner 

Parser 

Synthesis 
Code 

Generation 
prepatation 

Code 
generation 



20 

Lesson 2:  

Instruction set design 
Slide: 39 / 54 

Computers Structure and Organization.                                   
Graduate  in Computer Sciences / Graduate in Computer Engineering Automatic Department 

  Pascal sentence to be compiled: 
–  Speed:= InitialSpeed+ Acceleration x Time; 

Scanner output: 
–  Variable = Variable + Variable x Variable Delimiter 

  Parser output: 
<sentence> 

 <assign sentence>  <delimiter> 
<variable>    <expression> 

    <expression>     +    <term> 
      <expression> 
    <tern>     <term>  <factor> 
    <factor>         <factor> 

Variable  =  Variable  +    Variable     x  Variable 
Syntax analysis result: it’s a valid Pascal sentence 

Compilers (III).  
Compilation process example 

Lesson 2:  

Instruction set design 
Slide: 40 / 54 

Computers Structure and Organization.                                   
Graduate  in Computer Sciences / Graduate in Computer Engineering Automatic Department 

  Parser code generation preparation output: 

–  Variable Variable Variable Variable x + = 
Polish inverse notation is used 

  I80x86 assembly sentences: 

MOV AL, Acceleration 
MUL Time 
ADD AL, InitialSpeed 
MOV Speed, AL 

Compilers (IV).  
Compilation process example 



21 

Lesson 2:  

Instruction set design 
Slide: 41 / 54 

Computers Structure and Organization.                                   
Graduate  in Computer Sciences / Graduate in Computer Engineering Automatic Department 

Compilers (V).  
Compiler blocks dependency 

Lesson 2:  

Instruction set design 
Slide: 42 / 54 

Computers Structure and Organization.                                   
Graduate  in Computer Sciences / Graduate in Computer Engineering Automatic Department 

Compilers (VI).  
Code optimizations 

  Performance can be improved between 60% and 80% by using global 
and local optimizations 



22 

Lesson 2:  

Instruction set design 
Slide: 43 / 54 

Computers Structure and Organization.                                   
Graduate  in Computer Sciences / Graduate in Computer Engineering Automatic Department 

Compilers (VII).  
Code optimizations 

  Inline procedures exameple: 
PROCEDURE EmptyTable (VAR T: 

Table) 
BEGIN 

 T.NumberOfItems := 0 
END; 

Without inline expansion: 

EmptyTablePROC 
 MOV T.NumberOfItems, 0 
 RET 

EmptyTableENDP 
. 
. 
. 

CALL EmptyTable 

With inline expansion: 

 MOV T.NumberOfItems,0 

  It’s a very simple procedure to 
expand it 

Lesson 2:  

Instruction set design 
Slide: 44 / 54 

Computers Structure and Organization.                                   
Graduate  in Computer Sciences / Graduate in Computer Engineering Automatic Department 

Compilers (VIII).  
Code optimizations 

  Common redundant expresions removal: 

. 

. 
Cost:= Quantity x PUnit; 
Off:=  
   Quantity x PUnit x Percent; 

. 
.. 

Cost:= Quantity x PUnit; 
. 
. 

. 

. 
Temp0 := Quantity x PUnit; 
Off:= Temp0 x Percent; 

. 

. 

. 
Temp0 := Quantity x PUnit; 

. 

. 



23 

Lesson 2:  

Instruction set design 
Slide: 45 / 54 

Computers Structure and Organization.                                   
Graduate  in Computer Sciences / Graduate in Computer Engineering Automatic Department 

Compilers (IX).  
Code optimizations 

  Decrease stack size: 

Energy := InitialEnergy+ Mass x Exp(Acceleration, 2); 

Energy InitialEnergy Mass Acceleration Acceleration x x + = 

Lesson 2:  

Instruction set design 
Slide: 46 / 54 

Computers Structure and Organization.                                   
Graduate  in Computer Sciences / Graduate in Computer Engineering Automatic Department 

Compilers (X).  
Code optimizations 

  Code reordering: 

MOV CX, 4 
MOV SI, 0 
Again: 

 MOV AH, 2 
 MOV DL, String[SI] 
 INC SI 
 LOOP Again 

MOV CX, 4 
MOV SI, 0 
MOV AH, 2 
Again: 

 MOV DL, String[SI] 
 INC SI 
 LOOP Again 



24 

Lesson 2:  

Instruction set design 
Slide: 47 / 54 

Computers Structure and Organization.                                   
Graduate  in Computer Sciences / Graduate in Computer Engineering Automatic Department 

Compilers (XI).  
Code optimizations 

  Power decrease 

MOV AL, Pi 
MUL Radius 
MUL 2 
MOV Perimetre, AL 

MOV AL, Pi 
MUL Radius 
SHL AL, 1 
MOV Perimetre, AL 

Lesson 2:  

Instruction set design 
Slide: 48 / 54 

Computers Structure and Organization.                                   
Graduate  in Computer Sciences / Graduate in Computer Engineering Automatic Department 

