
© Autores V1.1

Informatics
Ingeniería en Electrónica y Automática Industrial

Functions

© Autores V1.1 2

Functions in C language

 Introduction

 Definition

 Declaration

 Variable types in relation to functions

 Function call

 Exit from a function

 main() function arguments

 Recursive functions

 Pointers to functions

 Complex declarations

© Autores V1.1 3

Introduction (I)

 Functions are statement blocks that form the
programs in C. All program activity occurs in them.

 Each function is a private, independent and indivisible
code and data block.

A function can have access just to its own local variables
and to global external ones

Any function can be accessed from outside just by
calling it

They are equivalent to subroutines or procedures in
other programming languages

© Autores V1.1 4

Introduction (II)

 All C programs consist at least of one function:
main()

Programs start execution always with main

 To maximize program portability, a function should:

Be generic

Receive information just through its parameters, i.e.

Not use external variables

© Autores V1.1 5

Introduction (III)

 Example: Program to read a set of numbers and obtain its
maximum, minimum and mean:

#include <stdio.h>

#define N 10

main()

{

 int max, min, med, listnum[N];

 Readdata(listnum, N);

 max = Maximum(listnum, N);

 min = Minimum(listnum, N);

 med = Mean(listnum, N);

 printf(“Máximum: %d, Minimum: %d, Mean: %d”,

 max, min, med);

 return 0;

}

© Autores V1.1 6

Introduction (IV)

 Advantages of using functions

Code is structured and organized in independent blocks

Data are isolated

Error localization is easier

Functions can be tested separately

Same function can be used in different programs.

 Disadvantages

Source code may be larger.

 In execution, call and return requires additional time.

In general advantages are much more valuable than disavantages

© Autores V1.1 7

Function definition (I)

 The general form of a function definition in C is:

 returntype functionname(parameterlist)

 { /* Body of the function */

 Data declaration

 Statements;

 Return expressions;

 }

 returntype is the data type of the value the function

returns (int by default)

 functionname identifies the name of the function

© Autores V1.1 8

Function definition (II)

 The parameterlist refers to the type, order and

number of the formal parameters of the function

They get the values that are passed to the function

They work as variables inside the function

The list has the following format:

type1 ident1, type2 ident2, … typeN identN

typeX represents any valid type

identX is the identifier of the variable

© Autores V1.1 9

Function definition (III)

 Example: Function that receives a list of numbers and

returns the maximum

int Maximum(int list[], int numdat)

{

 int i, max;

 max = list[0];

 for (i=0 ; i<numdat ; i++)

 if (max<list[i]) max=list[i];

 return max;

}

© Autores V1.1 10

Function declaration (I)

 Function declaration or prototype describes the function:

 It must be placed before the first function call, preferably at
the beginning of the program before main function

 It informs the compiler about the function and its
characteristics, so

 It prevents mistakes in the function call related to

Data types

Number of parameters

© Autores V1.1 11

Function declaration (II)

 Format:

return_type function_name(parameter list);

Where return_type, function_name and parameter
list have the same meaning that in the function definition

 If the function does not receive arguments, it must be
explicitly declared as void

 If it does not return anything return_type must be void

© Autores V1.1 12

Function declaration (III)

 There may be an indetermined number of parameters:

 Indicated by «...» in the parameter list

There must be at least one defined parameter before the
«...»

 Example: Valid declarations:

 int maximum();

 int maximum(int [], int);

 int maximum(int [], ...);

 int maximum(int lista[], int numdat);

 /* The last one is preferably */

© Autores V1.1 13

Variable types in relation to functions (I)

 Local or automatic variables:

They are declared within the function (optionally with the
modifier auto)

Unknown/unused outside the function.

They just exist while function execution, so

They don’t keep their value among calls, unless they
are explicitly declared as static

Stored in a temporal memory part, the stack

© Autores V1.1 14

Variable types in relation to functions (II)

 Formal parameters

They are the local variables that receive the function
arguments that are send to the function in each call, so
their types must be coincident.

They are declared in the function definition

© Autores V1.1 15

Variable types in relation to functions (III)

 External/global variables

Declared outside all functions, preferibly before main

They can be accessed/modified from any point of the program
and from any function

So they are stored in memory during all execution time

Must be declared extern in each function that uses them

 Initialized automatically to zero

Disadvantages:

Functions that use them are less portable and generic

As they can be modified in any part of the program, they must be
used with care to prevent “interferences”

They imply a permanent memory occupation and a larger
program size.

© Autores V1.1 16

Functions call (I)

 A function call is made writing the name of the function
and its arguments.

 Arguments can be passed to the function by two ways:

By value
Arguments are copied in the corresponding formal parameters.

Chages made within the function do not affect the variables
used in the call

By reference
Arguments passed to the functions are memory addresses of

the variables (pointers).

