
© Autores V1.1

Informatics
Ingeniería en Electrónica y Automática Industrial

The Preprocessor

V1.1 © Autores 2

The preprocessor in C language

 Definition

 Preprocessor directives

 #include. Header files

 #define

Symbolic constants

Macros

 Conditional compilation directives

 Other directives

V1.1 © Autores 3

Definition

 The preprocessor is a text processor that performs

operations on the source code.

 It is a separate first step in compilation

Basically it is the inclusion in the main source code of

header files, macros and conditional compilation

The preprocessor instructions are called directives

The preprocessor main goal is to facilitate programming

V1.1 © Autores 4

Preprocessor directives (I)

 They are special instructions that are processed
before the actual compilation which produce the final
machine code

They are not regular C statements, so in the source code:

They are preceded by the symbol «#»

 No «;» expected at the end

A standard set is included in ANSI C. Compilers usually
include others

By default they just occupy one line. To continue in the
next one the symbol «\» must be used

They can be in any part of the source code but their effect
is just from the line where they are placed onwards.

V1.1 © Autores 5

Preprocessor directives (II)

 The directives included in ANSI C are

 #include #define

 #error #if

 #elif #else

 #ifdef #ifndef

 #endif #undef

 #line #pragma

V1.1 © Autores 6

#include. Header files

 Makes the preprocessor to substitute the directive by

the header file in the point where the directive is

 #include “headerfile.h”. Preprocessor looks for

the file first in the program directory and later in the
system ones (mainly for user files)

 #include <headerfile.h>. Preprocessor looks

directly in the system directories (for standard libraries)

 Typically header files collect information that is used by

different source files, as:

Macros and constants definitions, global variables,

function declarations….

V1.1 © Autores 7

#define. Symbolic constants

 #define IDENTIFIER string

 The preprocessor will substitute any occurrence of
IDENTIFIER in the source code by string

string can be a

Symbolic constant

Macro (optional parameters)

 To distinguish IDENTIFIER from variables use CAPITALS

 Definitions can use previous definitions

 For symbolic constants:
#define PI 3.141516

#define MEMERR “Error in Memory Allocation”

V1.1 © Autores 8

#define. Macros (I)

 #define MACRONAME(parameters) expression

MACRONAME is the identifier (in CAPITALS)

parameters are arguments separated by commas to
be substituted when the identifier occurs in the code

expression is any valid expression that operates with
the parameters

When the preprocessor finds a call to MACRONAME in the
source code will substitute it for expression changing
parameters by their values contained in the call.

V1.1 © Autores 9

#define. Macros (II)

 Example. Macro to obtain the greater of two numbers

#define MAX(a,b) ((a)>(b)) ? (a) : (b)

...

x = MAX(dat1, dat2);

 It looks similar to a function but it is just a substitution:
x = ((dat1)>(dat2)) ? (dat1) : (dat2)

 Macros vs functions
Macros generate longer code but are faster (no function call)

Macros can give rise easily to errors difficult to debug (always use
parenthesis in expression)

 Some standard functions are macros (getc(), gerchar())

 In general

 Use macros for small and easy code that appears many times

 Use functions for larger code

V1.1 © Autores 10

#define. Macros (III)

 In ANSI C there are five useful predefined macros:

__LINE__ Writes the code line number when compiling:
 int nline = __LINE__

__FILE__ Writes the name of the source code:
 printf(“%s\n”, __FILE_);

__DATE__ Writes the date of compilation (mm dd yyyy)
 printf(“%s\n”, __DATE__);

__TIME__ Writes the time of compilation (hh:mm:ss)
 printf(“%s\n”, __TIME__);

__STDC__ Is substituted by 1 if all code is ANSI standard
 int ansi = __STDC__

V1.1 © Autores 11

Conditional compilation directives (I)

 The conditional compilation directives allow for selective
compilation of parts of the source code:

Facilitate debugging (debug with value-check, write, etc..)

Make possible to personalize programs (eg. compile for
different platforms)

 Types:

Compilation conditioned by the value of an expression:

 #if #elif #else #endif

Compilation conditioned by the definition of a macro

 #ifdef #ifndef #endif

V1.1 © Autores 12

Conditional compilation directives (II)

 Compilation conditioned by the value of an expression

 #if constantexpression1

 statements1;

 #elif constantexpression2

 statements2;

 #elif constantexpression2

 #elif constantexpressionN

 statementsN;

 #else

 statementsM;

 #endif

V1.1 © Autores 13

Conditional compilation directives (III)

 The terms constantexpressionX are evaluated in
compilation time:

They can include logical and relational operations

They cannot include program variables

 statementX represent C code lines

 #elif is equivalent to #else #if

 #else and #elif are associated to the nearest up #if
and are optional.

V1.1 © Autores 14

Conditional compilation directives (IV)

 Example. Program to include a different header file
depending on the connected printer in that moment

 #if DEVICE == IBM

 #include ibmdrv.h

 #elif DEVICE == HP

 #include hpdrv.h

 #else

 #include gendrv.h

 #endif

V1.1 © Autores 15

Conditional compilation directives (IV)

Compilation conditioned by the definition of a macro

 #ifdef MACRONAME1

 statements1;

 #endif

 #ifndef MACRONAME2

 statements2;

 #endif

statements1 are compiled just if MACRONAME1 is
previously defined

statements2 are compiled just if MACRONAME2 is NOT
previously C

#else can be combined with them but not #elif

V1.1 © Autores 16

Other directives

 #undef. Eliminates the definition of a macro or symbolic
constant #undef MACRONAME

 #error. Stops compilation showing a message on screen:
 #error Message

 #line. Changes the value of predefined macros __LINE__
and __FILE__

 #line linename “newfilename”

 #pragma. To access compiler-specific preprocessor

extension; ie each pragma directive has different sintax,

implementation rule and use

 #pragma compilerspecificextension

