
© Autores
V1.1

Informatics
Ingeniería en Electrónica y Automática Industrial

Pointers

© Autores V1.1
2

Pointers in C language

 Definition

 Pointers operators: «*» and «&»

 Declaration and initialization

 Operations with pointers
 Assignment operations

 Pointer arithmetic

 Pointers types
 Generic

 Null

 Constant

 Arrays and pointers
 Pointer to array

 Arrays of pointers

 Pointer to pointer

 Pointers to structures and unions

© Autores V1.1
3

Pointer definition (I)

 A pointer is a variable that contains the memory address
of another variable

It is an indirection: the variable can be accessed indirectly

It is said that a pointer points to the variable

Example:

 Pointer a points to variable b

From wikibooks.org

© Autores V1.1
4

Pointer definition (II)

 Pointers are a very important tool in C language
They provide fast and efficient access to arrays

They facilitate working with linked lists

They facilitate information exchange between functions

They are essential to
Assign memory dynamically

Manage files

 Pointers must be used with a lot of care to avoid making
serious mistakes very difficult to find

© Autores V1.1
5

Pointers operators: «*» and «&»

 The address operator «&» returns the memory
address of its operand
 It can just be applied to variables and array elements

 punt = &var;

 The indirection operator «*» applied to a pointer
accesses the value of the variable the pointer points to
 It can be used as any other variable without limitations

 *punt = 7.98

 Both operators «*» and «&»
Are associated from left to right

Have higher precedence than arithmetic/logic operations

© Autores V1.1
6

Pointers declaration and initialization (I)

 The declaration of a pointer variable assigns the
necessary memory to store an address

 datatype *pointername;

 datatype is the type of the variable to which the pointer points

 pointername is the label of the memory position that stores
the variable address

 *pointername refers to the value of that variable

 The declaration does not reserve any memory for the variable

 The memory size required to store an address is
always the same, independently of the data type
contained in the address

© Autores V1.1
7

 To initialize a pointer is to make it point to a valid variable

 Variable must exist prior to pointer initialization

 This does not mean that the variable must contain valid data

float *punt; /* Pointer declaration */

float var; /* Variable declaration. They
 must be of the same type*/

punt = &var; /* Pointer initialization. var
 still without valid data*/

punt = 7.98; / Variable initialization
 Equivalent to var = 7.98; */

Pointers declaration and initialization (II)

© Autores V1.1
8

Operations with pointers (I)

 Just operations that can be made with addresses:
Assignment operations

Arithmetic: addition, subtraction, increment and decrement

 Assignment operations
Pointer to pointer:

Both will point to the same address

Both must be of the same type

int data, *punt1, *punt2; /* Declarations */

punt1 = &data; /* punt1 initialization */

punt2 = punt1; /* punt2 points to data*/

© Autores V1.1
9

Operations with pointers (II)

 Arithmetic operations: Let arr be a pointer and n an integer

Addition, Subtraction, Increment/Decrement

 arr+n, arr-n, arr++, arr--

Pointer arithmetics just considers addresses
(pointer arithmetic != ordinary arithmetic)

arr is int type (4 bytes) arr is short int type (2 bytes)

from www.cs.umd.edu

© Autores V1.1
10

Pointer types

 Generic pointer does not point to any data type yet

 void *pointername;

 It is declared generic and later can point to any kind of data

 Null pointer points to address NULL (= 0)

 datatype *pointername = NULL;

NULL is a constant defined in stdio.h

 It is used because address 0 is not valid

 Constant pointer always points to the same address

 datatype *const pointername;

The content of the address do may change though

© Autores V1.1
11

Arrays and pointers (I)

 Every thing that can be done with arrays can also be
done with pointers

Pointer versions are generally faster and more used

 The array identifier is a pointer to its first element

 To access element M in an array of N elements, 0≤M<N

With arrays

 elementM = arrayname[M];

With pointer

 elementM = *(arrayname+M);

Since the name of an array is a synonym of the location of
the initial element

© Autores V1.1
12

Arrays and pointers (II)

 A pointer to an array of characters points to the first
element
 It can be initialized in declaration

 char *pointername = “string”;

pointername contains the address of the first character

string is a string of characters ending with ‘\0’

 Functions receive a string as a pointer to the first
element of the string (pass by reference)

 char *message = “Reading error”;

 puts(message);

© Autores V1.1
13

Arrays and pointers (III)

 An array of pointers is declared as

 datatype *arrayname[size];

 Its elements are addresses where datatype elements
are contained

 All elements must be initialized pointing them to a valid data

An array of pointers to character is similar to a array of
strings

© Autores V1.1
14

Arrays and pointers (IV)

Pointer 1

Pointer 2

Pointer 3

Pointer 4

Pointer 5

ARRAY OF POINTERS

 Data 1

Data 2

Data 3

Data 4

Data 5

Array name

Data in memory

© Autores V1.1
15

Arrays and pointers (V)

 Examples:
2D array of characters

 char mssg[3][80] ={“Initial”, “Central”, “Last”};

 puts(mssg[1]); /* “Initial” to screen */

Array of pointers to character

 char *mssg [3]; /* Array of 3 pointers to char */

 mssg[0]= “Initial”; /* Initialization*/

 mssg[1]= “Central”;

 mssg[2]= “Last”;

 puts(mssg[1]);

© Autores V1.1
16

Pointer to pointer

 A pointer to pointer is a double indirection:
 datype **pointername;

 pointername contains the address of *pointername whose
contains the address of **pointername

 Particularly important in dynamical memory allocation of
multidimensional arrays (unit 4.10)

Element matrix[i][j] of 2D-array can be accessed *(*(matriz+i)+j)

© Autores V1.1
17

Pointers to structures and unions

Pointer to structure/union declaration (unit 4.9)

 struct structuretypename *pointername;

 union uniontypename *pointername;

The types must be previously defined

To access one members using pointers

Usual notation: *pointername.membername

With «->» operator: pointername -> membername