The function can change the contents of the address and
therefore can change the variable used in the call.

© Autores V1.1 17

Functions call (II)

 To pass an array to a function, the argument is the
address of the first element of the array (pointer).

The function can change any element of the array

The function must know the dimensions of the array.

With a 1D array, it must know its limits:

• The number of elements

• If it is a string, the null character \0

With a multidimensional array:

• The number of dimensions

• The total number of elements.

© Autores V1.1 18

Functions call (III)

 Example: maximum() function with prototype

int maximum(int list[], int numdat)

Receives
• The address of an array of integers list

• The number of elements in the array numdat

Returns an integer: the maximum of the array max

After the call max=maximum(array, ndata);

• ndata does not change

• The elements in array (array[0], array[1], ...)
may change.

• max will change

© Autores V1.1 19

Functions call (IV)

 Structures and unions can be passed to a function as

any other variable:
When passed by value, a copy is made.

With big and complex structures, memory size and
execution time increase.

When passed by reference:

Function call is fast (just an address is passed).

Function can change values of variables in the calling
function.

© Autores V1.1 20

Exit from a function (I) - return

 return statement allows to exit from a function and go
back to the point where it was called

 return expression;

expression represents the value to be returned

• It must be of the type the function expects

 It can be placed anywhere and more than once.

 Closing bracket «}» means as well function ending
and return to the calling point

 By default the retun type is int.

© Autores V1.1 21

Exit from a function (II) - exit

 exit() forces the end of the program in the point

where is placed

 It returns the control to the OS

Defined in the file stdlib.h

© Autores V1.1 22

main() function arguments (I)

 main()function can exchange information with the OS:

Receive arguments from command line

Return a value

 Prototype

 int main(int argc, char *argv[]);

int indicates that it returns an integer (default)

© Autores V1.1 23

main() function arguments (II)

 argc and argv[] are optional parameters to receive
arguments:

 argc is an integer indicating the number of arguments,
considering the name of the program as the first one

 argv is a pointer to an array of character strings that contains
the arguments.

Each element of the array points to one argument in the
command line: (argv[0] to the program name, argv[1] to
the next argument…)

Separator in command line is just an space.

© Autores V1.1 24

main() function arguments (III)

 main() receives as many strings as there are character
sets separated by spaces in the command line

 Example: If cp was a C program, typing

 cp –f origin_file destiny_file

 in the main()function of the program there will be:

argc=4

argv[0]=“cp”

argv[1]=“-f:”

argv[2]=“origin_file”

argv[3]=“destiny_file”

© Autores V1.1 25

Recursive functions (I)

 Recursion is the possibility that a function calls itself

When this happens:

Previous execution remains suspended and its parameters
are stored in memory

A successive return must take place

Usually there is a conditional statement to finish recursion

Recursivity levels must be limited to a small number
explicity or by the algorithm (risk of infinity loops)

 When programming recursive functions notice that:
 auto and register variables are initialized every call

 static variables are just initialized the first call

© Autores V1.1 26

Recursive functions (II)

 Advantages

Sometimes they allow to create clearer and simpler
versions of some algorithms

 Disadvantages

Usually they they increase both used memory and
execution time

Difficult to understand

© Autores V1.1 27

Recursive functions (III)

 Example: Program to show natural numbers up to the
one introduced with the keyboard (I)

#include <stdio.h>

void present (int num); /* Function prototype */

main()

{

 int n;

 printf("Introduce a number: ");

 fflush(stdin);

 scanf("%d", &n);

 present(n); /* Call to the function */

 return 0;

}

© Autores V1.1 28

Recursive functions (IV)

 Example: Program to show natural numbers up to the
one introduced with the keyboard (I)

void present(int num) /* Recursive function */

{

 if (num==1) printf ("%d\t", num);

 /* Si num == 1 print and finish */

 else

 {

 present(num-1); /* Si num!=1 decrement num
 and calls to itself */

 printf("%d\t", num);

 }

} /* When returning from calls
 numbers are printed */

© Autores V1.1 29

Complex declarations (I)

 Combination of
Pointer to operator «*»

Array brackets «[]»

Parenthesis «()» to group operations or for functions

 Give rise to complex declarations difficult to understand

 To interpret correctly the declarations:
1. Start with the identifier and go right

Parenthesis indicates that is a function

Brackets indicates that is an array

2. Go left and check if there is a «*» indicating a pointer

3. Apply fomer rules to each level of parenthesis from inside
to outside

© Autores V1.1 30

Complex declarations (II)

 Examples

int (*list)[20]; /* list is a pointer to an
 array of 20 integers */

char *data[20]; /* data is an array of 20
 pointers to character */

void (*busc)(); /* busc is a pointer to a
 function that does not
 return anything*/

