
© Autores
V1.1

Informatics
Ingeniería en Electrónica y Automática Industrial

Dynamic Memory Allocation

V1.1
© Autores 2

Dynamic Memory Allocation

 Definition

 Memory map during program execution

 Dynamic memory allocation and release

 Dynamically allocated arrays

Unidimensional

Bidimensional

 Reallocation of memory blocks

V1.1
© Autores 3

Definition

 The compiler reserves memory for variables when they

are declared, before execution

If global or static, in the data segment of the program

If local, in the stack

 The dynamic memory allocation is the assignment of

memory space in execution time.

The OS assigns the required memory from the available

one in that moment

Very important tool when working with big

multidimensional arrays to use memory efficiently

V1.1
© Autores 4

Memory map during program execution

 A program in execution is an
active process that can use
the memory assigned by OS:

Code segment
• Program

Data segment
• Global and static variables

Stack segment
• Local variables

• Return addresses in
function calls

Free memory
• Dynamic allocation

V1.1
© Autores 5

Dynamic memory allocation and release (I)

 The program can ask for memory to the OS during
execution time with malloc() function

 void *malloc(unsigned size);

Declared in stdlib.h

size indicates the number of requested bytes

It returns a generic pointer to the first address of the
assigned memory block (NULL if error)

V1.1
© Autores 6

Dynamic memory allocation and release (II)

 After use, memory must be released with free()function

 void free(void *pblock);

Declared in stdlib.h

pblock is the pointer to the block to be released

The function does not return anything

V1.1
© Autores 7

Dynamic memory allocation and release (III)

 Example:

int *dat;

dat = (int *)malloc(sizeof(int)); /*Assign*/

if (dat==NULL)

 printf(“Allocation error”);

... /*Using dat*/

free(dat); /*Release*/

V1.1
© Autores 8

Dynamically allocated arrays (I)

 Are the arrays whose size is fixed in execution time
when they are allocated with calloc()function

 Unidimensional dynamically allocated arrays

void * calloc(numelements, elementsize);

 Declared in stdlib.h

 Returns a pointer to the first address of the assigned
memory block (NULL if error)

 numelements indicates the number of elements in the array

 elementsize indicates the size of each element

V1.1
© Autores 9

Dynamically allocated arrays (II)

 Example: Dynamic allocation of an array of N integers

 int *arr10; // Pointer to int

arr10= (int *)calloc(N, sizeof(int)); //Assign

if (arr10==NULL)

 printf(“Allocation error”);

 ... // Using arr10

free(arr10); // Memory release

V1.1
© Autores 10

Dynamically allocated arrays (III)

 Bidimensional dynamically allocated arrays:

1.Declare a pointer to pointer to the data type of the 2D-array

2.Assign dynamically a 1D-array of pointers

3.Assign dynamically a 1D-array of data to each of the pointers
of the previous array of pointers

4.Normal use of the 2D-array

5.Release memory in inverse order:

1.With a loop release every 1D-array of data

2.Release the 1D-array of pointers

V1.1
© Autores 11

Dynamically allocated arrays (IV)

V1.1
© Autores 12

Dynamically allocated arrays (V)

 Example: 2D-array (NROW, NCOL) of real numbers

float **arr2D; // Pointer to pointer to float

int i,j;

arr2D = (float **)calloc(NROW , sizeof(float *))

 //Assign mem for 1D-array of NROW pointers to float

for (i=0 ; i<NROW ; i++;)

 arr2D[i] = (float *)calloc(NCOL , sizeof(float));

 // Assign mem for each 1D-array of NCOL float numb

 ... // Use arr2D, elements can be accessed arr2D[i][j]

for (i=0 ; i<NROW ; i++) free(arr2D[i]);

 // Release the 1D-arrays of real data

free(arr2D); // Release the 1D-array of pointers

V1.1
© Autores 13

Reallocation of memory blocks

 In execution it is possible to change the size assigned
to an array by reallocating the memory block it occupies

 void * realloc(void *ptoldblock, numbytes);

Declared in stdlib.h

Returns a pointer to the new memory block that might
be different to the previous one (NULL if error)

Data of the original block are not lost

ptoldblock points to the original block to reallocate

numbytes indicates the size in bytes of the new block

