
© Autores V1.1

Informatics
Ingeniería en Electrónica y Automática Industrial

Input and Output With Files

V1.1
2

Input and Output With Files in C Language

 Files and streams in C language

 Opening and closing files

 Text input/output
 Characters

 Text

 Binary data input/output

 Formatted Input/Output in Files

 File positioning: fseek()

 Other operations over files
 Function ftell()

 Function rewind()

 Function remove()

 Function fflush()

 Function tmpfile()

V1.1
3

Files and streams in C language (I)

 Storing information requires a system for I/O with files
 Independent of the physical device

 Implemented with generic, powerful and flexible functions

Two general tools exist: Files and Streams

 File: Sequence of bytes stored/sent in/to some device
(hard disc, printer, keyboard, controller, screen…)

 Stream: Abstract element over which every I/O operation is
performed to make them easier for the programmer
 It works as intermediary between programs and files.

Physically is a part of the memory working as a buffer

Three special streams exist:

Stdin Standard Input Stream associated to the keyboard

Stdout Standard Output Stream associated to the screen

Stderr Standard Error Stream associated to the screen

V1.1
4

Files and streams in C language (II)

Program

in

execution

 (Process)

Input

Output

Errors

Input Stream
Error Stream

Output Stream

Default associations

Physical devices are treated
as files

http://images.google.es/imgres?imgurl=http://www.bufoland.cl/apuntes/teclado/teclado.gif&imgrefurl=http://www.bufoland.cl/apuntes/teclado/teclado_pc.php&h=336&w=608&sz=9&hl=es&start=1&tbnid=iyeArsPl3zgUVM:&tbnh=75&tbnw=136&prev=/images%3Fq%3Dteclado%26gbv%3D2%26svnum%3D10%26hl%3Des%26sa%3DG

V1.1
5

Files and streams in C language (III)

 In DOS/Windows a file can be opened in two ways:

Text mode: bytes are considered to be ASCII codes

End of line is ‘\n’ (in ASCII CR: Carriage return)

When writing, CR+LF (Intro) is converted to ‘\n’

Binary mode: bytes are considered to be binary code

 In Unix/Linux there is no such distinction

V1.1
6

Opening and closing files (I)

 To access any file it is necessary a file descriptor

Declaration:

 FILE *pfile;

FILE is a constant defined in stdio.h

The descriptor pfile points to a buffer that will contain all
the information about the file

 It is used in any operation with the file

 It must be declared before use

 It is initialized when opening a file without error

V1.1
7

Opening and closing files (II)

 Before any operation the file must be opened with fopen()

FILE *pfile

pfile = fopen(“filename”, “mode”);

 fopen receives two character chains
• First one with the file’s name (including access path)

• Second one with the opening mode

 It returns:
• The descriptor pfile that points to an structure that contains all

information about the file: name, size, attributes….

• The NULL descriptor in case of error

V1.1
8

Opening and closing files (III)

FILE OPENING MODES IN C

Opening modes

String

Observations
Text file Binary file

Open to read “r” “rb”
If it does not exist, error is

produced

Create to write “w” “wb” If it exist, content is lost

Open or create to append “a” “ab” If it does not exist, is created

Open to read and/or write “r+” “rb+” It must exist

Create to read and/or write “w+” “wb+” If it exist, content is lost

Open or create to append and/or

read
“a+” “ab+” If it does not exist, is created

V1.1
9

Opening and closing files (IV)

 When the program finishes normally all open files are
closed by the OS but

 To prevent from abnormal termination, it is recommended to
close all files in the program with

 fclose(pfile);

 It receives as argument de file descriptor pfile

 It returns
An integer with ‘0’ value if normal closing

EOF in case of error

 All information of a non-propertly closed file is lost

V1.1
10

Opening and closing files (V)

 Example:

FILE *pf; /* descriptor */

if ((pf=fopen(“myadata/draft.txt”,“w+”)) == NULL)

{

 puts(“\nFile can’t be created”);

 exit(0);

}

else printf(“\nFile has been opened”);

/* ... Program ... */

fclose(pf); /* File is closed */

V1.1
11

Opening and closing files (VI)

 The end of file is indicated with the special character EOF,
defined in stdio.h

 It is the last byte of the file

When bytes are read with fgetc(), EOF might be not
distinguished as last character so,

Function feof()of stdio.h returns a value different from
cero (true) when EOF is read

while (!feof(pfile))

{

 /* operarions with the open file */

}

V1.1
12

Text input/output (I)

 Functions to Read/Write ONE character (stdio.h)

int fgetc(FILE *pfile);

 Reads a character from the file whose descriptor pfile receives

 Returns the read character in an integer or EOF in case of error

int fputc(int char, FILE *pfile);

 Writes a character in the file whose descriptor receives

 Receives as arguments
• char: The character to write

• pfile: The file descriptor

 Returns EOF in case of error

V1.1
13

Text input/output (II)

 Example:

FILE *pf1, *pf2;

char letter;

pf1 = fopen(“read.txt”, “r”);

letter = fgetc(pf1); /* Reads 1 character */

pf2 = fopen (“write.txt”, “w”);

fputc(letter, pf2); /* Writes 1 character */

fclose(pf1);

fclose(pf2);

V1.1
14

Text input/output(III)

