

Apellidos, Nombre:

Examen de teoría (4 puntos)

El examen constará de dos partes:

- 1ª parte: Test, con una puntuación de 4 puntos y 30 minutos de tiempo
- 2ª parte: Ejercicios prácticos, con una puntuación de 6 puntos y 2 horas de tiempo
- En las preguntas en que se incluye un cuadro en blanco, no se considerarán como válidas las respuestas en las que no se justifiquen los cálculos realizados

 No se permite el uso de ningún tipo de documentación, e Sólo se considera una única opción como correcta por p Tiempo máximo 30 minutos 	
■ Puntuación test: Respuesta correcta ⇒ 1 Respuesta incorrecta ⇒ −0,3 Pr	egunta no contestada ⇔ 0
 Si un computador X ejecuta un programa de 600 millones de segundos y un computador Y tarda 25 segundos en ejecutar ¿ Cuantas veces es más rápido el computador Y que el X? a) 18,75 b) 24 c) 1,28 d) 0,78125 	
 2) Cual de los siguientes se utiliza como registro índice: [_] a) DI. [_] b) IP [_] c) SI. [_] d) a y c son correctas. 	
 3) Cual de las siguientes afirmaciones es incorrecta: [_] a) La BOOT contiene la descripción física del disco. [_] b) La BOOT contiene la rutina de carga del S.O. [_] c) La BOOT contiene información sobre la ubicación de directorios. [_] d) La BOOT contiene información sobre tamaño de la FAT y 	•
 4) ¿ Que tipo de direccionamiento emplea la instrucción MOV E operando fuente? [_] a) Relativo [_] b) Implícito [_] c) Directo [_] d) Otro: Inmediato 	3X, 10h para el
 5) Cual de las siguientes afirmaciones es incorrecta: [_] a) Las impresoras de matriz de puntos no ofrecen posibilitarios. [_] b) Las impresoras de sublimación controlan la cantidad de t distintas temperaturas. 	

[_] c) Las impresoras margarita usan tecnología de impacto.

[_] d) En las impresoras laser el toner se fija al papel mediante calor.

Apellidos, Nombre:	
6) Indicar el valor del siguiente número expresado en coma fija con a 127: 0111 1111 [_] a) 127 [_] b) -127 [_] c) 0 [_] d) Otro valor:	01111 1111 = 127 en exceso 127-127 = 0
7) Contesta, brevemente, en qué consiste el ciclo de memoria: En las memorias el tiempo de acceso:	
Ver apuntes de teoría	
8) Cual es el comando xxxx en la siguiente instrucción: xxxx AX, 00 Que pone AL = FF para cualquier valor de AX [_] a) NEG [_] b) AND [_] c) OR [_] d) XOR	DFFh.
9) El número hexadecimal 7A, es igual a: [_] a) 80 decimal [_] b) 122 en base 10 [_] c) 1110 1010 en binario [_] d) Otro valor:	$7A_h = 0111 \ 1010_b =$ $= 2^6 + 2^5 + 2^4 + 2^3 + 2^1 =$ $= 122_d$
10) Dada la instrucción MOV AL, NUMERO y los datos proporcionad CS = 500F h, DS = 400F h, IP = 0010 h, AX = 0002 h, NUMERO ha posición de memoria 00BA h Calcular la dirección física de memoria del operando fuente. [_] a) 50100 [_] b) 400F2 [_] c) El dato no se encuentra en memoria pues AL es un registro. [_] d) Otro valor401AA	

Apellidos, Nombre:

Examen de problemas (6 puntos)

- No se permite el uso de ningún tipo de documentación, ni de calculadora
- Un error grave de concepto puede suponer un 0 en el ejercicio
- Tiempo máximo 2 horas

PROBLEMA 1 (2 puntos)

- a. Calcular el valor del siguiente número representado en coma flotante con las siguientes características: **(0,5 puntos)**
 - La mantisa es fraccionaria tiene 12 bits y está expresada en complemento a 2
 - Mantisa normalizada pero no se usa bit implícito.
 - Para el exponente se emplean 8 bits y está en exceso.