Compilers (and XII).  
Code optimizations 

  Segmentation planning: 

ADD AL, BL 

MOV CL, AL 

XOR DX, DX 

INC DL 

ADD AL, BL 

XOR DX, DX 

MOV CL, AL 

INC DL 



25 

Lesson 2:  

Instruction set design 
Slide: 49 / 54 

Computers Structure and Organization.                                   
Graduate  in Computer Sciences / Graduate in Computer Engineering Automatic Department 

Instruction sets examples (I).  
Alpha vs. i80x86 

  Alpha architecture: general specification 
–  64 bits architecture 
–  Parallel execution 
–  Multiprocessor configuration 
–  High speed clock 
–  Non-oriented to a specific operating system 
–  Non-oriented to a specific high level language 

  I80x86 architecture: general specification 
–  16 bits architecture evolved to 32 bits one 
–  Binary code compatibility 
–  CISC instruction set 
–  Difficulty in adapting to segmented execution 
–  Difficulty in adapting to superscalar systems 

Lesson 2:  

Instruction set design 
Slide: 50 / 54 

Computers Structure and Organization.                                   
Graduate  in Computer Sciences / Graduate in Computer Engineering Automatic Department 

Instruction sets examples (II). Alpha 

  Parameter 1: operands storage in cPU 
–  32 integer general purpose registers 
–  32 floating point general purpose registers 

  Parameter 2: explicit operands per instruction 
–  3 operands 

  Parameter 3: addressing modes 
–  Execution model: register-register 
–  Alignment required 
–  Little-endian by default. It’s possible to change it to big-endian 
–  Unique memory addressing mode: relative to register 
–  One of the three operands may be an immediate datum 



26 

Lesson 2:  

Instruction set design 
Slide: 51 / 54 

Computers Structure and Organization.                                   
Graduate  in Computer Sciences / Graduate in Computer Engineering Automatic Department 

Instruction sets examples (III). Alpha 
  Parameter 4: operand types and sizes 

–  Process instruction work on 64 bits 
–  Memory access instructions allow: byte, word (16), longword (32) 
–  Sign extension required to work with  fewer than 64 bits data 
–  Allowed types are: unsigned, integer and IEEE and VAX floating point 

formats 
  Parameter 5: instructions set 

–  Memory access instructions 
–  Control instructions 
–  Process instructions 
–  Floating point instructions 
–  Miscellanea instructions: system calls, memory management, … 
–  Multimedia instructions 

Lesson 2:  

Instruction set design 
Slide: 52 / 54 

Computers Structure and Organization.                                   
Graduate  in Computer Sciences / Graduate in Computer Engineering Automatic Department 

Instruction sets examples (IV). i80x86 

  Parameter 1: operands storage in CPU 
–  8 integer “quasi” general purpose registers 
–  8 floating point  “quasi” general purpose registers with stack access 

  Parameter 2: explicit operands per instruction 
–  2 operands. One of the is source and target of the instruction 

  Parameter 3: adrressing modes 
–  Execution model: register-memory 
–  Alignment  recommended but no requested 
–  Little-endian 
–  Addressing modes: immediate, relative to register, direct to memory, direct 

to register, indirect and implicit 
–  Floating point operand are always in the stack 



27 

Lesson 2:  

Instruction set design 
Slide: 53 / 54 

Computers Structure and Organization.                                   
Graduate  in Computer Sciences / Graduate in Computer Engineering Automatic Department 

Instruction sets examples (and V). 
i80x86 

  Parameter 4: tipo y tamaño de los operandos 
–  Trabaja con tamaños de byte, palabra (16) y doble palabra (32) 
–  El coprocesador matemático emplea además enteros de 64 y 80 bits y 

coma flotante de 32, 64 y 80 bits 
–  Los tipos permitidos son entero con y sin signo y los formatos para coma 

flotante del estándar IEEE 754 
  Parameter 5: conjunto de instrucciones 

–  Instrucciones de transferencia de datos 
–  Instrucciones de control 
–  Instrucciones de proceso 
–  Instrucciones de coma flotante 
–  Instrucciones de manejo de cadenas 
–  Instrucciones misceláneas: llamadas al sistema, gestión de memoria, … 
–  Instrucciones multimedia: MMX, MMX2, SSEnn, 3DNow, … 

Lesson 2:  

Instruction set design 
Slide: 54 / 54 

Computers Structure and Organization.                                   
Graduate  in Computer Sciences / Graduate in Computer Engineering Automatic Department 

Bibliography 

  Estructura y diseño  de computadores  
David A. Patterson y John L. Hennessy. Reverté, 2000 
Capítulo 3 

  Arquitectura de computadores. Un enfoque cuantitativo 
John L. Hennessy y David A. Patterson. Mc Graw Hill, 3ª ed, 2002 
Capítulos 3 y 4 y apéndices B, C, D y E 

  Estructura de computadores.  
José Mª. Angulo. Paraninfo, 1996 
Capítulo 2 y 9 