 Functions to Read/Write strings (stdio.h)

char * fgets(char *cad, int numchar, FILE *pf);

 It receives as arguments
• cad: Pointer to where the string will be stored

• numchar-1: Number of character to read (‘\0’ is added)

• pf: file descriptor
 It returns a pointer to the chain or NULL in case of error

 The character \n is the last one read if found

int fputs(char *pstring, FILE *pf);

 It receives as arguments
• pstring: A pointer to the string to be written

• pf: File descriptor

 It returns the last written character or EOF in case of error

V1.1
15

Text input/output(IV)

 Example:

FILE *pf1, *pf2;

char rea[50];

char writ[]=“Message to keep in the file”;

int num=50-1;

pf1 = fopen(“read.txt”, “r”);

fgets(rea, num, pf1);

 /* Reads a string of 49 chars from read.txt */

pf2 = fopen (“write.txt”, “w”);

fputs(writ, pf2);

/*Writes the string “Message to …” in write.txt*/

fclose(pf1);

fclose(pf2);

V1.1
16

Binary data Input/Output (I)

 To read binary data: fread() (in stdio.h)

unsigned fread(void *pdat, unsigned numbytes,

 unsigned numdat, FILE *pfile);

 To write binary data: fwrite() (in stdio.h)

unsigned fwrite(void *pdat, unsigned numbytes,

 unsigned numdat, FILE *pfile);

 They return the number of read/written data

 They receive
 pdat: A pointer to the read/written data
 numbytes: number of bytes that each data occupies (sizeof)
 numdat: Total number of data
 pfile: File descriptor

V1.1
17

Binary data Input/Output (II)

 Example:

FILE *pf;

float value1=3.5, value2;

pf=fopen (“file.dat”, “a+”);

fwrite(&value1, sizeof(value1), 1, pf); /*Writes*/

fread(&value2, sizeof(float), 1, pf); /*Reads */

fclose(pf)

V1.1
18

Formatted Input/Output in Files (I)

 fprintf() y fcanf() in stdio.h are analogous to
printf() and scanf() but using a file descriptor

 int fprintf(FILE *pf, char *format, arglist);

 int fscanf(FILE *pf, char *format, arglist);

 They receive

 pf: File descriptor

 format: A string that specifies formats

 arglist: Arguments to be written/read

 They return

 fprintf() returns the number of written bytes

 fscanf() returns the number of read bytes or EOF

V1.1
19

Formatted Input/Output in Files (II)

 Example:

FILE *pf;

int i = 100;

char c = 'C';

float f = 1.234;

pf = fopen(“myfile.dat", "w+");

fprintf(pf, "%d %c %f", i, c, f);

 /* Writes in the file */

fscanf(pf, "%d %c %f", &i, &c, &f);

 /* Read from the file */

fclose(pf);

V1.1
20

File positioning: fseek()(I)

 With fseek()the program can access directly any
position in the file (random vs sequential access)

 FILE pointer points to an structure created by the OS to
control operations over the file
 It incudes a read/write pointer that contains the current

position to read/write

When opening a file this pointer points to the beginning of
the file (except if open to append)

 Therefore fseek()allows to read/write in any position of
the file by setting the value of the read/write pointer

V1.1
21

File positioning: fseek()(II)

int fseek(FILE *pf, long offset, int origin);

 It returns ‘true’ if success (right movement) or NULL otherwise

 It receives

•pf: File descriptor

•origin: Initial reference point. Some references defined in
stdio.h can be taken:

 SEEK_SET: beginning of the file

 SEEK_CUR: current position

 SEEK_END : end of the file

•offset: Value to add to origin to obtain the new position

V1.1
22

File positioning: fseek() (III)

 Example:

FILE * pFile;

pFile = fopen ("example.txt" , "w");

fputs ("This is an apple." , pFile);

fseek (pFile , 9 , SEEK_SET);

fputs (" sam" , pFile);

fclose (pFile);

After execution, example.txt will contain:
"This is an sample."

V1.1
23

Other operations over files (I)

 Function ftell()

long ftell(FILE *pf);

Returns a long integer with the position of the write/read

pointer with respect to the origin of the file.

Receives the file descriptor pf

Defined in stdio.h

V1.1
24

Other operations over files (II)

 Function rewind()

void rewind(FILE *pf);

Initilializes read/write pointer the beginning of the file

Does not return anything

It receives the file descriptor

Defined in stdio.h

V1.1
25

Other operations over files (III)

 Function remove()

int remove(char *filename);

It removes the file pointed by filename

Returns 0 if success and -1 if error

• In case of error, global variable errno, defined in errno.h

will indicate the kind of error

Defined in stdio.h

V1.1
26

Other operations over files (IV)

 Function fflush()

int fflush(FILE *pf);

It empties I/O buffers associated to the descriptor pf

Returns 0 if success and NULL if error

Defined in stdio.h

Very used to erase keyboard buffer and when working
with printers

V1.1
27

Other operations over files (V)

 Function tmpfile()

 FILE * tmpfile(void));

It creates a temporal file that is automatically removed

when the file is closed or the program ends.

The temporal file is created in “w+” mode

It returns a file descriptor to the temporal file (or null

pointer if cannot be created)

Defined in stdio.h