Sol:

Exponente = 131en exceso a 127 => 131-127 = 4 Mantisa = 1011 1010 0000, en C2 es negativa, luego hay que descomplementar: $0100\ 0110\ 0000$ $(0,\ 0100\ 0110\ 0000)$ * 2^4 = -(100,011) = -4,375

b. Calcular el rango de representación para el formato anterior. (0,5 puntos)
 Sol:

Rango Exponente:
$$[2q^{-1} -1; -2q^{-1}] = (127, -128)$$

Rango Mantisa: $[-2^{-1}; -(2^{-2}+2^{-p}); 2^{-2}; (2^{-1}-2^{-p})) \rightarrow [-2^{-1}; -(2^{-2}+2^{-12}); 2^{-2}; (2^{-1}-2^{-12})]$
De donde el rango total será: $[-2^{-1}*2^{127}; -(2^{-2}+2^{-12}) *2^{-128}; 2^{-2}*2^{-128}; (2^{-1}-2^{-12}) *2^{127}]$

c. Teniendo el mismo número de bits para el exponente y la mantisa, si ahora la mantisa utilizase bit implícito. ¿El rango de representación será mayor o menor que en el apartado anterior? Justificar. (0,5 puntos)

Sol: Es mayor,

El rango del exponente queda igual pero ahora el de la mantisa es: Rango Mantisa: $[-2^{-1}; -(2^{-2}+2^{-(p+1)}); 2^{-2}; (2^{-1}-2^{-(p+1)}) \rightarrow [-2^{-1}; -(2^{-2}+2^{-13}); 2^{-2}; (2^{-1}-2^{-13})]$ De donde el rango total será: $[-2^{-1}*2^{127}; -(2^{-2}+2^{-13}) *2^{-128}; 2^{-2}*2^{-128}; (2^{-1}-2^{-13}) *2^{127}]$

d. ¿Cuántos bits se necesitan para proteger el número anterior si se emplea hamming? (0,5 puntos)

2^{bits de paridad} >= bits de datos + bits de paridad + 1

Con lo que 2^{bits de paridad} >= 20 + bits de paridad + 1

Por lo que bits de paridad = 5

Apellidos, Nombre:

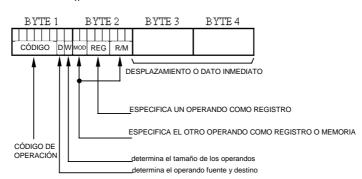
PROBLEMA 2 (2 puntos)

El siguiente programa en ensamblador hace que se introduzca una clave por teclado que se compara con la password: secreto.

	dosseg .model small .stack 100h .data password db 'secreto' long equ \$-password clave db long dup (?) .code
B8173F 8ED8 33DB B90700 B407 CD21 XXXXXXX B22A B402 CD21 43 E2EF B90700 BEFFFF 46 8A840000 3A840700 73FE E1F5 7402 EBFE B44C CD21	inicio: mov ax,@data

AX = 0773 BX = 0000 CX = 0007 DX = 0000 SP = 0100 BP = 0000 DI = 0000 DI = 0000 DS = 3F17 ES = 3F03 SS = 3F19 CS = 3F13 IP = 0022

- a. ¿Que sucede si la clave introducida no coincide con la password?. **(0,5 puntos)**Se queda en el bucle aqui: jmp aqui
- b. Calcular la dirección efectiva y física de todas las variables del programa. **(0,5 puntos)**


Password: DE=0h DF=03F170h Clave: DE=7h DF=03F177h

Apellidos, Nombre:

c. Calcular la dirección física de la instrucción cmp al,clave[si] si los datos de la tabla corresponden al momento en que se va a ejecutar la instrucción mov dl,'*'. (0,5 puntos)

DF= CS * 10h +(IP+ Tamaño instrucciones siguientes) = 3F130 + (0022 + 0014) = 3F166h

d. ¿Cuál es el código máquina de la instrucción mov clave[bx], al si se sabe que el código de operación de la instrucción mov es 100010 (0,5 puntos)

REG	W=0	W=1		
000	AL	AX		
001	CL	CX		
010	DL	DX		
011	BL	BX		
100	AH	SP		
101	CH	BP		
110	DH	SI		
111	BH	DI		
Tabla codificación del				
operando REG				

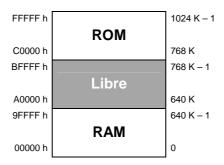
MOD = 11			CÁLCULO DE LA DIRECCIÓN EFECTIVA				
R/M	W = 0	W = 1	R/M	MOD = 00	MOD = 01	MOD =10	
000	AL	AX	000	[BX]+[SI]	[BX]+[SI] + Desplaz.8	[BX]+[SI] + Desplaz.16	
001	CL	CX	001	[BX]+[DI]	[BX]+[DI] + Desplaz.8	[BX]+[DI] + Desplaz.16	
010	DL	DX	010	[BP]+[SI]	[BP]+[SI] + Desplaz.8	[BP]+[SI] + Desplaz.16	
011	BL	BX	011	[BP]+[DI]	[BP]+[DI] + Desplaz.8	[BP]+[DI] + Desplaz.16	
100	AH	SP	100	[SI]	[SI] + Desplaz.8	[SI] + Desplaz.16	
101	CH	BP	101	[DI]	[DI] + Desplaz.8	[DI] + Desplaz.16	
110	DH	SI	110	Dirección directa	[BP] + Desplaz.8	[BP] + Desplaz.16	
111	BH	DI	111	[BX]	[BX] + Desplaz.8	[BX] + Desplaz.16	
Tal	Tabla de codificación para el operando R/M en función del modo de direccionamiento MOD						

Ape	llid	os,	No	mb	re:
-----	------	-----	----	----	-----

PROBLEMA 3 (2 puntos)

Se desea diseñar un computador que cuenta con un bus de direcciones de 20 bits y un bus de datos de 16 bits con las siguientes características de memoria.

640K x 16 de RAM


256K x 16 de ROM

La memoria ROM debe situarse en las posiciones más altas del mapa de memoria direccionable y la memoria RAM debe situarse en las posiciones mas bajas.

Para realizar el diseño disponemos de las siguientes pastillas:

Pastillas de memoria ROM	Pastillas de memoria RAM
128 k x 1	128 k x 1
64 k x 8	256 k x 8
128 k x 16	256 k x 16

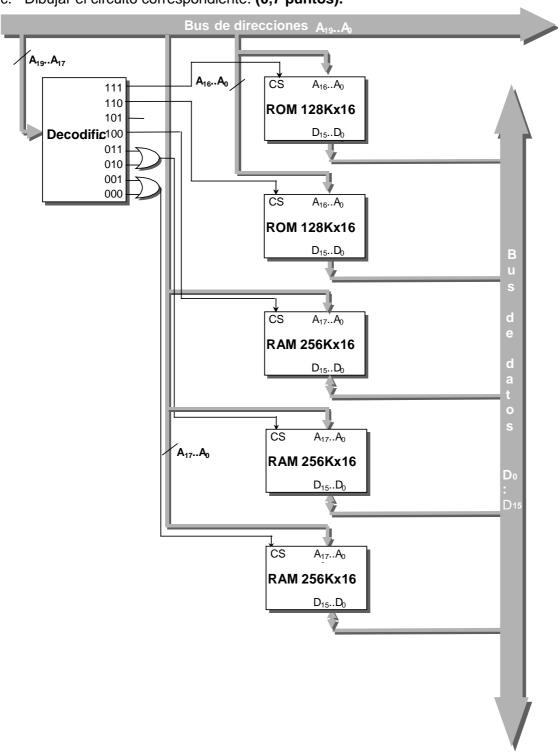
a. Diseñar el mapa de memoria empleando el menor número posible de pastillas. (0,7 puntos)

Apellidos, Nombre:

Sol:

Memoria ROM 256K x 16 / 128 K x 16 = 2 x 1 = 2 módulos de ROM de 128K x16 Memoria RAM 640K x 16 / 256K x 16 = 3 x 1 = 3 módulos de RAM de 256K x16

	A ₁₉	A ₁₈	A ₁₇	A ₁₆		A ₀			
FFFFF h	1	1	1	1		1	1024 K –1	2ª pastilla ROM	
E0000 h	'	'	•	0	•••	0	896 K	2 pastilla NOM	
DFFFF h	4	4	•	1		1	896 K – 1	48 mantilla DOM	
C0000 h	1	1	0	0		0	768 K	1ª pastilla ROM	
BFFFF h	4	0	4	1		1	768 K – 1	LIDDE	
A0000 h	1	0	1	0		0	640 k	LIBRE	
9FFFF h	1	0	0	1		1	640 k – 1	3ª pastilla RAM	
80000 h	-	U	O	0		0	512 K	5" pastilla KAIVI	
7FFFF h	0	1	1	1		1	512 K – 1	Of postillo DAM	
40000 h	U	'	0	0		0	256 K	2ª pastilla RAM	
3FFFF h	0	0	1	1		1	256 K – 1	18 postillo DAM	
00000 h	0	0	0	0		0	0	1 ^a pastilla RAM	


b. ¿A que módulo corresponde las direcciones F7770h y A7770h? (0,3 puntos)

F7770h => 2^a pastilla Rom A7770h => Zona de dir. libre

Apellidos, Nombre:

c. Dibujar el circuito correspondiente. (0,7 puntos).

d. ¿Cuántas pastillas de ROM y de RAM necesitaríamos si la palabra fuera de 32 bits? (0,3 puntos)

Necesitaríamos el doble de pastillas ROM y el doble de RAM, es decir: 6 pastillas de RAM de 256X16 y 4 pastillas de ROM de 128X16